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My colleagues and my friends — my colleagues are my friends
— introduced me to and then helped to guide me through this

new and delightful field.
Many are assembled here today.

To all | express my thanks for helping to make this such a
festive occassion.
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The Q limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange Attractor
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St Periodic Orbits are the Key
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Here is a Strange Attractor (Belousov-Zhabotinskii Reaction)
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Here is a period-one orbit in the attractor.
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Period-1 and period-2 orbits from the attractor.
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UPOs: Skeletons of Strange Attractors

Lots of them.
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Carl Friedrich Gauss
They Link: Pairwise, 3-Wise, ...



Dynamics and Topology
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# Interpretations of LN ~ # Mathematicians in World



Linking Numbers
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trivial knot
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Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Determine Topological Invariants

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted fiom
Eelom sov—Zhabotin skii data®

Orbit Symbolics 1 2 3 4 5 a 7 Ba Bh
1 1 ] 1 1 2 2 2 3 4 3
2 o1 1 1 2 3 4 4 7] g ]
3 011 1 2 2 4 ] i T ] 5
4 oi11 2 3 4 ) ] 5 11 13 12
5 01011 2 4 5 & ] 1a 13 16 15
] 011 0na1 2 4 i ] 10 a 14 16 15
7 0101011 3 7] T 11 13 14 18 21 21
Ha 01010111 4 ] i 13 16 18 21 23 24
ik 01011 011 3 ] i 12 15 18 21 24 21

24l indices am negative.
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If:

Then:
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If: Certain Assumptions

Then:



Fundamental Theorem
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If: Certain Assumptions

Then: Specific Conclusions
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A flow @(x)
eon R" is dissipative, n =3, so that
A1 >0, =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

A Chaotic

Wall with Conclusions, B-W Theorem

Friends

Robert

Gilmore

e The projection maps the strange attractor SA onto a
2-dimensional branched manifold BM and the flow ®;(x) on
SA to a semiflow ®(z); on BM.

e UPOs of ®4(x) on SA are in 1-1 correspondence with UPOs
of ®(x); on BM. Moreover, every link of UPOs of (®;(z),S.A)
is isotopic to the correspond link of UPOs of (®(z);, BM).

Remark: “One of the few theorems useful to experimentalists.”
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Motion of Blobs in Phase Space
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Aufbau Princip for Branched Manifolds
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FLCAW

subject to the conditions:
e QOutputs to Inputs

e No Free Ends



Dynamics and Topology
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(a) Rdssler Equations




Dynamics and Topology
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Dynamics and Topology
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Walk with Poincaré Smiles at Us in r3
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4
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Hernan G. Solari Gabriel B. Mindlin
(disguised as Cristal)



Topological Analysis Program
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Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Additional Steps

Model the Dynamics
Validate the Model
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Embeddings

v Embeddings (= Black Magic)
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Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding



Locate UPOs

Wai with An Embedding and Periodic Orbits
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Figure 5. Left: a chaotic attractor reconstructed from atime series from a chaotic laser : Right : Superposition
of 12 perodic orbits of perods from 1w 10

Lefranc - Cargese
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Determine Topological Invariants

Nk Linking Number of Orbit Pairs

Friends

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.

Lefranc - Cargese
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Tabulate Topological Invariants

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted fiom
Eelom sov—Zhabotin skii data®

Orbit Symbolics 1 2 3 4 5 a 7 Ba Bh
1 1 ] 1 1 2 2 2 3 4 3
2 o1 1 1 2 3 4 4 7] g ]
3 011 1 2 2 4 ] i T ] 5
4 oi11 2 3 4 ) ] 5 11 13 12
5 01011 2 4 5 & ] 1a 13 16 15
] 011 0na1 2 4 i ] 10 a 14 16 15
7 0101011 3 7] T 11 13 14 18 21 21
Ha 01010111 4 ] i 13 16 18 21 23 24
ik 01011 011 3 ] i 12 15 18 21 24 21

24l indices am negative.
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Propose Branched Manifold

Guess Branched Manifold

Lefranc - Cargese

zation {right) created




Comparison Step
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Walk with Identification & ‘Confirmation’
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e BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion (Fail to Reject Hp)



A Perestroika

W What Do We Learn?

