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Abstract

The Topology
& Qi Data generated by a low-dimensional dynamical system

operating in a chaotic regime can be analyzed using topological
methods. The process is (almost) straightforward. On a scalar
time series, the following steps are taken:

Intro.-01

@ Unstable periodic orbits are identified;
@ An embedding is constructed; x x

© The topological organization of these periodic orbits is
determined;

@ Some orbits are used to identify an underlying branched
manifold;

© The branched manifold is used as a tool to predict the
remaining topological invariants.

This algorithm has its own built in rejection criterion.



Abstract - Key Point

The Topology
of Chaos

Girmere One soft spot in this analysis program is the embedding step.

Different embeddings can yield different topological results.
This makes the following question exciting:
When you analyze embedded data: How much of
what you learn is about the embedding and how
much is about the underlying dynamics?

Intro.-02

This question has been answered by creating a representation
theory of low dimensional strange attractors. It is now possible
to totally disentangle the mechanism generating the underlying
dynamics from topological structure induced by the embedding
step.



Table of Contents

The Topology
. Outline

o @ Overview

@ Experimental Challenge

Intro.-03 © Embedding Problems

@ Topological Analysis Program

© Representation Theory of Strange Attractors

@ Classification of Strange Attractors

@ Basis Sets of Orbits

© Bounding Tori

© Summary



Experimental Schematic

The Topology

g Laser Experimental Arrangement
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Real Data

fietied Experimental Data: LSA
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Ask the Masters

e G Periodic Orbits are the Key
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Joseph Fourier Henri Poincare
Linear Systems Nonlinear Systems



Periodic Orbit Surrogates

The Topology

"t oo Searching for Periodic Orbits
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O(i,i +p) = |2(i) — (i +p)|
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Real Data

e e “Periodic Orbits” in Real Data
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Mechanism

Stretching & Squeezing in a Torus




Time Evolution

The Topology

o Rotating the Poincaré Section
Robert

Gimore around the axis of the torus
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Time Evolution

The Topology

Rotating the Poincaré Section

Gimore around the axis of the torus
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Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.
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Embeddings

The Topology

delCreating Something from “Nothing”
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scalar time series ——  vector time series

Embedding is an Art.
Perhaps more like Black Magic.

There are many ways to conjure an embedding.
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Embeddings

The Topology

bl Varieties of Embeddings
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x(i) = (y1(2), y2(i), y3(i), - -)

Delay (m(i),x(i—Tl),x(i—72),1’(1'—7-3),---)
Delay yj(t) =a(@@—[j—1]1) T, N
Differential Y1 = 2,y = dx/dt,y3 = d*x/dt?, - -
Int. — Diff. y1 = [*dx,yo = x,y3 = dx/dt, -
SVD EoM

Hilbert — Tsf.

“Circular”

Knotted

Other
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Embeddings

e Circular and Knotted Embeddings

Robert
Gilmore

If there is a "hole in the middle” then parameterize the scalar
observable by an angle 0: z(t) — x(0)

Introduce Knot coordinates (“harmonic knots”)
K(0) = (£(0).n(0),¢(8)) = K(0 + 27)
Repere Mobile: {t(8),n(6),b(8)}

z(t) = x(0) — K(0) + y1n(0) + y2b(0)

Embed-03



Knotted Embeddings

The Topology
of Chaos
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“Unknot”

Trefoil Knot



More Knotted Embeddings

The Topology
of Chaos
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The Topology
of Chaos C haOS
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Motion that is

e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor

The Topology

"t oo Strange Attractor
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The Q limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange
Attractor



Skeletons

s UPOs Outline Strange Attractors
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e UPOs Outline Strange attractors

R rt
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Figure 5, Left: a chaotic attractor reconstructed from a time series from a chaotic laser ; Right : Superposition
of 12 perodic arbits of perods from 1 1o 10,

Laser w. Modulated Losses



Organization

il How Are Orbits Organized
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Gilmore Ask the Master:

Carl Friedrich Gauss



Dynamics and Topology

The Topology

ot s Organization of UPOs in rs:
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Gauss Linking Number

N(A, B) 7{?{ rqg —rp)dryxdrp
T i g —rpl3

# Interpretations of LN ~ # Mathematicians in World



Linking Numbers

s Linking Number of Two UPOs

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Evolution in Phase Space

The Topology

e One Stretch-&-Squeeze Mechanism
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Motion of Blobs in Phase Space

nother Stretch-&-Squeeze Mechanis:

48

“Lorenz Mechanism”



Motion of Blobs in Phase Space

The Topology

ot oo Stretching — Folding

STRETCH
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Collapse Along the Stable Manifold

The Topology

i Birman - Williams Projection
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Identify x and y if
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Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If:

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem

The Topology

o s Assumptions, B-W Theorem
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A flow @(x)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

o Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

T G Conclusions, B-W Theorem
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e The projection maps the strange attractor S A onto a
2-dimensional branched manifold BM and the flow ®;(z)
on SA to a semiflow ®(z); on BM.

e UPOs of ¢;(x) on SA are in 1-1 correspondence with
UPOs of ®(z); on BM. Moreover, every link of UPOs of
(®4(x),SA) is isotopic to the correspond link of UPOs of

Remark: “One of the few theorems useful to experimentalists.”



