> Robert Gilmore and Daniel J. Cross

~-----

Question 0

Introduction-

Embeddings-

Embeddings 02

Embeddings

Embeddings-04

04 Embeddings-

#### Representation Theory for Strange Attractors

Robert Gilmore and Daniel J. Cross

Physics Department
Drexel University
Philadelphia, PA 19104
robert.gilmore@drexel.edu, daniel.j.cross@drexel.edu

June 17, 2009

ICCSA, Le Havre, France, Tuesday, 30 June 2009, Room D, 14:50

#### Data

Representation Theory for Strange Attractors

> Robert Gilmore ar Daniel J. Cross

Question-01

Question-0

Introduction

Embeddings

Embeddings

Embeddings-

03

04

Embedding

#### Data

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Introduction

Embeddings

Embeddings 02

Embeddings

Embedding 04

Embedding



#### Data

#### Representation Theory for Strange Attractors

Robert Gilmore and Daniel J. Cross

Question-

Question-02

Introduction 01

Embeddings 01

Embeddings 02

Embeddings 03

Embedding 04

Embedding



Robert Gilmore and Daniel J. Cross

Question-0

Question-02

Introduction

Embeddings

Embeddings

Embeddings

Embedding 04

Embedding





Robert Gilmore and Daniel J. Cross

Question-0

Question-02

Introduction

Embeddings

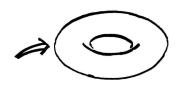
Embeddings 02

Embeddings 03

Embedding 04

Embeddings







#### Table of Contents

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Question o.

Introduction-01

Embeddings-

Embeddings

Embeddings

Embeddings

Embeddings

## Outline

- Embeddings
- Whitney, Takens, Wu
- § Equivalence of Embeddings
- Tori
- 6 Representation Labels
- Increasing Dimension
- Universal Embedding
- 8 Representation Program

Robert Gilmore and Daniel J. Cross

Question-0

Question-0

Introduction

Embeddings-01

Embeddings 02

Embeddings

Embeddings 04

Embedding

#### What to do with Data

Step 1: Data  $\rightarrow$  Embedding

Step 2: Analyze Reconstructed Attractor

Step 3: What do you learn about:

The Data
The Embedding

???????

#### Background

#### Representation Theory for Strange Attractors

Embeddings-

# Important theorems

Whitney (1936):  $\mathcal{M}^n \to \mathbb{R}^N$ : N generic functions -Embedding if  $N \geq 2n + 1$ .

Takens (1981):  $(\mathcal{M}^n, \dot{X} = F(X)) \rightarrow (R^N, Flow)$ : One generic function at N measurement intervals. Embedding if  $N \ge 2n + 1$ .

Wu (1958): All embeddings  $\mathcal{M}^n \to \mathbb{R}^N$  are isotopic for N > 2n + 1 and n > 1.

#### **Embeddings and Representations**

Representation Theory for Strange Attractors

Embeddings-

# Embeddings and Representations

An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Preference is for embeddings of lowest possible dimension.

Possible Inequivalence for  $n \leq N \leq 2n$ .

## Geometry, Dynamics, Topology

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Introduction

Embeddings

Embeddings

Embedding 03

Embeddings-04

Embedding

## What do you want to learn?

- $\bullet$  Geometry (Fractals, ...): "Independent" of Embedding
- Dynamics (Lyapunovs, ...) "Independent" of Embedding, but beware of spurious LEs
- Topology: some indices depend on embedding, others (mechanism) do not.

