Robert Gilmore

The Topology of Chaos

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Colloquium, Physics Department University of Florida, Gainesville, FL

October 6, 2008

Robert Gilmore
Physics Department

Drexel University
Philadelphia, PA 1910

robert.gilmore@drexel.edu

Colloquium, Physics Department University of Florida, Gainesville, FL October 23, 2008

Outline

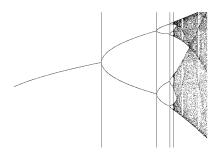
- Overview
- 2 Experimental Challenge
- Topology of Orbits
- 4 Topological Analysis Program
- Basis Sets of Orbits
- Bounding Tori
- Covers and Images
- Quantizing Chaos
- Representation Theory of Strange Attractors
- Summary

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!

Where is Tredicce coming from?



Feigenbaum:

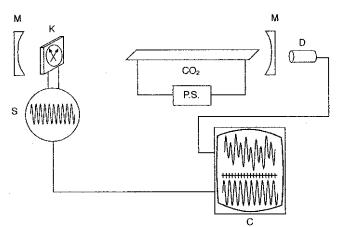
$$\alpha = 4.66920 \ 16091 \dots$$

 $\delta = -2.50290 \ 78750 \dots$

Experiment

The Topology of Chaos Robert

Laser with Modulated Losses Experimental Arrangement



Robert

Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Result

There is now a classification theory.

- It is topological
- 2 It has a hierarchy of 4 levels
- 6 Each is discrete
- 4 There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

The 4 Levels of Structure

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings

Organization

LINKS OF PERIODIC ORBITS

organize

BOUNDING TORI

organize

BRANCHED MANIFOLDS

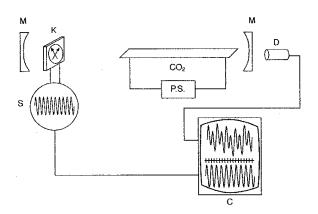
organize

LINKS OF PERIODIC ORBITS

Experimental Schematic

The Topology of Chaos

Laser Experimental Arrangement

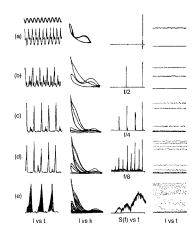


Experimental Motivation

The Topology of Chaos

Robert

Oscilloscope Traces

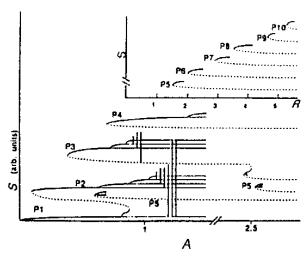


Results, Single Experiment

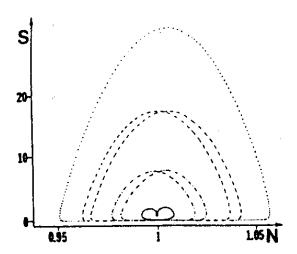
The Topology of Chaos

Robert Gilmore

Bifurcation Schematics



Coexisting Basins of Attraction

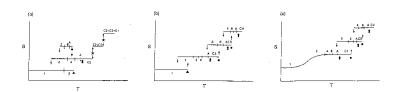


Many Experiments

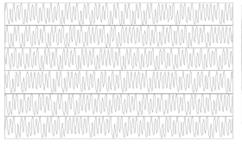
The Topology of Chaos

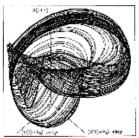
Robert

Bifurcation Perestroikas



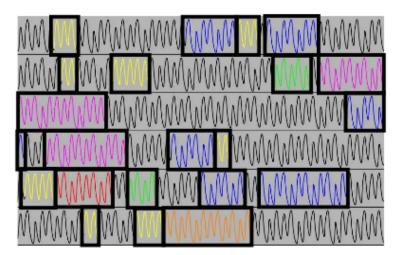
Experimental Data: LSA



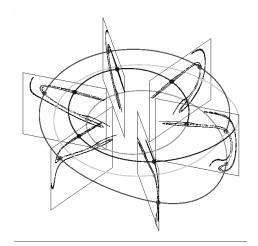


Lefranc - Cargese

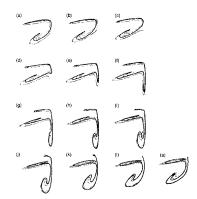
Experimental Data: LSA



Stretching & Squeezing in a Torus



Rotating the Poincaré Section around the axis of the torus



Time Evolution

The Topology of Chaos

Robert

Rotating the Poincaré Section around the axis of the torus

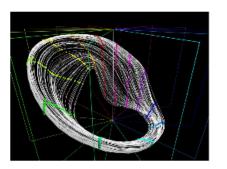




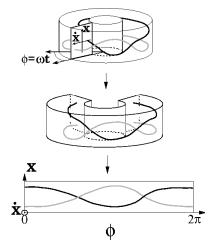
Figure 2. Left: Intersections of a chaotic attractor with a series of section planes are computed. Right: Their evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.