A Very Common Mechanism

The Topology

of Chaos RasSler:

Attractor Branched Manifold
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A Mechanism with Symmetry

The Topology

i Lorenz:

Sl Attractor Branched Manifold
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Examples of Branched Manifolds

Inequivalent Branched Manifolds
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Aufbau Princip for Branched Manifolds

The Topolo,
of Chaos Any branched manifold can be built up from stretching

Robert and squeezing units

Gilmore

SQUEEZE

2. BRANCH
LINE

FLCAW

subject to the conditions:

e Outputs to Inputs
e No Free Ends



Dynamics and Topology

The Topology

i Rossler System
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(a) Rdssler Equations




Dynamics and Topology

The Topology

o Croos Lorenz System
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Dynamics and Topology

The Topology

o Chnoe Poincaré Smiles at Us in r3
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4



Topological Analysis Program

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Model the Dynamics
Validate the Model



Locate UPOs

e e Method of Close Returns
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Embeddings

Jotins Embeddings

Gilmore

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topologicalf
None Good

We Demand a 3 Dimensional Embedding



The Topology
of Chaos

Determine Topological Invariants

Compute Table of Expt’l LN

Tabte 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted from
Eielon sov—Zh abotin skii data™

Orbit Symbolics 1 2 3 4 5 & 7 Ba Bb
1 1 0 1 1 2 2 2 3 4 3
2 01 1 1 2 3 4 4 & g g
3 011 1 2 2 4 5 6 T 8 &
4 0111 2 3 4 & 8 & 11 13 12
5 01011 2 4 5 & 8 10 13 16 15
& 011 OM1 2 4 i & 10 a 14 16 14
7 01olo11 3 5 7 11 13 14 14 1 21
Ba 01010111 4 & 8 13 16 14 21 23 24
8h 01011 011 3 & 8 12 15 14 21 24 21

24l indices e negative.



Determine Topological Invariants

Compare w. LN From Various Bum
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Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynanics.
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Determine Topological Invariants

e e Guess Branched Manifold

Robert
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Figure 7. “Combing™ the inte ation {right) created
by the stretching and squeezing mechanisms.

Lefranc - Cargese




Determine Topological Invariants

The Topology

S Identification & ‘Confirmation’
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e BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion (Reject or Fail to Reject)



Determine Topological Invariants

e e What Do We Learn?
Robert

Gilmore e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




The Topology
of Chaos

Gilmore

Evolution Under Parameter Change

m {modulation amplinde)

-
TN

YAG LASER

T —

FIBER LASER

Figure 11. Varous templates observed in two laser experiments. Top left:
pammeter space of forced ponli near ascillators showi
systematically from one to

fiber Laser experiment: global tomsion inc

schematic representation of the
it templates observed in the
to the next [40]. Bottom left:

resomunee tongu

templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the
topological organization across one chaotic wngue (39,41
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Perestroikas of Strange Attractors

The Topology

ge#sl F'volution Under Parameter Change
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X, (arb, units)

sinfwt) (ach. units) X (£) sin(wt) (arb. wnits)

X, (arb. units)

units)  X(t)

X, (arb. units)

nfwt) (arb

X(t)si
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Perestroikas of Strange Attractors

The Topology

ge#sl F'volution Under Parameter Change

obert

TABLE 1 - Folding processes characteristic of the different species of templates
treated in this work

Species Horseshoe Reverse Out-o-in In-to-out Staple s
horseshoe spiral spiral
Code in Fig. 1 p Mot found
el | - v | Nl
Insertion wn (o [N {20 02 1) er 210
matrix (2m

Sketch of the

folding process : G

Used and Martin — Zaragosa



Perestroikas of Strange Attractors

The Topology

ge#sl F'volution Under Parameter Change
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‘11, 10 190 8.7 6 5% 4 |3
\ m=().93

[ S L —
i m=0.78

————— 7 R B
m=0.73
1/7 1/6 1/5 1/4 1/3 1/2 |

Modulation frequency normalized to the natural frequency

Used and Martin — Zaragosa



An Unexpected Benefit

The Topology

Analysis of Nonstationary Data

(a) k)
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Tirm () X1 e uri B

Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment of the time series containing a periodic orbit of perod 9. Right: embeddi I the '|'.lt.J'ItJdIC.

arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entmopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Our Hope — Now a Result

The Topology

Rt Compare with

Robert
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Original Objectives

Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.




