The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Physics Department
Drexel University
Philadelphia, PA 19104
robert.gilmore@drexel.edu
Physics and Topology Workshop
Drexel University, Philadelphia, PA 19104

September 5, 2008

Chaos

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Chaos

Motion that is

- Deterministic: $\quad \frac{d x}{d t}=f(x)$
- Recurrent
- Non Periodic
- Sensitive to Initial Conditions

Strange Attractor

The Topology
of Chaos
Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Skeletons

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

UPOs Outline Strange attractors

01

01011

BZ reaction

Skeletons

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

UPOs Outline Strange attractors

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser ; Right : Superposition of 12 periodic orbits of periods from 1 to 10 .

Lefranc - Cargese

Dynamics and Topology

The Topology
of Chaos
Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Organization of UPOs in R^{3} :

 Gauss Linking Number$$
L N(A, B)=\frac{1}{4 \pi} \oint \oint \frac{\left(\mathbf{r}_{A}-\mathbf{r}_{B}\right) \cdot d \mathbf{r}_{A} \times d \mathbf{r}_{B}}{\left|\mathbf{r}_{A}-\mathbf{r}_{B}\right|^{3}}
$$

\# Interpretations of $\mathrm{LN} \simeq$ \# Mathematicians in World

Linking Numbers

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Linking Number of Two UPOs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Evolution in Phase Space

The Topology
of Chaos
Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

One Stretch-\&-Squeeze Mechanism

Motion of Blobs in Phase Space

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of
Orbits-04a
Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Stretching - Squeezing

Collapse Along the Stable Manifold

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Projection

Identify x and y if

$$
\lim _{t \rightarrow \infty}|x(t)-y(t)| \rightarrow 0
$$

Fundamental Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of
Orbits-03a
Topology of Orbits-03b

Topology of
Orbits-04a
Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

If:

Then:

Fundamental Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

If:

Certain Assumptions

Fundamental Theorem

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Birman - Williams Theorem

If: Certain Assumptions

Then:

Specific Conclusions

Birman-Williams Theorem

The Topology
of Chaos
Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Assumptions, B-W Theorem

A flow $\Phi_{t}(x)$

- on R^{n} is dissipative, $\underline{n=3}$, so that $\lambda_{1}>0, \lambda_{2}=0, \lambda_{3}<0$.
- Generates a hyperbolic strange attractor $\mathcal{S A}$

IMPORTANT: The underlined assumptions can be relaxed.

Birman-Williams Theorem

The Topology
of Chaos
Chapter 3:
Topology of
Orbits
Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a Orbits-04b

Conclusions, B-W Theorem

- The projection maps the strange attractor $\mathcal{S A}$ onto a 2 -dimensional branched manifold $\mathcal{B M}$ and the flow $\Phi_{t}(x)$ on $\mathcal{S A}$ to a semiflow $\Phi(x)_{t}$ on $\mathcal{B M}$.
- UPOs of $\Phi_{t}(x)$ on $\mathcal{S A}$ are in 1-1 correspondence with UPOs of $\bar{\Phi}(x)_{t}$ on $\mathcal{B M}$. Moreover, every link of UPOs of $\left(\Phi_{t}(x), \mathcal{S A}\right)$ is isotopic to the correspond link of UPOs of $\left(\bar{\Phi}(x)_{t}, \mathcal{B M}\right)$.

Remark: "One of the few theorems useful to experimentalists."

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Rössler:

Attractor

Branched Manifold


```
The Topology
    of Chaos
    Chapter 3:
    Topology of
        Orbits
    Robert
    Gilmore
Topology of
Orbits-01
Topology of
Orbits-02
Topology of
Orbits-03a
Topology of
Orbits-03b
Topology of
Orbits-04a
Topology of
Orbits-04b

\section*{Attractor}

\section*{Lorenz:}

\section*{Branched Manifold}


Examples of Branched Manifolds

The Topology of Chaos Chapter 3: Topology of Orbits

Robert Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of
Orbits-04a
Topology of
Orbits-04b
Topology of Orbits-05

Topology of Orbits-06

\section*{Inequivalent Branched Manifolds}
(a)

(b)

(c)

(d)


\section*{Aufbau Princip for Branched Manifolds}

The Topology
of Chaos
Chapter 3:
Topology of
Orbits
Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

Any branched manifold can be built up from stretching and squeezing units

subject to the conditions:
- Outputs to Inputs
- No Free Ends

\section*{Dynamics and Topology}

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of
Orbits-04a
Topology of
Orbits-04b
Topology of Orbits-05

Topology of Orbits-06

\section*{Rossler System}
(a) Rössler Equations
\[
\begin{aligned}
& \frac{d x}{d t}=-v, \\
& \frac{d y}{d i}=x+a y \\
& \frac{d x}{d i}=d+z(t-c)
\end{aligned}
\]
(9)
\[
\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)
\]
\[
(0+1)
\]
(b)

\(x\)

(e)

(c)

(d)


\section*{Dynamics and Topology}

The Topology of Chaos Chapter 3: Topology of Orbits

Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

\section*{Lorenz System}
(a)

Loreaz Equations
\[
\begin{aligned}
& \frac{d x}{d t}=-\Delta x+o y \\
& \frac{d y}{d t}=\pi x \cdot y \cdot x z \\
& \frac{d z}{d t}=-b z+x y
\end{aligned}
\]
(f)
\[
\left.\begin{array}{l}
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right\} \\
(+1 \\
-1
\end{array}\right\}
\]
(b)

(c)

(e)

(d)


Dynamics and Topology

The Topology
of Chaos
Chapter 3: Topology of

Orbits
Robert
Gilmore

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03b

Topology of Orbits-04a

Topology of Orbits-04b

Topology of Orbits-05

Topology of Orbits-06

\section*{Poincaré Smiles at Us in \(R^{3}\)}
- Determine organization of UPOs \(\Rightarrow\)
- Determine branched manifold \(\Rightarrow\)
- Determine equivalence class of \(\mathcal{S A}\)```