Another Visualization

The Topology of Chaos

Robert

Cutting Open a Torus

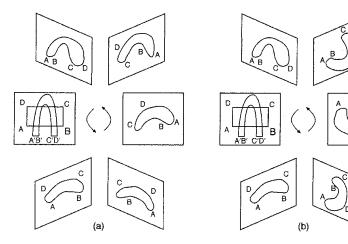


Satisfying Boundary Conditions

The Topology of Chaos

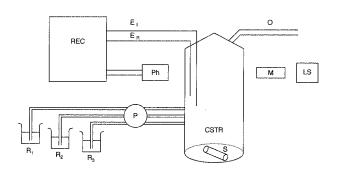
Robert

Global Torsion



A Chemical Experiment

The Belousov-Zhabotinskii Reaction



Chaos

Motion that is

- Deterministic: $\frac{dx}{dt} = f(x)$
- Recurrent
- Non Periodic
- Sensitive to Initial Conditions

Strange Attractor

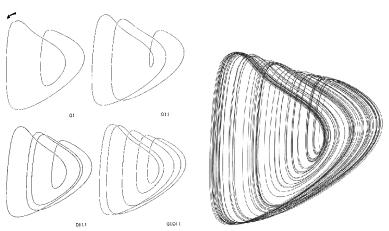
The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Skeletons

The Topology of Chaos Robert

UPOs Outline Strange attractors



Skeletons

The Topology of Chaos Robert

UPOs Outline Strange attractors

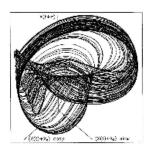


Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Organization of UPOs in R³: Gauss Linking Number

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

The Topology of Chaos

Linking Number of Two UPOs

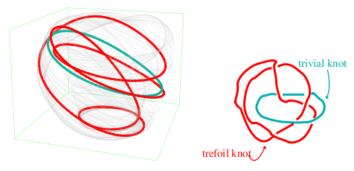


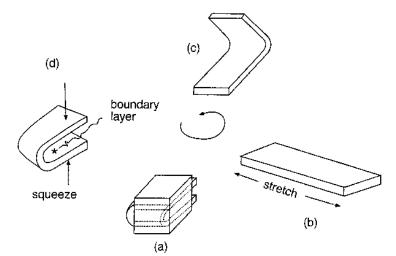
Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Evolution in Phase Space

The Topology of Chaos

One Stretch-&-Squeeze Mechanism

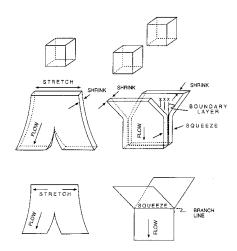


Motion of Blobs in Phase Space

The Topology of Chaos

Robert Gilmore

Stretching — Squeezing



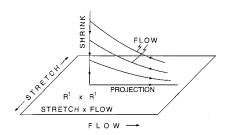
Collapse Along the Stable Manifold

The Topology of Chaos

Birman - Williams Projection

Identify x and y if

$$\lim_{t \to \infty} |x(t) - y(t)| \to 0$$



Birman - Williams Theorem

If:

Then:

Fundamental Theorem

The Topology of Chaos

Birman - Williams Theorem

If: Certain Assumptions

Then:

Birman - Williams Theorem

If: Certain Assumptions

Then: Specific Conclusions

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

- on R^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0$.
- Generates a <u>hyperbolic</u> strange attractor SA

IMPORTANT: The underlined assumptions can be relaxed.

Conclusions, B-W Theorem

- The projection maps the strange attractor \mathcal{SA} onto a 2-dimensional branched manifold \mathcal{BM} and the flow $\Phi_t(x)$ on \mathcal{SA} to a semiflow $\overline{\Phi}(x)_t$ on \mathcal{BM} .
- UPOs of $\Phi_t(x)$ on \mathcal{SA} are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on \mathcal{BM} . Moreover, every link of UPOs of $(\Phi_t(x), \mathcal{SA})$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, \mathcal{BM})$.

Remark: "One of the few theorems useful to experimentalists."

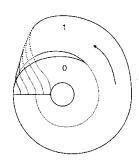
A Very Common Mechanism

The Topology of Chaos

Robert Gilmore

Rössler:

Attractor Branched Manifold



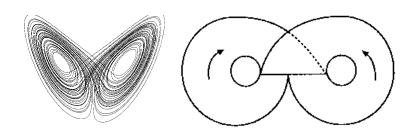
A Mechanism with Symmetry

The Topology of Chaos

Lorenz:

Attractor

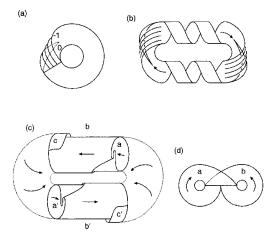
Branched Manifold



Examples of Branched Manifolds

The Topology of Chaos

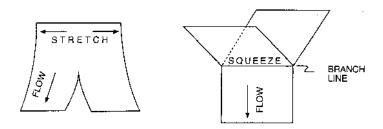
Inequivalent Branched Manifolds



Aufbau Princip for Branched Manifolds

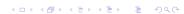
The Topology of Chaos Robert Gilmore

Any branched manifold can be built up from stretching and squeezing units



subject to the conditions:

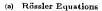
- Outputs to Inputs
- No Free Ends



Dynamics and Topology

The Topology of Chaos

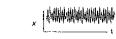
Rossler System



$$\frac{ds}{dt} = -y$$
 t

 $\frac{dy}{dt} = x + ay$

$$\frac{ds}{ds} = b + s(s - c)$$

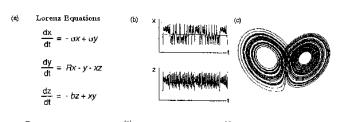


Dynamics and Topology

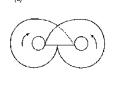
The Topology of Chaos

Robert Gilmore

Lorenz System



 $\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$ $\begin{bmatrix}
+i & -1
\end{bmatrix}$



The Topology of Chaos Robert

Poincaré Smiles at Us in R³

- Determine organization of UPOs \Rightarrow
- Determine branched manifold ⇒
- Determine equivalence class of \mathcal{SA}

Topological Analysis Program

The Topology of Chaos Robert

Topological Analysis Program

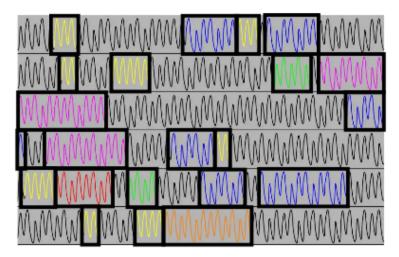
Locate Periodic Orbits
Create an Embedding
Determine Topological Invariants (LN)
Identify a Branched Manifold
Verify the Branched Manifold

Model the Dynamics Validate the Model

Locate UPOs

The Topology of Chaos

Method of Close Returns



Embeddings

The Topology of Chaos

Robert Gilmore

Embeddings

Many Methods: Time Delay, Differential, Hilbert Transforms, SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological[†]

None Good

We Demand a 3 Dimensional Embedding

Locate UPOs

The Topology of Chaos

Robert

An Embedding and Periodic Orbits

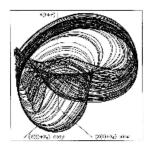


Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

The Topology of Chaos

Linking Number of Orbit Pairs

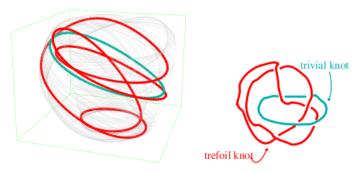


Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

The Topology of Chaos

Compute Table of Expt'l LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 8, extracted from Belou sov-Zh abotinskii data^a

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8Ь
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
6	011 0M1	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8Ь	01 011 011	3	6	8	12	15	16	21	24	21

^aAll indices are negative.

The Topology of Chaos

Robert

Compare w. LN From Various BM

Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynamics.

	19	1f	21	3 <i>f</i>	39	41	4_2f	$4_{2}9$	5 ₃ f	538	5 ₂ f	529	5 ₁ f	518
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	2	1	1	1	1	2	2	2	2
01	0	1	1	2	2	3	2	2	2	2	3	3	4	4
001	0	1	2	2	3	4	3	3	3	3	4	4	5	5
011	0	1	2	3	2	4	3	3	3	3	5	5	5	5
0111	0	2	3	4	4	5	4	4	4	4	7	7	8	8
0001	0	1	2	3	3	4	3	4	4	4	5	5	5	5
0011	0	1	2	3	3	4	4	3	4	4	5	5	5	5
00001	0	1	2	3	3	4	4	4	4	5	5	5	5	5
00011	0	1	2	3	3	4	4	4	5	4	5	5	5	5
00111	0	2	3	4	5	7	5	5	5	5	6	7	8	9
00101	0	2	3	4	5	7	5	5	5	5	7	6	8	9
01101	0	2	4	5	5	8	5	5	5	5	8	8	8	10
01111	0	2	4	5	5	8	5	5	5	5	9	9	10	8

The Topology of Chaos

Robert

Guess Branched Manifold

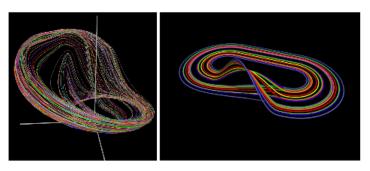


Figure 7. "Combing" the intertwined periodic orbits (left) reveals their systematic organization (right) created by the stretching and squeezing mechanisms.

Lefranc - Cargese

The Topology of Chaos Robert

Identification & 'Confirmation'

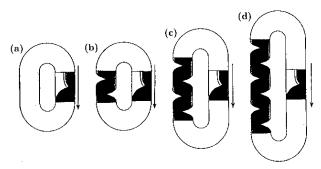
- ullet \mathcal{BM} Identified by LN of small number of orbits
- Table of LN GROSSLY overdetermined
- Predict LN of additional orbits
- Rejection criterion

The Topology of Chaos

Robert Gilmore

What Do We Learn?