Representations

The Topology

ot o Representations

Robert
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An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible")
attractor in somebody’s computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension



Representations

The Topology

ot o Representations

Robert

Gilmore

We know about representations from studies of groups and
algebras.

We use this knowledge as a guiding light.



Representation Labels

The Topology

sl Inequivalent Irreducible Representations

Robert

Gilmore

Irreducible Representations of 3-dimensional Genus-one
attractors are distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT
FP’N’KT(SA)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Representation Labels

e G Global Torsion & Parity
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Parity=—1 Y

b ey



Inequivalence in R?

The Topology

e Inequivalence in r?
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Creating Isotopies

The Topology

of Chaos Equivalent Reducible Representations

Robert
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Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible
representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?



Equivalences

The Topology

o o Crossing Exchange in »*

Robert

Gilmore

T
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Parity reversal is also possible in R* by isotopy.



Isotopies

e 2 Twists = 1 Writhe = Identity

+gf\g+ -

Gilmore
A — Zg

Global Torsion — Binary Op



Creating Isotopies

The Topology

"t oo Equivalences by Injection

Robert

Gilmore

Obstructions to Isotopy

R3 N R4 — R5
Global Torsion Global Torsion
Parity
Knot Type

There is one Universal reducible representation in RV, N > 5.
In RN the only topological invariant is mechanism.



Classifications

il Can We Classifty
Robert
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Strange Attractors?

Chemists have their classification.
Nuclear Physicists have their classification.
Particle Physicists have their classification.

Astronomers have their classification.



Mendeleev's Table of the Chemical Elements

The Topology
of Chaos

Rober .. PERIODIC TABLE OF THE ELEMENTS
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Atomic Nuclei

e e Table of Atomic Nuclei

Experimental Chart of Nuclides 2000 nEn® &
2975 isotopes :

82

126
Half-life Range
__ Unknown
<0.1's
0.1-5s
" i * 51005
; : M 100s-1h
20 M-ty
50 . 1y-1Gy
™= Stable

50




Stars

The Topology
of Chaos

Hertzsprung-Russell Diagram

Spectr-| Clas.
G
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Challenge

e e How Does it Work Out?
Robert

Gilmore

Chemical Elements 1 Integer: Np
Atomic Nuclei 2 Integers: Np, Ny
Stars 1 Continuous variable M + exceptions

Strange Attractors 7777



An Experimental Study

The Topology .
of Chaos » » hat » » e Dld
Robert
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We analyzed data from a Laser with Saturable Absorber (LSA).
3 Different absorbers were used.

For each absorber data were taken under 6 - 10 operating
conditions.

There was a total of 25 different data sets.
We wanted to “prove experimentally” that changing the

absorber/operating condition served merely to push to flow
around on the same branched manifold.



An Experimental Observation

T G What We Found
Robert
Gilmore

When certain orbits (UPOs) were present they were invariably
accompanied by a specific set of other orbits.

This led us to propose that certain orbits ‘force’ other orbits.
Forcing is topological.

A discrete set of “basis orbits” serves to identify the complete
collection of UPOs present in an attractor.



Basis Set of Orbits

The Topology

o Forcing Diagram - Horseshoe
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An Ongoing Problem

e e Status of Problem

Robert

Gilmore

Horseshoe organization - active
More folding - barely begun
Circle forcing - even less known

Higher genus - new ideas required

Higher dimension - 777



Perestroikas of Branched Manifolds

The Topology

of Chaos Constraints

Robert
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Branched manifolds largely constrain the ‘perestroikas” that
forcing diagrams can undergo.

Is there some mechanism /structure that constrains the types of
perestroikas that branched manifolds can undergo?



Perestroikas of Branched Manifolds

sl Constraints on Branched Manifolds

Robert
Gilmore

“Inflate” a strange attractor
Union of ¢ ball around each point
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor



Torus and Genus

The Topology

o s Torus, Longitudes, Meridians

Robert
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Tori are identified by genus g and dressed with a surface flow
induced from that creating the strange attractor.



Flows on Surfaces

The Topology

e Surface Singularities

Robert
Gilmore

Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2

Singularities organize the surface flow dressing the torus



Flow Near a Singularity



Some Bounding Tori

Torus Bounding Lorenz-like Flows




Canonical Forms

The Topology

o Twisting the Lorenz Attractor

Robert
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(a)

(b) o



Constraints Provided by Bounding Tori

The Topology

8l Two possible branched manifolds
Gimrs in the torus with g=4.

