The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology o Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Physics and Topology Workshop Drexel University, Philadelphia, PA 19104

September 5, 2008

Chaos

The Topology

of Chaos Chapter 3: Topology of Orbits

Topology of Orbits-01

Chaos

Motion that is

• Deterministic:

$$\frac{dx}{dt} = f(x)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Recurrent
- Non Periodic
- Sensitive to Initial Conditions

Strange Attractor

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Skeletons

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology o Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

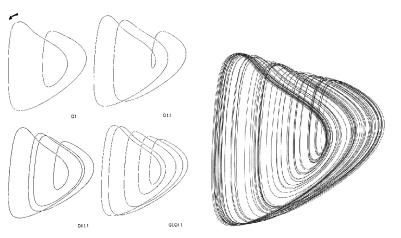
Topology o Orbits-04a

Topology o Orbits-04b

Topology of Orbits-05

Topology o Orbits-06

UPOs Outline Strange attractors



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

BZ reaction

Skeletons

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

UPOs Outline Strange attractors

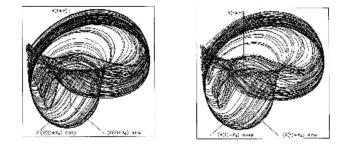


Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Lefranc - Cargese

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Organization of UPOs in R³: Gauss Linking Number

Dynamics and Topology

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology o Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Linking Number of Two UPOs

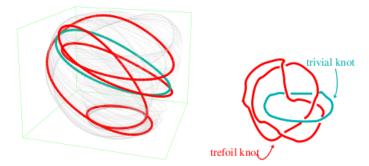


Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Evolution in Phase Space

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology o Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

One Stretch-&-Squeeze Mechanism

(c) (d) boundary layer stretch squeeze (b) (a)

Motion of Blobs in Phase Space

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

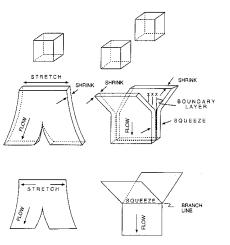
Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Stretching — Squeezing



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Collapse Along the Stable Manifold

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

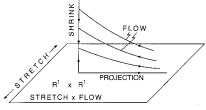
Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Projection

Identify x and y if

 $\lim_{t \to \infty} |x(t) - y(t)| \to 0$



FLOW ----

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Fundamental Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Then:

Tf:

Fundamental Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

If:

Certain Assumptions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Then:

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

Certain Assumptions

Specific Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then:

Tf:

Eundamental Theorem

Birman-Williams Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology c Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology o Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

• on \mathbb{R}^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0.$

 Generates a <u>hyperbolic</u> strange attractor \mathcal{SA}

IMPORTANT: The underlined assumptions can be relaxed.

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology c Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Conclusions, B-W Theorem

- The projection maps the strange attractor SA onto a 2-dimensional branched manifold \mathcal{BM} and the flow $\Phi_t(x)$ on SA to a semiflow $\overline{\Phi}(x)_t$ on \mathcal{BM} .
- UPOs of $\Phi_t(x)$ on SA are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on \mathcal{BM} . Moreover, every link of UPOs of $(\Phi_t(x), SA)$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, \mathcal{BM})$.

Remark: "One of the few theorems useful to experimentalists."

A Very Common Mechanism

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

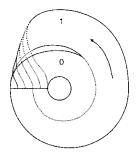
Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Attractor Branched Manifold

Rössler:



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A Mechanism with Symmetry

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

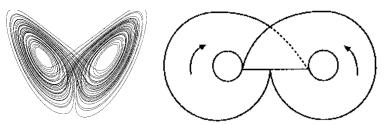
Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Attractor

Lorenz: Branched Manifold



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Examples of Branched Manifolds

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

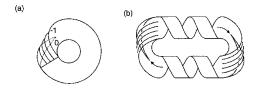
Topology of Orbits-04a

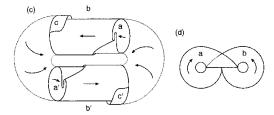
Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Inequivalent Branched Manifolds





◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Aufbau Princip for Branched Manifolds

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology c Orbits-01

Topology o Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

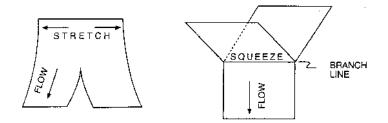
Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Any branched manifold can be built up from stretching and squeezing units

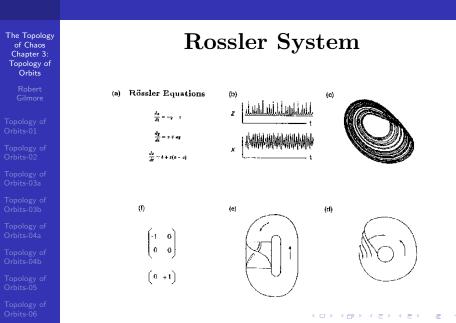


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

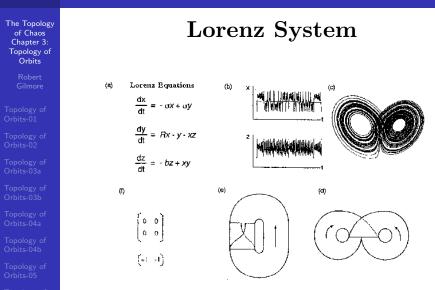
subject to the conditions:Outputs to Inputs

• No Free Ends

Dynamics and Topology



Dynamics and Topology



Topology o Orbits-06

▲口> ▲圖> ▲ヨ> ▲ヨ> 三日 - 釣A(で)

Dynamics and Topology

The Topology of Chaos Chapter 3: Topology of Orbits

> Robert Gilmore

Topology c Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Poincaré Smiles at Us in R^3

- \bullet Determine organization of UPOs \Rightarrow
- \bullet Determine branched manifold \Rightarrow
- \bullet Determine equivalence class of \mathcal{SA}