Friends
Robert e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




A Perestroika
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Evolution Under Parameter Change

m {modulation amplitude) FIBER LASER

A =
AN

YAG LASER

Figure 11, Varous templates observed in two laser experiments. Top left: schematic represenation of the
parmmeter space of forced nonlinear oscillators showing resonunce tongues. Right: templates observed in the
fiber laser experiment: global tomsion incre systematically from one to to the next [40]. Bottom left:
templates observed in the YAG laser experiment {only the branches are shown): there is a variation in the
topological organization across one chaotic tongue (39,41




An Unexpected Benefit
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Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment of the time series containing a periodic orbit of perod 9. Right: embeddi I the '|'.lt.J'ItJdIC.

arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entmopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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TABLE 1 - Folding processes characteristic of the different species of emplates
treated in this work

Robert

- Species Horseshoe Renerse Out-to-in In-io-out Staple
Gilmore horseshoe spiral spiral
Code inFig 1 v Naot found
] wopen | Nl | g
Inser tion 0 (o w2 am @2 or 210
matrix 12m
—— . e _
ril;;-rchonhe e - ' U E'l
ng process ¢
> (
D S D B oae &

110 10 9 8 4 3
Voo m=(0.93
: Vol m=0.78
- R - -
Ty o m=0.73
117 1/6 1/5 1/4 1/3 1/2 1

Modulation frequency normalized to the natural frequency

Used and Martin (2010)



Our Hope — Now a Result
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

o Extracting classification information

from experimental signals.
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Lorenz Shimizu-Morioka
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Francisco Papoff

Arimondo et al.
e The branched manifold remains unchanged,
e the spectrum of orbits on it changes.
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An Ongoing Problem
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An Ongoing Problem
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Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required
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Lifting an Attractor: Cover-Image Relations
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Rotation Inversion

Symmetry Symmetry
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Nonisotopic Locally Diffeomorphic Lifts
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{c) p=—2.083 (e) p= —4.166

(b) o = —0.84548 (d) e = ~3.14674
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Two Inequivalent Lifts with V; Symmetry
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Universal Covering Group
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Universal Image Dynamical System
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D: Universal Image Dynamical System



Perestroikas of Branched Manifolds
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el Constraints on Branched Manifolds
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b “Inflate” a strange attractor

Gilmore

Union of ¢ ball around each point
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor
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Leonard Euler
Count holes: x(OM)



Torus and Genus
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Flows on Surfaces
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Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2



Flow Near a Singularity
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Some Bounding Tori

Torus Bounding Lorenz-like Flows
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(a)

(b) o



Constraints Provided by Bounding Tori
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Use in Physics
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Tab.1. All known strange attractors of dimension dz < 3 are bounded by one of the standard drezsed tor.

Stronge Atkroctor Direseed Torma | Pericd g — 1 Orhit
Foesler, Duffing, Burke and Shom Ar 1
Vorious Lazers, Gatesnn Foule Ar 1
MNeuron with Subthreshold Osdllations A 1
Shase-wan der Pal Agu A 1u1
Lerens, Shirnizu- Moricka, Rildtske As {12y
Multispiral sbbractors An {1y
Co Clovers of Feesler i 1

Cz Clover of Larenz '™ [+ 1#

{3 Caver of Lerenz™ Az (122)%
Cn Clover of Lorenzi®! Con 1%
Cn Cover of Larenz® Pt {1m)"

2 — 1 Image of Fig. & Branched Banifold Ay {122)®
Fig. & Branched Manifcld Py (14

87 Fiotakion asds through crigin
) Retation axi= through one facne




Labeling Bounding Tori

A Chaotic

Wik with Labeling Bounding Tori

Friends

Robert

Gilmore

Poincaré section is disjoint union of g-1 disks
Transition matrix sum of two g-1 x g-1 matrices
One is cyclic g-1 x g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory



Some Bounding Tori

A Chaotic

Walk it Bounding Tori of Low Genus

Friends

Gilmore TABLE T Brumeration of canonical forms up bo gems 9
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Motivation