- BM Depends on Embedding
- Some things depend on embedding, some don't
- Depends on Embedding: Global Torsion, Parity, ...
- Independent of Embedding: Mechanism



Perestroikas of Strange Attractors

The Topology of Chaos

Evolution Under Parameter Change

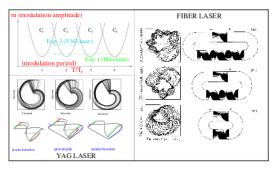
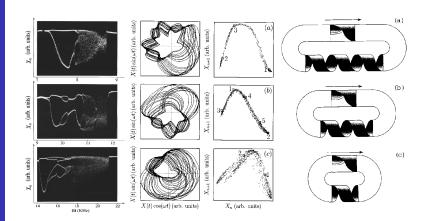


Figure 11. Various templates observed in two laser experiments. Top left: schematic representation of the parameter space of forced nonlinear oscillators showing resonance tongues. Right: templates observed in the fiber laser experiment: global torsion increases systematically from one tongue to the next [40]. Bottom left: templates observed in the YAG laser experiment (only the branches are shown); there is a variation in the topological organization across one chaotic tongue [39, 41].

Perestroikas of Strange Attractors

The Topology of Chaos Robert

Evolution Under Parameter Change



Lefranc - Cargese

An Unexpected Benefit

The Topology of Chaos

Robert

Analysis of Nonstationary Data

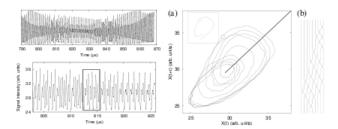


Figure 16. Top left: time series from an optical parametric oscillator showing a burst of irregular behavior. Bottom left: segment of the time series containing a periodic orbit of period 9. Right: embedding of the periodic orbit in a reconstructed phase space and representation of the braid realized by the orbit. The braid entropy is $h_T = 0.377$, showing that the underlying dynamics is chaotic. Reprinted from [61].

Lefranc - Cargese

Last Steps

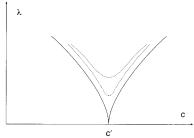
The Topology of Chaos

Model the Dynamics

A hodgepodge of methods exist: # Methods $\cong \#$ Physicists

Validate the Model

Needed: Nonlinear analog of χ^2 test. OPPORTUNITY: Tests that depend on entrainment/synchronization.



The Topology of Chaos Robert

Compare with Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

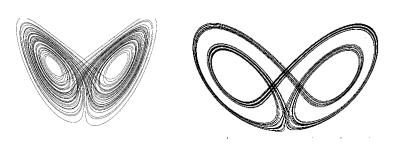
from experimental signals.

Orbits Can be "Pruned"

Lorenz

The Topology of Chaos Robert

There Are Some Missing Orbits

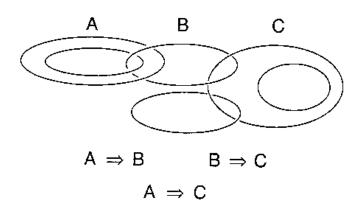


Shimizu-Morioka

Linking Numbers, Relative Rotation Rates, Braids

The Topology of Chaos

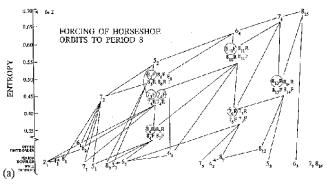
Orbit Forcing



An Ongoing Problem

The Topology of Chaos

Forcing Diagram - Horseshoe



u - SEQUENCE ORDER

An Ongoing Problem

The Topology of Chaos

Robert Gilmore

Status of Problem

- Horseshoe organization active
- More folding barely begun
- Circle forcing even less known
- Higher genus new ideas required

Perestroikas of Branched Manifolds

The Topology of Chaos

Constraints on Branched Manifolds

"Inflate" a strange attractor

Union of ϵ ball around each point

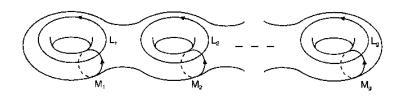
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

The Topology of Chaos

Robert

Torus, Longitudes, Meridians



Surface Singularities

Flow field: three eigenvalues: +, 0, -

Vector field "perpendicular" to surface

Eigenvalues on surface at fixed point: +, -

All singularities are regular saddles

$$\sum_{s.p.} (-1)^{\text{index}} = \chi(S) = 2 - 2g$$

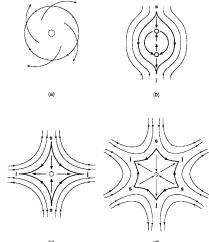
fixed points on surface = index = 2g - 2

Flows in Vector Fields

The Topology of Chaos

Robert Gilmore

Flow Near a Singularity



Some Bounding Tori

The Topology of Chaos

Robert

Torus Bounding Lorenz-like Flows

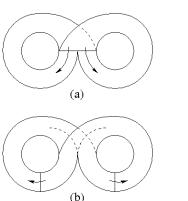


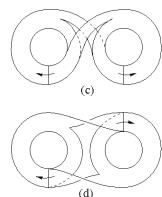
Canonical Forms

The Topology of Chaos

Robert

Twisting the Lorenz Attractor

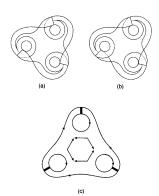




Constraints Provided by Bounding Tori

The Topology of Chaos Robert

Two possible branched manifolds in the torus with g=4.