#### Mechanism

Representation
Theory for
Strange
Attractors

Robert Gilmore and Daniel J. Cross

Question-01

Introduction

Embeddings

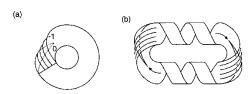
Embeddings 02

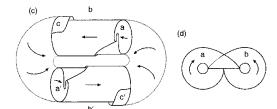
Embeddings

Embedding: 04

Embeddings-

# Revealed by Branched Manifolds





#### Torus and Genus

Representation
Theory for
Strange
Attractors

Robert Gilmore and Daniel J. Cross

Question-01

Introduction-

Embeddings

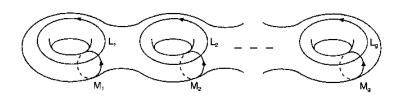
Embeddings

Embeddings

Embedding

Embedding

#### Classification of 3D Attractors



Program:  $\mathcal{M}^3 \to R^3, R^4, R^5, R^6$ 

#### Representation Labels

Representation Theory for Strange Attractors

## Inequivalent Representations in $\mathbb{R}^3$

Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

> **Parity** Ρ

Global Torsion N

Knot Type KT

$$\Gamma^{P,N,KT}(\mathcal{SA})$$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

#### **Another Visualization**

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Question (

Introduction

Embeddings-

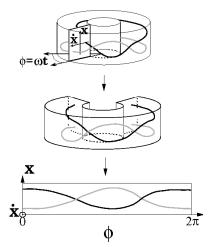
Embeddings-

Embeddings

Embeddings

Embeddings

# Cutting Open a Torus



## Two Phase Spaces: $R^3$ and $D^2 \times S^1$

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Introduction

Introduction 01

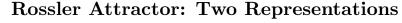
Embeddings 01

Embeddings-

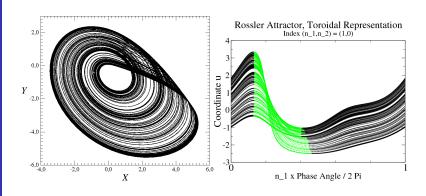
Embeddings 03

Embeddings 04

Embeddings





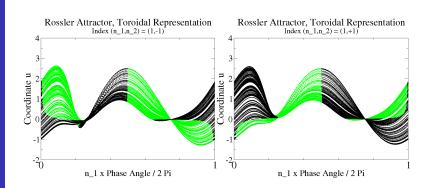


#### Other Diffeomorphic Attractors

Representation Theory for Strange Attractors

#### Rossler Attractor:

#### Two More Representations with $n = \pm 1$



Robert Gilmore and Daniel J. Cross

Question-01

Question-01

Introduction 01

Embeddings

Embeddings 02

Embeddings 03

Embeddings

Embedding

## Rotating a Driven Attractor

$$\frac{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} F_1(X,Y) \\ F_2(X,Y) \end{bmatrix} + \begin{bmatrix} a_1 \sin(\omega_d t + \phi_1) \\ a_2 \sin(\omega_d t + \phi_2) \end{bmatrix}$$

$$\left[\begin{array}{c} u(t) \\ v(t) \end{array}\right] = \left[\begin{array}{cc} \cos \Omega t & -\sin \Omega t \\ \sin \Omega t & \cos \Omega t \end{array}\right] \left[\begin{array}{c} X(t) \\ Y(t) \end{array}\right]$$

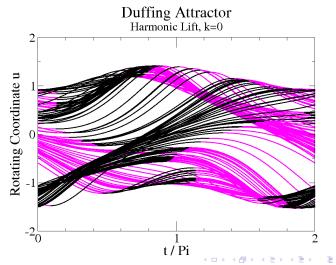
$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = R\mathbf{F}(R^{-1}\mathbf{u}) + R\mathbf{t} + \Omega \begin{bmatrix} -v \\ +u \end{bmatrix}$$

