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Background

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!
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Our Hope

The Topology

e Original Objectives
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.
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Our Result

The Topology R lt
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There is now a classification theory.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

Overview-05 @ There is rigidity and degrees of freedom

@ It is applicable to R? only — for now



Topology Enters the Picture

bt*8 The 4 Levels of Structure
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e Basis Sets of Orbits
e Branched Manifolds
« Bounding Tori

¢ Extrinsic Embeddings
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Experimental Motivation
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Results, Single Experiment
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Some Attractors

The Topology

"t oo Coexisting Basins of Attraction
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Many Experiments

The Topology

e Bifurcation Perestroikas
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Real Data

Jietied Experimental Data: LSA
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Real Data

T s Experimental Data: LSA
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Mechanism

Stretching & Squeezing in a Torus




Time Evolution

o o Rotating the Poincaré Section
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Time Evolution

The Topology

Rotating the Poincaré Section
around the axis of the torus

PR ’If
] | |
|I,F""" el
. 5
- - L
. o

Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.
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Experimental Schematic

The Topology

¢ Choos A Chemical Experiment
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The Belousov-Zhabotinskii Reaction
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The Topology
of Chaos C haOS
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Motion that is

e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor

The Topology

"t oo Strange Attractor
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The @ limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange
Attractor



Skeletons

g8 UPOs Outline Strange attractors
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e UPOs Outline Strange attractors
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Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Dynamics and Topology

The Topology

ot s Organization of UPOs in rs:
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Gauss Linking Number

N(A, B) 7{?{ rqg —rp)dryxdrp
T i g —rpl3

# Interpretations of LN ~ # Mathematicians in World



Linking Numbers

s Linking Number of Two UPOs

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Evolution in Phase Space

The Topology

g One Stretch-&-Squeeze Mechanism
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Motion of Blobs in Phase Space

The Topology

St Chns Stretching — Squeezing

STRETCH
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Collapse Along the Stable Manifold

The Topology

i Birman - Williams Projection
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Identify x and y if
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Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If:

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem

The Topology

¥ s Assumptions, B-W Theorem
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A flow @,(2)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

it Conclusions, B-W Theorem
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e The projection maps the strange
attractor s4 onto a 2-dimensional
branched manifold M and the flow &,(z)
on SA to a semiflow &(z); on BM.

¢« UPOs of ¢,(z) on s4 are in 1-1
correspondence with UPOs of &(z), on
BM. Moreover, every link of UPOs of
(®4(z),SA) is isotopic to the correspond
link of UPOs of (&(z);, BM).

Remark: “One of the few theorems useful to experimentalists.”



A Very Common Mechanism

The Topology

of Chaos RasSler:

Attractor Branched Manifold
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A Mechanism with Symmetry

The Topology

e Lorenz:

Sl Attractor Branched Manifold
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Examples of Branched Manifolds

Inequivalent Branched Manifolds
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Aufbau Princip for Branched Manifolds

The Topology

it Any branched manifold can be built up
Robert from stretching and squeezing units
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2. BRANCH
LINE

subject to the conditions:
e Outputs to Inputs

e No Free Ends



Dynamics and Topology

The Topology

i Rossler System
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(a) Rdssler Equations




Dynamics and Topology

The Topology

¢ Croos Lorenz System
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Dynamics and Topology

The Topology

o Chnoe Poincaré Smiles at Us in r3
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4



Topological Analysis Program

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Model the Dynamics
Validate the Model



Locate UPOs

e e Method of Close Returns
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Embeddings

ot Embeddings

Gilmore

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding



Locate UPOs

sl An Embedding and Periodic Orbits
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Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Determine Topological Invariants

s Linking Number of Orbit Pairs

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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The Topology

Determine Topological Invariants

Compute Table of Expt’l LN

Tabte 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted from
Eielon sov—Zh abotin skii data™

Orbit Symbolics 1 2 3 4 5 & 7 Ba Bb
1 1 0 1 1 2 2 2 3 4 3
2 01 1 1 2 3 4 4 & g g
3 011 1 2 2 4 5 6 T 8 &
4 0111 2 3 4 & 8 & 11 13 12
5 01011 2 4 5 & 8 10 13 16 15
& 011 OM1 2 4 i & 10 a 14 16 14
7 01olo11 3 5 7 11 13 14 14 1 21
Ba 01010111 4 & 8 13 16 14 21 23 24
8h 01011 011 3 & 8 12 15 14 21 24 21

24l indices e negative.



