The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

The Topology of Chaos Chapter 6: Bounding Tori

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Physics and Topology Workshop Drexel University, Philadelphia, PA 19104

September 2, 2008

Perestroikas of Branched Manifolds

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Constraints on Branched Manifolds

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

"Inflate" a strange attractor

Union of ϵ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

Torus and Genus

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Boundin Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Pounding

Torus, Longitudes, Meridians

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Flows on Surfaces

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Surface Singularities

Flow field: three eigenvalues: +, 0, – Vector field "perpendicular" to surface Einvalues on surface at fixed point: +, – All singularities are regular saddles $\sum_{s.p.} (-1)^{index} = \chi(S) = 2 - 2g$

fixed points on surface = index = 2g - 2

Flows in Vector Fields The Topology Flow Near a Singularity Bounding Tori

of Chaos Chapter 6:

Bounding Tori-04

(b)

(d)

Some Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Torus Bounding Lorenz-like Flows

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Canonical Forms

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Boundin Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Twisting the Lorenz Attractor

・ロト・日本・日本・日本・日本・日本

Constraints Provided by Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Two possible branched manifolds in the torus with g=4.

Use in Physics

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Bounding Tori contain all known Strange Attractors

Tab.1. All known strange attractors of dimension $d_L < 3$ are bounded by one of the standard dressed tori.

Strange Attractor	Dressed Torus	Period $g - 1$ Orbit
Rossler, Duffing, Burke and Shaw	A_1	1
Various Lasers, Gateau Roule	.A1	1
Neuron with Subthreshold Oscillations	A_1	1
Shaw-van der Pol	$A_1 \cup A_1^{(1)}$	1 U 1
Lorenz, Shimizu-Morioka, Rikitake	A_2	$(12)^2$
Multispiral attractors	A_n	$(12^{n-1})^2$
C_n Covers of Rossler	C_n	1 ⁿ
C_2 Cover of Lorenz ^(a)	C_4	14
C ₂ Cover of Lorenz ^(b)	A3	$(122)^2$
C_n Cover of Lorenz ^(a)	C_{2n}	1 ²ⁿ
C_n Cover of Lorenz ^(b)	P_{n+1}	$(1n)^n$
$2 \rightarrow 1$ Image of Fig. 8 Branched Manifold	A_3	$(122)^2$
Fig. 8 Branched Manifold	P_5	$(14)^4$
(a) Rotation axis through origin.		
^(b) Rotation axis through one focus.		

Labeling Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Pounding

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks Transition matrix sum of two g-1 \times g-1 matrices One is cyclic g-1 \times g-1 matrix Other represents union of cycles Labeling via (permutation) group theory

Some Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Pounding

Bounding Tori of Low Genus

TABLE I: Enumeration of canonical forms up to genus 9

Luumo,	. annon or con	omean sorme of					
gm	$g = m (p_1, p_2, \dots p_m) n_1 n_2 \dots n_{g-1}$						
11	(0)	1					
3 2	(2)	11					
4 3	(3)	111					
54	(4)	1111					
53	(2,2)	1212					
6.5	(5)	11111					
64	(3,2)	12112					
76	(6)	111111					
75	(4, 2)	112121					
75	(3,3)	112112					
74	(2, 2, 2)	122122					
74	(2, 2, 2)	131313					
8 7	(7)	1111111					
8 6	(5,2)	1211112					
86	(4,3)	1211121					
85	(3, 2, 2)	1212212					
85	(3, 2, 2)	1 221 221					
8 5	(3, 2, 2)	1313131					
98	(8)	11111111					
97	(6,2)	11111212					
97	(5,3)	11112112					
97	(4,4)	11121112					
96	(4, 2, 2)	11122122					
96	(4, 2, 2)	11131313					
96	(4, 2, 2)	11212212					
96	(4, 2, 2)	12121212					
96	(3,3,2)	11212122					
96	(3,3,2)	11221122					
96	(3, 3, 2)	11221212					
96	(3, 3, 2)	11311313					
95	(2, 2, 2, 2, 2)	12221222					
95	(2,2,2,2)	12313132					
0.5	(2222)	14141414					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Motivation

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Danadian

Some Genus-9 Bounding Tori

Aufbau Princip for Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Danualian

Any bounding torus can be built up from equal numbers of stretching and squeezing units

- Outputs to Inputs
- No Free Ends
- Colorless

Aufbau Princip for Bounding Tori

Poincaré Section

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Danualian

Construction of Poincaré Section

P. S. = Union

Components = g-1

Exponential Growth

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

_	g	N(g)	9	N(g)	9	N(g)
	3	1	9	15	15	2211
	4	1	10	28	16	5549
	5	2	11	67	17	14290
	ð	2	12	145	18	36824
	7	5	13	368	19	96 347
	8	6	14	870	20	252927

Exponential Growth

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Boundin Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

The Growth is Exponential The Entropy is log 3

Bounding Torus Entropy

Log[N(g)]/(g-1)

900

Extrinsic Embedding of Bounding Tori

The Topology of Chaos Chapter 6: Bounding Tori

> Robert Gilmore

Bounding Tori-01

Bounding Tori-02

Bounding Tori-03

Bounding Tori-04

Bounding Tori-05

Bounding Tori-06

Bounding Tori-07

Bounding Tori-08

Rounding

Extrinsic Embedding of Intrinsic Tori

Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.