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e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions
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e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange
Attractor
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Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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# Interpretations of LN ~ # Mathematicians in World
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Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
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If: Certain Assumptions

Then: Specific Conclusions
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A1 > 0,22 =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.
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2 e« The projection maps the strange

N attractor s4 onto a 2-dimensional
branched manifold M and the flow &,(z)
on SA to a semiflow &(z); on BM.

¢« UPOs of ¢,(z) on s4 are in 1-1
correspondence with UPOs of &(z), on
BM. Moreover, every link of UPOs of
(®4(z),SA) is isotopic to the correspond
link of UPOs of (&(z);, BM).

Remark: “One of the few theorems useful to experimentalists.”
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Examples of Branched Manifolds

Inequivalent Branched Manifolds

(a)
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4
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