The Topology of Chaos

Bounding Tori contain all known Strange Attractors

Tab.1. All known strange attractors of dimension $d_L < 3$ are bounded by one of the standard dressed tori.

Strange Attractor	Dressed Torus	Period $g - 1$ Orbit					
Rosaler, Duffing, Burke and Shaw	A_1	1					
Various Lasers, Gateau Roule	A_1	1					
Neuron with Subthreshold Oscillations	A_1	1					
Shaw-van der Pol	$A_1 \cup A_1^{(1)}$	1 U 1					
Lorenz, Shimizu-Morioka, Rikitake	A_2	$(12)^2$					
Multispiral attractors	A_n	$(12^{n-1})^2$					
C_n Covers of Rossler	C_n	1 ⁿ					
C ₂ Cover of Lorenz ^(a)	C_4	14					
C ₂ Cover of Lorenz ^(b)	A_3	$(122)^2$					
C_n Cover of Lorenz ^(a)	C_{2n}	1^{2n}					
C_n Cover of Lorenz ^(b)	P_{n+1}	$(1n)^n$					
$2 \rightarrow 1$ Image of Fig. 8 Branched Manifold	A_3	$(122)^2$					
Fig. 8 Branched Manifold	P_5	(14)4					
(a) Rotation axis through origin.							
(b) Rotation axis through one from							

Labeling Bounding Tori

The Topology of Chaos

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks Transition matrix sum of two g-1 \times g-1 matrices One is cyclic g-1 \times g-1 matrix Other represents union of cycles Labeling via (permutation) group theory

Some Bounding Tori

The Topology of Chaos

Robert

Bounding Tori of Low Genus

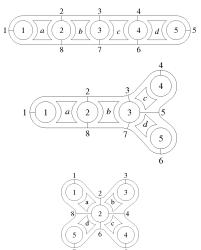
TABLE I Bnumeration of canonical forms up to genus 9

: Enumeration of canonical forms up t								
g	m) n1n2ng-1					
1 3 4 5	1	(0)	1					
3	2	(2)	11					
4	3	(3)	111					
5	4	(4)	1111					
	3	(2,2)	1212					
- 5	5	(5)	11111					
- 6	4	(3,2)	12112					
7	6	(6)	111111					
7	5	(4,2)	112121					
7	5	(3,3)	112112					
7	4	(2,2,2)	122122					
7	4	(2,2,2)	131313					
8	?	(7)	1111111					
8	6	(5,2)	1211112					
8	ō	(4,3)	1211121					
8	5	(3,2,2)	1212212					
8	5	(3,2,2)	1 221 221					
8	5	(3,2,2)	1313131					
9	8	(8)	11111111					
9	7	(6,2)	11111212					
9	7	(5,3)	11112112					
9	7	(4,4)	11121112					
9	6	(4,2,2)	11122122					
9	6	(4,2,2)	11131313					
9	6	(4,2,2)	11212212					
9	6	(4,2,2)	12121212					
9	6	(3,3,2)	11212122					
9	6	(3,3,2)	11221122					
9	ō	(3,3,2)	11221212					
9	ō	(3,3,2)	11311313					
9	5	(2,2,2,2)	12221222					
9	5	(2,2,2,2)	12313132					
9	5	(2,2,2,2)	14141414					

The Topology of Chaos

Robert Gilmore

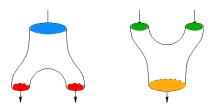
Some Genus-9 Bounding Tori



Aufbau Princip for Bounding Tori

The Topology of Chaos Robert

Any bounding torus can be built up from equal numbers of stretching and squeezing units

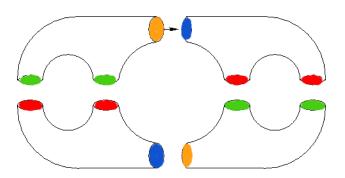


- Outputs to Inputs
- No Free Ends
- Colorless

Aufbau Princip for Bounding Tori

The Topology of Chaos

Application: Lorenz Dynamics, g=3



Poincaré Section

The Topology of Chaos

Robert

Construction of Poincaré Section

Exponential Growth

The Topology of Chaos

Robert Gilmore

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

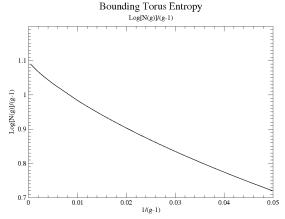
g.	N(g)	g	N(g)	g	N(g)
3	1	9	15	15	2211
4	1	10	28	16	5549
5	2	11	67	17	14290
ð	2	12	145	18	3 6 824
7	5	13	3 6 8	19	96347
8	ð	14	870	20	252927

Exponential Growth

The Topology of Chaos

Robert Gilmore

The Growth is Exponential The Entropy is log 3

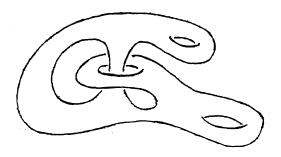


Extrinsic Embedding of Bounding Tori

The Topology of Chaos

Robert

Extrinsic Embedding of Intrinsic Tori



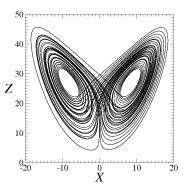
Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.