A Chaotic

Walk wih Some Genus-9 Bounding Tori

OEG RO R

Robert
Gilmore




Aufbau Princip for Bounding Tori

A Chaotic

Ut  Any bounding torus can be built up
from equal numbers of stretching and
squeezing units

Robert
Gilmore

e Outputs to Inputs
e No Free Ends
e Colorless



Aufbau Princip for Bounding Tori

A Chaotic

el Application: Lorenz Dynamics, g=3

Friends

Robert
Gilmore

_\

Y




Poincaré Section

A Chaotic

Walk with Construction of Poincaré Section

Friends

Robert

Gilmore

P. S. = Union .

# Components = g-1



Exponential Growth

A Chaotic

Wl ot The Growth is Exponential

Friends

Robert
Gilmore

TABLE I Mumber of canonical bounding tori as a fune-
kion of genus, 4.

Nigl g Ng) ¢ Nig
1 o 15 15 2211
1 10 28 14 ER4D
2 11 &7 17 14200
2 12 145 18 56524
o]
i)

15 588 19 B6547
14 8v0 20 252027

Lt s I I N B



Usual Culprits: 11

A Chaotic
Walk with How quickly does the number of bounding tori increase with g?

Friends

81 (B
Jacob Katriel
Magician with permutation group cycles.



Exponential Growth

A Chaotic

Wl ot The Growth is Exponential

ﬂ* The Entropy is log 3

Bounding Torus Entropy
Log[N(g)l(g-1)

Log[N(g)Jig-1)

gy



Extrinsic Embedding of Bounding Tori

A Chaotic

Walk with Extrinsic Embedding of Intrinsic Tori

Friends

Robert

Gilmore

Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Ask the Masters: 11

A Chaotic
Walk with Could there be representation theory for strange attractors?

Friends

Robert

Gilmore

Eugene Wigner
Of course.
There is a representation theory for everything!



Embeddings

o Embeddings

Robert

Gilmore

An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible")
attractor in somebody’s computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension



Usual Culprits: 12

A Chaotic .
el Is there a representation theory for strange attractors?
riendas
Robert

Gilmore

What is it? How does it work?

Daniel J. Cross Daniel J. Cross
Hard at work (pretending)! Instructing us.



Representation Labels

A Chaotic

i Inequivalent Irreducible Representations

Friends

Robert

Gilmore

Irreducible Representations of 3-dimensional Genus-one
attractors are distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT
FP’N’KT(SA)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Creating Isotopies

A Chaotic

Walk with Equivalent Reducible Representations

Friends

Robert

Gilmore

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible
representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?



Creating Isotopies

A Chaotic

Nl it Equivalences by Injection

Friends

Robert

Gimere Obstructions to Isotopy

R3 — R4 — RS
Global Torsion Global Torsion
Parity
Knot Type

There is one Universal reducible representation in RV, N > 5.
In RN the only topological invariant is mechanism.



Usual Culprits: 13 & 14

A Chaotic . . ..
Walk with After fixed points — Organizing curves?

Friends
What? How?

Tim Jones Jean-Marc Ginoux



Creating New Attractors

Wit Rotating the Attractor

Friends

Robert
Gilmore

d [;( ] _ [ F(X,Y) ] N [ ay sin(wgt + ¢1) }

ag sin(wgt + ¢2)

[ u(t) } _ [ cos Qt  —sin Ot } [X(t) }

sinQt  cosQt Y(t)

i[“]:RF(R—lu)+Rt+Q[ _”]

v +u
Q=nwy q )l =puwy
Global Diffeomorphisms Local Diffeomorphisms

(p-fold covers)



Two Phase Spaces: R? and D? x S!