Diffeomorphisms:  $\Omega = n \omega_d$ 

#### Representations of Duffing Attractor

Representation Theory for Strange Attractors

Duffing Attractor, Toroidal Representation



#### Representations of Duffing Attractor

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-0

Introduction

Introduction 01

Embeddings 01

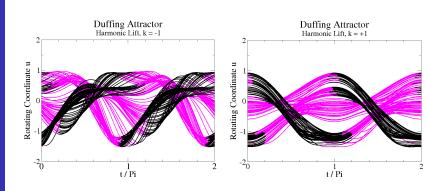
Embeddings

Embedding

Embeddings 04

Embedding

#### Duffing Attractor, Rotation by $\pm 1$



#### Representations of Duffing Attractor

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-03

Introduction

01

Embeddings 01

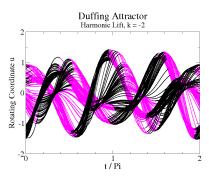
Embedding

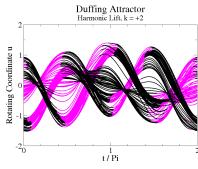
Embedding

Embeddings

Embedding

#### Duffing Attractor, Rotation by $\pm 2$





# Angular Momentum and Energy

$$L(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} X dY - Y dX \quad K(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{1}{2} (\dot{X}^2 + \dot{Y}^2) dt$$

$$L(\Omega) = \langle u\dot{v} - v\dot{u}\rangle$$
  $K(\Omega) = \langle \frac{1}{2}(\dot{u}^2 + \dot{v}^2)\rangle$ 

$$= L(0) + \Omega \langle R^2 \rangle$$
 
$$= K(0) + \Omega L(0) + \frac{1}{2} \Omega^2 \langle R^2 \rangle$$

$$\langle R^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (X^2 + Y^2) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (u^2 + v^2) dt$$

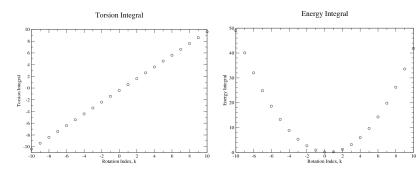
#### New Measures, Diffeomorphic Attractors

Representation Theory for Strange Attractors



Energy and Angular Momentum

Quantum Number n



## Oriented Knot Type

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Introduction-

Embeddings-

Embeddings 02

Embeddings 03

Embeddings 04

Embeddings

#### Knot Representations

$$\mathbf{K}(\theta) = (\xi(\theta), \eta(\theta), \zeta(\theta)) = \mathbf{K}(\theta + 2\pi)$$

Repere Mobile:  $\mathbf{t}(\theta), \mathbf{n}(\theta), \mathbf{b}(\theta)$ 

$$\frac{d}{ds} \begin{bmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix}$$

$$(X(t), Y(t)) \to \mathbf{X}(t) = \mathbf{K}(\theta) + X(t)\mathbf{n}(\theta) + Y(t)\mathbf{b}(\theta)$$

$$\frac{\theta}{2\pi} = \frac{t}{T}$$

#### Creating Isotopies

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Question-02

Introduction 01

Embeddings 01

Embedding

Embeddings

Embedding 04

Embeddings

#### Equivalent Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension = 3.

Are these obstructions removed by injections into higher dimensions:  $R^4, R^5, R^6$  ?

#### Creating Isotopies

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-03

Question-02

Introduction

Embeddings

Embeddings 02

Embeddings

Embedding 04

Embedding

#### Necessary Labels

|       | Parity | Knot Type | Global Torsion |
|-------|--------|-----------|----------------|
| $R^3$ | Υ      | Y         | Y              |
| $R^4$ | -      | -         | Υ              |
| $R^5$ | _      | -         | -              |

There is one *Universal* representation in  $\mathbb{R}^N$ ,  $N \geq 5$ . In  $\mathbb{R}^N$  the only topological invariant is *mechanism*.

> Robert Gilmore and Daniel J. Cross

Question-01

Introduction-

Embeddings

Embeddings

Embeddings

Embedding 04

Embedding

#### Parity Isotopy in $R^4$

$$\begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \xrightarrow{\text{Inject}} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \\ 0 \end{pmatrix} \xrightarrow{\text{Isotopy}} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \cos \theta \\ x^3 \sin \theta \end{pmatrix} \xrightarrow{\text{Project}} \begin{pmatrix} x^1 \\ x^2 \\ -x^3 \end{pmatrix}.$$