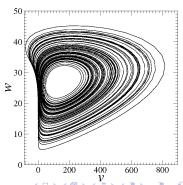
Modding Out a Rotation Symmetry

The Topology of Chaos

Modding Out a Rotation Symmetry

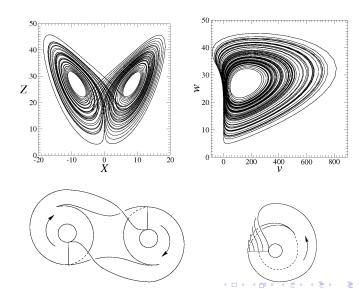
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \to \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$





Lorenz Attractor and Its Image

The Topology of Chaos

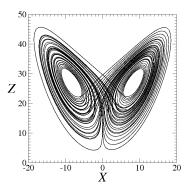


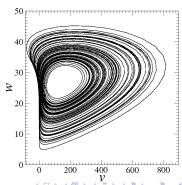
Lifting an Attractor: Cover-Image Relations

The Topology of Chaos

Creating a Cover with Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \leftarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

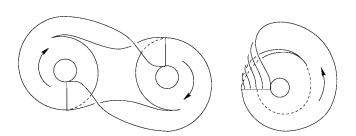




Cover-Image Related Branched Manifolds

The Topology of Chaos

Cover-Image Branched Manifolds

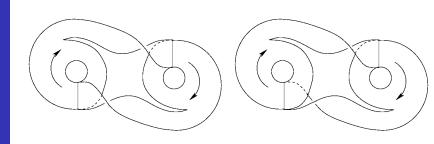


Covering Branched Manifolds

The Topology of Chaos

Robert

Two Two-fold Lifts Different Symmetry

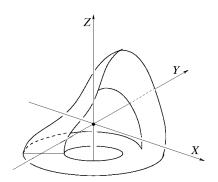


Rotation Symmetry Inversion Symmetry

Topological Indices

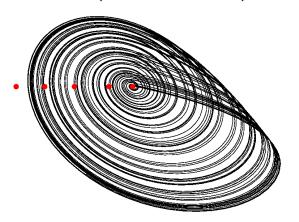
The Topology of Chaos Robert Gilmore

Topological Index: Choose Group Choose Rotation Axis (Singular Set)



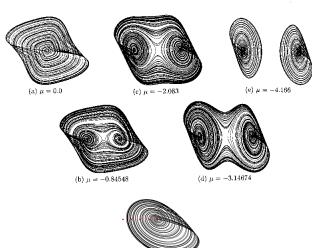
Locate the Singular Set wrt Image

Different Rotation Axes Produce Different (Nonisotopic) Lifts



Nonisotopic Locally Diffeomorphic Lifts

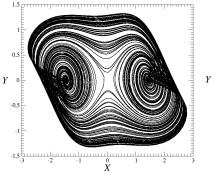
The Topology of Chaos

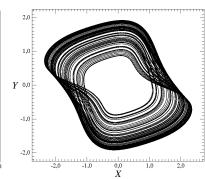


Indices (0,1) and (1,1)

The Topology of Chaos Robert

Two Two-fold Covers Same Symmetry

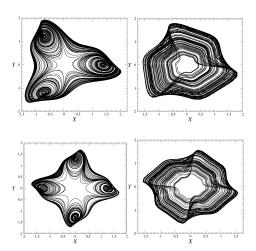




The Topology of Chaos

Robert

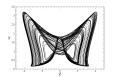
Three-fold, Four-fold Covers

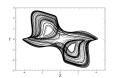


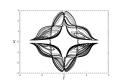
Two Inequivalent Lifts with V_4 Symmetry

The Topology of Chaos

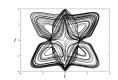
Robert Gilmore











Algorithm

- Construct Invariant Polynomials, Syzygies, Radicals
- Construct Singular Sets
- Determine Topological Indices
- Construct Spectrum of Structurally Stable Covers
- Structurally Unstable Covers Interpolate

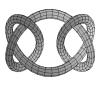
Robert Gilmore

Symmetries Due to Symmetry

- Schur's Lemmas & Equivariant Dynamics
- Cauchy Riemann Symmetries
- Clebsch-Gordon Symmetries
- Continuations
 - Analytic Continuation
 - Topological Continuation
 - Group Continuation