A Chaotic

v Rossler Attractor: Two Representations

Friends

. R3 D? x §1
F Rossler Attractor, Toroidal Representation
20 E Index (n_1,n_2) = (1,0)
;
E =
Q
Y 18
20F 1.5
E 15
2
EI-)
3
E ] U -
40 E
600 I I Ll I
-4.0 2,0 0.0 20 4.0 6,0

x ’ n_1 x Phase Angle / 2 Pi



Other Diffeomorphic Attractors

A Chaotic

Walk with Rossler Attractor:

Friends

Robert

Gimere Two More Representations with »n = +1

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Tndex (n_l.n_2) = (1,-1) Tndex (n_l.n_2) = (1,+1)

4

2

=
2
=]
=
2
=
<
<

Coordinate u

n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

A Chaotic
Walk with Rossler Attractor:

Friends

Robert

Gilmore Two Two-Fold Covers with p/q=+1/2

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(2.-1) Index (n_l.n_2) = (2,+1)

Coordinate u
Coordinate u

1
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

A Chaotic

Walk with Rossler Attractor:

Friends

Robert

B Two Three-Fold Covers with p/q=-2/3,-1/3

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_1,n_2)=(3.-2) Index (n_l,n_2)=(3.-1)
2 T

Coordinate u

1 2 K 1 2
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

A Chaotic
Walk with Rossler Attractor:

Friends

Robert

G And Even More Covers (with p/q = +1/3,+2/3)

Rossleer Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_1.n_2) = (3,+1) Index (n_1L,n_2) = (3,4+2)

Coordinate u
Coordinate u

1 2 1 2
n_I x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



New Measures

A Chaotic

el Angular Momentum and Energy

Friends
f‘ubut 1 T 1
Gilmore L K(0) = lim / ~(X24Y?)dt
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New Measures, Diffeomorphic Attractors

A Chaotic

ol  Energy and Angular Momentum

Friends

Robert

Gilmore

Diffeomorphic, Quantum Number n

Torsion Integral Energy Integral

T T T T T T T T T T T




New Measures, Subharmonic Covering Attractors

A Chaotic

ol  Energy and Angular Momentum

Friends

Robert

Gimore Subharmonics, Quantum Numbers p/q

Torsion Integral Energy Integral
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¥
a 3F u/7 N
P L st FE
qoF ﬂ’¢’ 4 = °
g ° =~ 4 f |
£ o H £
S 3 s 4 . A ]
H oF u/ E = ;*
g - P #
2 ° NN
& o E Sk o ]
s O/ % £
g N el 3 - *, o ]
- oy o
o - 1
N L I I I 0 1 NPMuM? L I
3 2 1 0 1 3 3 2 ] 0 1 3



The Road Ahead

Summary

1 Question Answered -

2 Questions Raised

We must be on the right track !



Our Hope

A Chaotic

=8 Original Objectives Achieved

Friends

Robert

Gilmore

There is now a simple, algorithmic procedure for:
o Classifying strange attractors

o Extracting classification information

from experimental signals.



Our Result

A Chao_tic
Result

Robert

Gilmore

There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R3 only — for now



Four Levels of Structure

The Classification Theory has

4 Levels of Structure



Four Levels of Structure

The Classification Theory has

4 Levels of Structure

@ Basis Sets of Orbits



Four Levels of Structure

W The Classification Theory has

Friends

Robert
Gilmore

4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds



Four Levels of Structure

W The Classification Theory has

Friends

Robert
Gilmore

4 Levels of Structure

@ Basis Sets of Orbits
@® Branched Manifolds
© Bounding Tori



Four Levels of Structure

W The Classification Theory has

Friends

Robert
Gilmore

4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
© Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

A Chaotic
Walk with
Friends

FORCING OF HORSESHOT:
ORDITS TO PERIOD §



Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

A Chaotic

i Some Unexpected Results

Friends

Ciroene @ Perestroikas of orbits constrained by branched manifolds

Routes to Chaos = Paths through orbit forcing diagram
Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)
Universal image dynamical systems

NLD version of Cartan’'s Theorem for Lie Groups
Topological Continuation — Group Continuuation
Cauchy-Riemann symmetries

Quantizing Chaos

Representation labels for inequivalent embeddings
Representation Theory for Strange Attractors



Unanswered Questions

o We hope to find:

Friends

Robert

Gilmore

Robust topological invariants for RN, N > 3

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D? — n x D? (e.g., Lorenz), DN - DN N>2

@ Representation theory: complete

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Singularities as obstructions to isotopy
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