#### Knot Type Isotopy in $R^4$



Robert Gilmore and Daniel J. Cross

Question-0

Question-0

Introduction

Embeddings

Embeddings

Embeddings

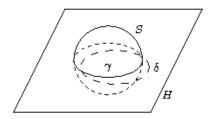
Embeddings

Embeddings

#### Global Torsion Isotopy in $R^5$

$$\begin{bmatrix} s \\ re^{i\phi} \end{bmatrix} \mapsto \begin{bmatrix} s \\ re^{i\phi} \\ re^{i(\phi+s)} \end{bmatrix} \to \begin{bmatrix} 1 & 0 \\ 0 & \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} s \\ re^{i\phi} \\ re^{i(\phi+s)} \end{bmatrix}$$

#### Continued Inequivalence in $R^4$



Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Question-02

Introduction-01

Embeddings 01

Embeddings 02

Embeddings

Embeddings 04

Embeddings

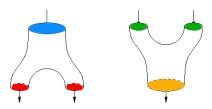
#### The General Program

- $\bullet \mathcal{M}^n \to R^n$
- Identify all representation labels
- $R^n \to R^{n+1}$ : Which labels drop away?
- $\bullet \to n+2, n+3, \ldots, 2n$ : Which labels drop away?
- Group Theory: Complete set of Reps separate points.
- Dynamical Systems: Complete set of Reps separate diffeomorphisms.

## Aufbau Princip for Bounding Tori

Representation Theory for Strange Attractors

Any bounding torus can be built up from equal numbers of stretching and squeezing units



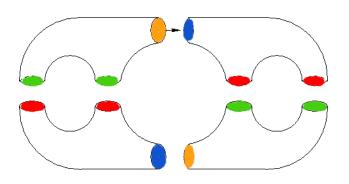
- Outputs to Inputs
- No Free Ends
- Colorless



## Aufbau Princip for Bounding Tori

Representation Theory for Strange Attractors

#### Application: Lorenz Dynamics, g=3

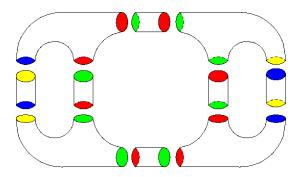


q-1 Pairs of "trinions"

#### Indices for Tori in $\mathbb{R}^3$

#### Representation Theory for Strange Attractors

# Insert A Flow Tube at Each Input



 $3 \times (q-1)$  Local Torsion integers: Isotope in  $R^5$ Isotope in  $\mathbb{R}^4$ Parity:

Isotope in  $\mathbb{R}^4$ Knot Type:

#### La Fin

Representation Theory for Strange Attractors

> Robert Gilmore and Daniel J. Cross

Question-01

Question\_0

Introduction

Embeddings

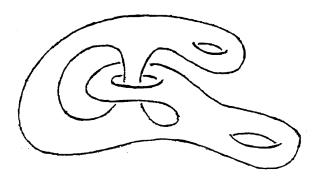
Embeddings

Embeddings

Embedding 04

Embedding

Merci Bien pour votre attention.

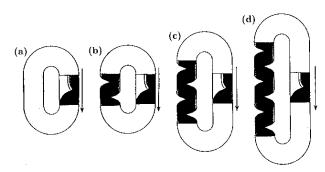


#### Determine Topological Invariants

Representation Theory for Strange Attractors

#### What Do We Learn?

- BM Depends on Embedding
- Some things depend on embedding, some don't
- Depends on Embedding: Global Torsion, Parity, ...
- Independent of Embedding: Mechanism



#### Perestroikas of Strange Attractors

#### Representation Theory for Strange Attractors

Robert Gilmore and Daniel J. Cross

Question-01

Introduction

Embeddings

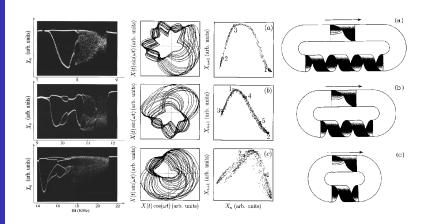
Embedding

Embedding 03

Embedding

mbeddings :

# Evolution Under Parameter Change



Lefranc - Cargese

