Robert Gilmore

Physics Department
Drexel University
Philadelphia, PA 19104
robert.gilmore@drexel.edu

Physics and Topology Workshop
Drexel University, Philadelphia, PA 19104

September 3, 2008
Modding Out a Rotation Symmetry

\[
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} \rightarrow
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix} =
\begin{pmatrix}
\text{Re} (X + iY)^2 \\
\text{Im} (X + iY)^2 \\
Z
\end{pmatrix}
\]
Lorenz Attractor and Its Image
Lifting an Attractor: Cover-Image Relations

Creating a Cover with Symmetry

\[
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix}
\leftarrow
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix}
=
\begin{pmatrix}
\text{Re} \ (X + iY)^2 \\
\text{Im} \ (X + iY)^2 \\
Z
\end{pmatrix}
\]
Cover-Image Related Branched Manifolds

Cover-Image Branched Manifolds
Covering Branched Manifolds

Two Two-fold Lifts
Different Symmetry

Rotation Symmetry
Inversion Symmetry
Topological Index: Choose Group
Choose Rotation Axis (Singular Set)
Different Rotation Axes Produce Different (Nonisotopic) Lifts
Nonisotopic Locally Diffeomorphic Lifts

(a) $\mu = 0.0$

(c) $\mu = -2.083$

(e) $\mu = -4.166$

(b) $\mu = -0.84548$

(d) $\mu = -3.14674$
Two Two-fold Covers
Same Symmetry

Indices \((0,1)\) and \((1,1)\)
Indices (0,1) and (1,1)

Three-fold, Four-fold Covers
Two Inequivalent Lifts with V_4 Symmetry
How to Construct Covers/Images

Algorithm

- Construct Invariant Polynomials, Syzygies, Radicals
- Construct Singular Sets
- Determine Topological Indices
- Construct Spectrum of Structurally Stable Covers
- Structurally Unstable Covers Interpolate
Surprising New Findings

Symmetries Due to Symmetry

- Schur’s Lemmas & Equivariant Dynamics
- Cauchy Riemann Symmetries
- Clebsch-Gordon Symmetries
- Continuations
 - Analytic Continuation
 - Topological Continuation
 - Group Continuation
Covers of a Trefoil Torus

Granny Knot

Square Knot

Trefoil Knot
You Can Cover a Cover = Lift a Lift

Covers of Covers of Covers of Covers

Rossler

Lorenz

Ghrist
Universal Branched Manifold

EveryKnot Lives Here
Local Stuff

Groups:
Local Isomorphisms
Cartan’s Theorem

Dynamical Systems:
Local Diffeomorphisms

??? Anything Useful ???
Cartan’s Theorem for Lie Groups

Simply connected Lie group \bar{G}

Multiply connected Lie groups

\bar{G}/D_i

Linearization "LOG" (unique)

\bar{G}/D_2

EXP (unique)

\bar{G}/D_r

Lie algebra g
Locally Diffeomorphic Covers of D

$D_1, T_1 / G_1$ $D_1, T_2 / G_1$ \cdots $D_2, T_1 / G_2$ $D_2, T_2 / G_2$ \cdots \cdots

D: Universal Image Dynamical System
Useful Analogs

Local Isomorphisms & Diffeomorphisms
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms Local Diffeos
Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms

Local Diffeos

Multiply connected Lie groups

Simply connected Lie group \tilde{G}

Linearization "LOG" (unique)

Lie algebra \mathfrak{g}

D_{G_1} D_{G_2} D_{G_3} D_{G_4}

\tilde{G}/D_1 \tilde{G}/D_2 \tilde{G}/D_3 \tilde{G}/D_4

D