Gilmore




Labeling Bounding Tori

oG Labeling Bounding Tori
Robert

Gilmore

Poincaré section is disjoint union of g-1 disks.

Transition matrix sum of two g-1 x g-1 matrices.

Both are g-1 x g-1 permutation matrices.

They identify mappings of Poincaré sections to P’sections.

Bounding tori labeled by (permutation) group theory.



Some Bounding Tori

The Topology

"t oo Bounding Tori of Low Genus

TABLE T Bmumeration of camonical forms up bo gemus 9
3 (p1,72, . Pm) mima
T G

T
E) : 11
a5 5 111
54 B 1
53 (29 1212
55 5 T
64 (33 12112
78 G EEEESEY
P5 (43 12121
5 (33 12112
74 (223 122122
T4 (229 131313
B [ EREEEEEY
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56 (43 11m21
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55 (327 12121
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96 (422 1221212
86 (333 11212122
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86 (333 11221212
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05 (2222 12012
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05 (2222 1441414



Exponential Growth

The Topology

i The Growth is Exponential

Robert
G

TABLE I Mumber of canonical bounding tori as a fune-

bion of genus, 4.
g Nig) o Nig) g Nig)
3 1 8 15 15 2211
4 1 10 28 184 5549
5 2 11 &7 17 14280
& 2 12 145 18 368324
T & 15 388 19 DA347
8 B 14 3vY0 20 285202F



Motivation

Some Genus-9 Bounding Tori




Aufbau Princip for Bounding Tori

The Topology

ge#sl A ufbau Princip for Bounding Tori

Robert
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These units (" pants, trinions”) surround the stretching and
squeezing units of branched manifolds.



Aufbau Princip for Bounding Tori

The Topology

of Chaos Any bounding torus can be built up
R from equal numbers of stretching and
e squeezing units

e Outputs to Inputs
e No Free Ends
e Colorless



Poincaré Section

The Topology

&5 @ e Construction of Poincaré Section
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P. S. = Union .

# Components = g-1



Aufbau Princip for Bounding Tori

The Topology

et Application: Lorenz Dynamics, g=3

Robert
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Represerntation Theory Redux

The Topology

of Chaos Representation Theory for g>1

Robert

Gilmore

Can we extend the representation theory for strange attractors
“with a hole in the middle” (i.e., genus = 1) to higher-genus
attractors?

Yes. The results are similar.

Begin as follows:



Aufbau Princip for Bounding Tori

Application: Lorenz Dynamics, g=3
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Embeddings

The Topolo 5y

g8 reparations for Embedding tori into
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i

Equivalent to embedding a specific class of directed networks
into R3



Extrinsic Embedding of Bounding Tori

The Topology

of Chaos Extrinsic Embedding of Intrinsic Tori

Robert
Gilmore

A specific simple example.
Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Creating Isotopies

The Topology

"t oo Equivalences by Injection
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Obstructions to Isotopy

Index ‘ R3 R4 RS
Global Torsion | Z®3(9-1) 22®2(9*1)
Parity 7o i )

Knot Type Gen. KT. - -

In R all representations (embeddings) of a genus-g strange
attractor become equivalent under isotopy.



The Road Ahead

Summary

1 Question Answered -

2 Questions Raised

We must be on the right track !



Our Hope

The Topology

=8 Original Objectives Achieved
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There is now a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

The Topology

S Result

Robert
Gilmore

There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R3 only — for now



Four Levels of Structure

The Classification Theory has

4 Levels of Structure
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Four Levels of Structure

bt The Classification Theory has
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4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
©® Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

The Topology
of Chaos

Robert

Gilmore
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Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

The Topolo
of Chacs There is a Representation Theory for Strange Attractors

There is a complete set of rerpesentation labels for strange
attractors of any genus g.

The labels are complete and discrete.

Representations can become equivalent when immersed in
higher dimension.

All representations (embeddings) of a 3-dimensional strange
attractor become isotopic (equivalent) in R®.

The Universal Representation of an attractor in R® identifies
mechanism. No embedding artifacts are left.

The topological index in R® that identifies mechanism remains
to be discovered.



Answered Questions

k=8 Some Unexpected Results

Robert
Gilmore

@ Perestroikas of orbits constrained by branched manifolds
@ Routes to Chaos = Paths through orbit forcing diagram

Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)
Universal image dynamical systems

NLD version of Cartan's Theorem for Lie Groups
Topological Continuation — Group Continuuation

Cauchy-Riemann symmetries

Quantizing Chaos



Unanswered Questions

et We hope to find:

Robert
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Robust topological invariants for RN, N > 3

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D? — n x D? (e.g., Lorenz), DN - DN N >2

@ Representation theory: complete

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Singularities as obstructions to isotopy
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The Topology
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