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Step 1: Data — Embedding
Step 2: Analyze Reconstructed Attractor

Step 3: What do you learn about:
The Data
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Whitney (1936): M™ — RY:
N generic functions -
Embedding if N > 2n + 1.

Takens (1981) : (M™, X = F(X)) — (R", Flow):
One generic function at N measurement intervals.
Embedding if N > 2n + 1.
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Wu (1958): All embeddings M™ — R are isotopic for
N>2n+1andn > 1.
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' An embedding creates a diffeomorphism between an

(‘invisible’) dynamics in someone’s laboratory and a (‘visible")
attractor in somebody’s computer.
Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Preference is for embeddings of lowest possible dimension.
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Possible Inequivalence for n < N < 2n.
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e Geometry (Fractals, ...): “Independent” of Embedding

e Dynamics (Lyapunovs, ...) “Independent” of Embedding,
but beware of spurious LEs

e Topology: some indices depend on embedding,
others (mechanism) do not.
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Mechanism

Revealed by Branched Manifolds

(a)




Torus and Genus
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Representations of 3-dimensional Genus-one attractors are
distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT
FP’N’KT(S.A)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Another Visualization

Representation

Theory or Cutting Open a Torus

Strange
Attractors

Robert
5 a




Two Phase Spaces: R? and D? x S*

Representation .
ﬁgeoryfm Rossler Attractor: Two Representations
trange
Attractors

R3 D? x St

Rossler Attractor, Toroidal Representation
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Other Diffeomorphic Attractors
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Two More Representations with n=+1

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Tndex (n_l.n_2) = (1,-1) Tndex (n_l.n_2) = (1,+1)
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Creating New Attractors
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Representations of Duffing Attractor
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Duffing Attractor Duffing Attractor

Harmonic Lift, k=-1 Harmonic Lift, k = +1
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Rotating Coordinate u
Rotating Coordinate u




Representations of Duffing Attractor
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Duffing Attractor Duffing Attractor
Harmonic Lift, k =-2 Harmonic Lift, k = +2
2 SR

Rotating Coordinate u
Rotating Coordinate u




New Measures
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New Measures, Diffeomorphic Attractors
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Oriented Knot Type
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K(0) = (£(0),1(0),¢(0)) = K(6 + 27)

Repere Mobile: t(6),n(6),b(0)




Creating Isotopies

Representation

Theory for Equivalent Representations

Strange
Attractors

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension = 3.

Are these obstructions removed by injections into higher
dimensions: R*, R®, R6 ?



Creating Isotopies
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Parity Knot Type Global Torsion

RE] Y Y Y
R* - - Y
R | - - -

There is one Universal representation in RN, N > 5.
In RN the only topological invariant is mechanism.
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Robert o |dentify all representation labels
L e R" — R™1: Which labels drop away?

e —»n—+2n+3,...,2n: Which labels drop away?

e Group Theory: Complete set of Reps separate points.
e Dynamical Systems: Complete set of Reps separate
diffeomorphisms.



Aufbau Princip for Bounding Tori
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vl from equal numbers of stretching and
squeezing units

¢ Outputs to Inputs
e No Free Ends
e Colorless



Aufbau Princip for Bounding Tori
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g — 1 Pairs of “trinions”




Indices for Tori in R3

gl Insert A Flow Tube at Each Input
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3 x (g — 1) Local Torsion integers: lIsotope in R®
Parity: Isotope in R*
Knot Type: Isotope in R*
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Determine Topological Invariants

i What Do We Learn?

Strange
fteractors e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




Perestroikas of Strange Attractors
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