Determine Topological Invariants

Compare w. LN From Various Bum
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Determine Topological Invariants

e e Guess Branched Manifold

Robert
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Figure 7. “Combing™ the inte ation {right) created
by the stretching and squeezing mechanisms.
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Determine Topological Invariants

The Topology

S Identification & ‘Confirmation’

Robert
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o BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion



Determine Topological Invariants

e e What Do We Learn?
Robert

Gilmore e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




The Topology
of Chaos

Gilmore

Evolution Under Parameter Change

m {modulation amplinde)

-
TN

YAG LASER

T —

FIBER LASER

Figure 11. Varous templates observed in two laser experiments. Top left:
pammeter space of forced ponli near ascillators showi
systematically from one to

fiber Laser experiment: global tomsion inc

schematic representation of the
it templates observed in the
to the next [40]. Bottom left:

resomunee tongu

templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the
topological organization across one chaotic wngue (39,41
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Perestroikas of Strange Attractors

The Topology

ge#sl F'volution Under Parameter Change
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X, (arb, units)

sinfwt) (ach. units) X (£) sin(wt) (arb. wnits)

X, (arb. units)

units)  X(t)
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An Unexpected Benefit

The Topology

Analysis of Nonstationary Data
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Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment of the time series containing a periodic orbit of perod 9. Right: embeddi I the '|'.lt.J'ItJdIC.

arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entmopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Our Hope — Now a Result

The Topology

Rt Compare with
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Original Objectives

Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.




Orbits Can be “Pruned”

g¥#8 There Are Some Missing Orbits

Robert

Lorenz Shimizu-Morioka



Linking Numbers, Relative Rotation Rates, Braids

Orbit Forcing
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An Ongoing Problem

The Topology

o Forcing Diagram - Horseshoe
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An Ongoing Problem

e e Status of Problem

Robert

Gilmore

Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required



Creating New Attractors

Jietied Rotating the Attractor
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Another Visualization

The Topology

of Chaos Cutting Open a Torus
T

Gilmore
E!’
(D:(Dt ) ol

'
x ¢
XB m



Satisfying Boundary Conditions

The Topology
of Chaos

Global Torsion
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Two Phase Spaces: R? and D? x S*

The Topology

i al Rossler Attractor: Two Representations
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E Rossler Attractor, Toroidal Representation
201~ E Index (n_1,n_2) = (1,0)
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Other Diffeomorphic Attractors

The Topolo;
of Chaos. . Rossler Attractor:

Robert
G

Two More Representations with n=+1

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Tndex (n_l.n_2) = (1,-1) Tndex (n_l.n_2) = (1,+1)

4
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=
2
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R
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Coordinate u

n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

The Topology

of Chavs Rossler Attractor:
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Two Two-Fold Covers with p/q=+1/2

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(2.-1) Index (n_l.n_2) = (2,+1)

Coordinate u
Coordinate u

1
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

The Topology

of Chavs Rossler Attractor:
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Two Three-Fold Covers with p/q=-2/3,-1/3

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(3.-2) Index (n_l,n_2)=(3.-1)
2 T

Coordinate u

1 2 K 1 2
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

The Topolo;
of Chaos. . Rossler Attractor:
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And Even More Covers (with p/qg=+1/3,+2/3)

Rossleer Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_1.n_2) = (3,+1) Index (n_1L,n_2) = (3,4+2)

Coordinate u

1 2 1 2
n_I x Phase Angle /2 Pi n_l x Phase Angle /2 Pi



New Measures

The Topology

et Angular Momentum and Energy
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New Measures, Diffeomorphic Attractors

The Topology

i Energy and Angular Momentum
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Diffeomorphic, Quantum Number n

Torsion Integral Energy Integral
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New Measures, Subharmonic Covering Attractors

The Topology

i Energy and Angular Momentum
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Subharmonics, Quantum Numbers p/q

Torsion Integral Energy Integral
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The Road Ahead

Summary

1 Question Answered -

2 Questions Raised

We must be on the right track !



Our Hope

The Topology

&= Original Objectives Achieved
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There is now a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

The Topology

S Result
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There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R3 only — for now



Four Levels of Structure

The Classification Theory has

4 Levels of Structure



Four Levels of Structure

The Classification Theory has

4 Levels of Structure

@ Basis Sets of Orbits



Four Levels of Structure

bt The Classification Theory has
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4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds



Four Levels of Structure

bt The Classification Theory has
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4 Levels of Structure

@ Basis Sets of Orbits
@® Branched Manifolds
©® Bounding Tori



Four Levels of Structure

bt The Classification Theory has
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4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
©® Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

The Topology
of Chaos
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Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

k=8 Some Unexpected Results

Robert
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@ Perestroikas of orbits constrained by branched manifolds
Routes to Chaos = Paths through orbit forcing diagram
Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)

Universal image dynamical systems

NLD version of Cartan's Theorem for Lie Groups
Topological Continuation — Group Continuuation
Cauchy-Riemann symmetries

Quantizing Chaos

Representation labels for inequivalent embeddings
Representation Theory for Strange Attractors



Unanswered Questions

Jetina We hope to find:

Robert
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Robust topological invariants for RN, N > 3

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D? — n x D? (e.g., Lorenz), DN - DN N>2

@ Representation theory: complete

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Singularities as obstructions to isotopy
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