Covers of a Trefoil Torus

The Topology of Chaos



Granny Knot

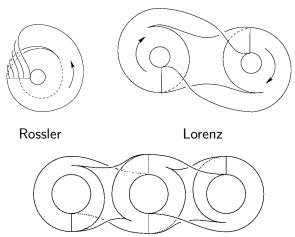
Square Knot

Trefoil Knot

You Can Cover a Cover = Lift a Lift

The Topology of Chaos

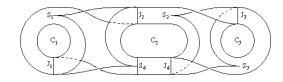
Covers of Covers

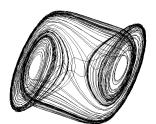


Universal Branched Manifold

The Topology of Chaos

EveryKnot Lives Here





Isomorphisms and Diffeomorphisms

The Topology of Chaos

Robert Gilmore

Local Stuff

Groups: Local Isomorphisms Cartan's Theorem

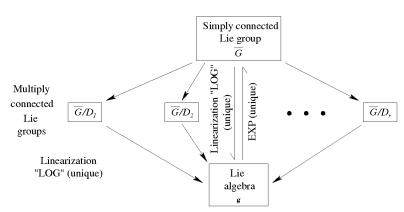
Dynamical Systems:
Local Diffeomorphisms
??? Anything Useful ???

Universal Covering Group

The Topology of Chaos

Robert Gilmore

Cartan's Theorem for Lie Groups

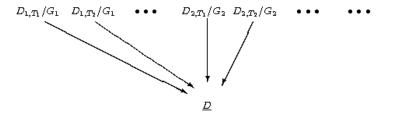


Universal Image Dynamical System

The Topology of Chaos

Robert

Locally Diffeomorphic Covers of \underline{D}



<u>D</u>: Universal Image Dynamical System

The Topology of Chaos

Robert

Local Isomorphisms & Diffeomorphisms

The Topology of Chaos

Local Isomorphisms & Diffeomorphisms

Lie Groups

The Topology of Chaos

Local Isomorphisms & Diffeomorphisms

Lie Groups

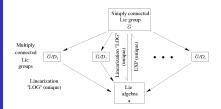
Local Isomorphisms

The Topology of Chaos Robert

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms



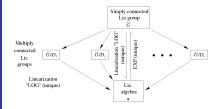
The Topology of Chaos Robert

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

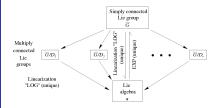
Local Isomorphisms



The Topology of Chaos Robert

Local Isomorphisms & Diffeomorphisms

Lie Groups Dynamical Systems
Local Isomorphisms Local Diffeos



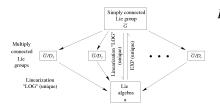
The Topology of Chaos

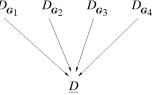
Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms Local Diffeos





Creating New Attractors

The Topology of Chaos

Rotating the Attractor

$$\frac{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} F_1(X,Y) \\ F_2(X,Y) \end{bmatrix} + \begin{bmatrix} a_1 \sin(\omega_d t + \phi_1) \\ a_2 \sin(\omega_d t + \phi_2) \end{bmatrix}$$

$$\begin{bmatrix} u(t) \\ v(t) \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t \\ \sin \Omega t & \cos \Omega t \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = R\mathbf{F}(R^{-1}\mathbf{u}) + R\mathbf{t} + \Omega \begin{bmatrix} -v \\ +u \end{bmatrix}$$

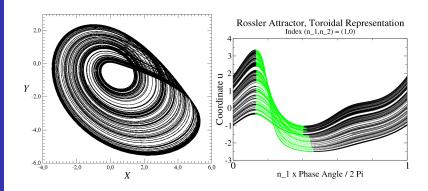
$$\Omega = n \ \omega_d \qquad \qquad q \ \Omega = p \ \omega_d$$
Global Diffeomorphisms
$$(\mathbf{p}\text{-fold covers}) = \mathbf{p}$$

Two Phase Spaces: \mathbb{R}^3 and $\mathbb{D}^2 \times \mathbb{S}^1$

The Topology of Chaos

Robert Gilmore

Rossler Attractor: Two Representations

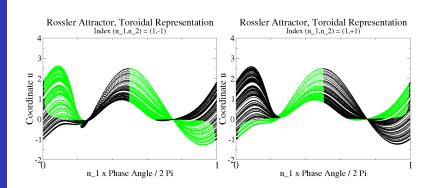


Other Diffeomorphic Attractors

The Topology of Chaos

Rossler Attractor:

Two More Representations with $n = \pm 1$

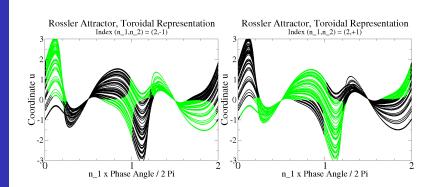


Subharmonic, Locally Diffeomorphic Attractors

The Topology of Chaos

Rossler Attractor:

Two Two-Fold Covers with $p/q = \pm 1/2$

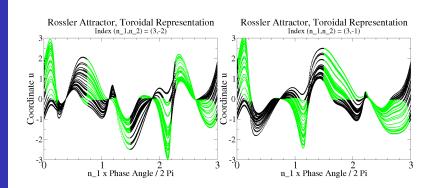


Subharmonic, Locally Diffeomorphic Attractors

The Topology of Chaos

Rossler Attractor:

Two Three-Fold Covers with p/q = -2/3, -1/3

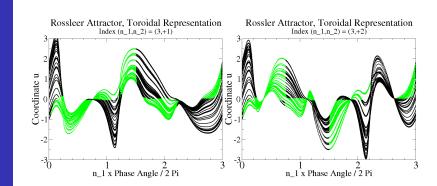


Subharmonic, Locally Diffeomorphic Attractors

The Topology of Chaos

Rossler Attractor:

And Even More Covers (with p/q = +1/3, +2/3)



The Topology of Chaos

Angular Momentum and Energy

$$L(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} X dY - Y dX \qquad K(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{1}{2} (\dot{X}^2 + \dot{Y}^2) dt$$

$$L(\Omega) = \langle u\dot{v} - v\dot{u} \rangle \qquad K(\Omega) = \langle \frac{1}{2} (\dot{u}^2 + \dot{v}^2) \rangle$$

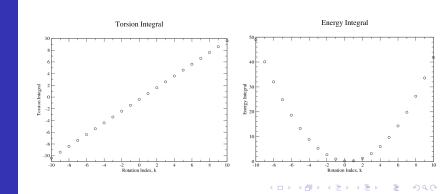
$$= L(0) + \Omega \langle R^2 \rangle \qquad = K(0) + \Omega L(0) + \frac{1}{2} \Omega^2 \langle R^2 \rangle$$

$$\langle R^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (X^2 + Y^2) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (u^2 + v^2) dt$$

The Topology of Chaos Robert

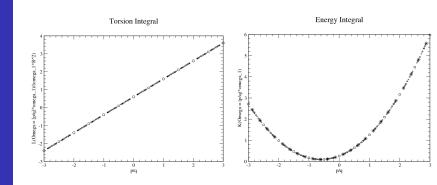
Energy and Angular Momentum

Diffeomorphic, Quantum Number n



The Topology of Chaos

Energy and Angular Momentum Subharmonics, Quantum Numbers p/q



Embeddings

The Topology of Chaos

Robert Gilmore

Embeddings

An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension

Representation Labels

The Topology of Chaos Robert

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

Parity P
Global Torsion N
Knot Type KT

$$\Gamma^{P,N,KT}(\mathcal{SA})$$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

Creating Isotopies

The Topology of Chaos

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension (irreducible representations).

Are these obstructions removed by injections into higher dimensions (reducible representations)?

Systematically?

Creating Isotopies

The Topology of Chaos

Equivalences by Injection Obstructions to Isotopy

 R^3 o R^4 o R^5 Global Torsion Parity Knot Type

There is one *Universal* reducible representation in R^N , $N \geq 5$. In R^N the only topological invariant is *mechanism*.

The Topology of Chaos Robert

Summary

1 Question Answered ⇒
2 Questions Raised

We must be on the right track!

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

The Topology of Chaos

Result

There is now a classification theory for low-dimensional strange attractors.

- 1 It is topological
- 2 It has a hierarchy of 4 levels
- 6 Each is discrete
- 4 There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

The Topology of Chaos Robert Gilmore

The Topology of Chaos Robert Gilmore

The Classification Theory has 4 Levels of Structure

Basis Sets of Orbits

- Basis Sets of Orbits
- 2 Branched Manifolds

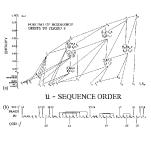
- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori

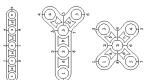
- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori
- 4 Extrinsic Embeddings

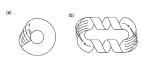
Four Levels of Structure

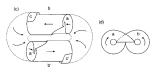
The Topology of Chaos

Robert Gilmore









The Topology of Chaos

Poetic Organization

LINKS OF PERIODIC ORBITS organize BOUNDING TORI organize BRANCHED MANIFOLDS organize LINKS OF PERIODIC ORBITS

Some Unexpected Results

- Perestroikas of orbits constrained by branched manifolds
- Routes to Chaos = Paths through orbit forcing diagram
- Perestroikas of branched manifolds constrained by bounding tori
- Global Poincaré section = union of q-1 disks
- Systematic methods for cover image relations
- Existence of topological indices (cover/image)
- Universal image dynamical systems
- NLD version of Cartan's Theorem for Lie Groups
- Topological Continuation Group Continuuation
- Cauchy-Riemann symmetries
- Quantizing Chaos
- Representation labels for inequivalent embeddings
- Representation Theory for Strange Attractors

We hope to find:

- ullet Robust topological invariants for \mathbb{R}^N , N>3
- A Birman-Williams type theorem for higher dimensions
- An algorithm for irreducible embeddings
- Embeddings: better methods and tests
- Analog of χ^2 test for NLD
- Better forcing results: Smale horseshoe, $D^2 \to D^2$, $n \times D^2 \to n \times D^2$ (e.g., Lorenz), $D^N \to D^N$, N>2
- Representation theory: complete
- Singularity Theory: Branched manifolds, splitting points (0 dim.), branch lines (1 dim).
- Singularities as obstructions to isotopy