The Topology of Chaos Chapter 9: Representations of Strange Attractors

> Robert Gilmore

Representation Theory-01

Representation Theory-02

Representatior Theory-03

Representation Theory-04

The Topology of Chaos Chapter 9: Representations of Strange Attractors

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Physics and Topology Workshop Drexel University, Philadelphia, PA 19104

Embeddings

Embeddings

The Topology of Chaos Chapter 9: Representations of Strange Attractors

> Robert Gilmore

Representation Theory-01

Representation Theory-02

Representation Theory-03

Representation Theory-04 An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Embeddings provide a *representation* of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension

Representation Labels

The Topology of Chaos Chapter 9: Representations of Strange Attractors

> Robert Gilmore

Representation Theory-01

Representation Theory-02

Representatior Theory-03

Representation Theory-04

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

Parity	Ρ
Global Torsion	Ν
Knot Type	KΤ

 $\Gamma^{P,N,KT}(\mathcal{SA})$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

Creating Isotopies

The Topology of Chaos Chapter 9: Representations of Strange Attractors

> Robert Gilmore

Representation Theory-01

Representation Theory-02

Representation Theory-03

Representation Theory-04

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension (irreducible representations).

Are these obstructions removed by injections into higher dimensions (reducible representations)?

Systematically?

Creating Isotopies

The Topology of Chaos Chapter 9: Representations of Strange Attractors

> Robert Gilmore

Representatior Theory-01

Representation Theory-02

Representation Theory-03

Representation Theory-04

Equivalences by Injection Obstructions to Isotopy

 \rightarrow

 R^3 Global Torsion Parity Knot Type

 R^4 Global Torsion

 R^5

There is one Universal reducible representation in \mathbb{R}^N , $N \ge 5$. In \mathbb{R}^N the only topological invariant is mechanism.