A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction-

Deep Background-

Deep Background

Deep Background

Experimenta

Experimenta 02

Experimental-

A Chaotic Walk with Friends

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Birthday Party CORIA, France

June 20, 2011

Thank You

A Chaotic Walk with Friends

Introduction-

Thank You to All My Friends

My colleagues and my friends — my colleagues are my friends — introduced me to and then helped to guide me through this new and delightful field.

Many are assembled here today.

To all I express my thanks for helping to make this such a festive occassion.

Table of Contents

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background

Experimental

Experimental

Outline

- Overview
- ② Experimental Challenge
- Topology of Orbits
- Topological Analysis Program
- Basis Sets of Orbits
- Bounding Tori
- Covers and Images
- Quantizing Chaos
- Representation Theory of Strange Attractors
- Summary

Usual Culprits

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background-01

Deep Background

Deep Background

Experimenta 01

Experimenta

Elia Eschenazi

Jorge Tredicce

Torreador

A Chaotic Walk with Friends

Robert Gilmore

Introductio 01

Introduction 02

Deep Background

Deep Background-02

Deep Background 03

Experimen 01

xperiment:

Experimenta

J. R. Tredicce

Can you explain my data?

I bet you can't explain my data!

Motivation

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction-

Deep Background

Deep

02 Deep

Deep Background-03

Experimenta 01

Experimenta 02

Evperimental

Where is Tredicce coming from?

Feigenbaum:

$$\alpha = 4.66920 \ 16091 \dots$$

$$\delta = -2.50290 78750 \dots$$

The Experiment

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background 03

Experimental-01

Experimental

Experimental

Laser with Modulated Losses Experimental Arrangement

Experimental Motivation

A Chaotic Walk with Friends

Experimental-

Oscilloscope Traces

Results, Single Experiment

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Backgroun

Deep Background

Experimenta

Experimental

Experimental-

Bifurcation Schematics

Some Attractors

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction-

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

02

Coexisting Basins of Attraction

Ask the Masters: 1

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background

Deep Background

Experimental

Experimental-

Experimental-

What to Grab Hold of ??

Search for Invariants

Strange Attractor

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background

Deep Background

Experimenta 01

xperimenta

How to Characterize a Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Ask the Masters: 2 & 3

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimental 01

Experimental

Periodic Orbits are the Key

Joseph Fourier Linear Systems

Henri Poincare Nonlinear Systems

A Chaotic Walk with Friends

Here is a Strange Attractor (Belousov-Zhabotinskii Reaction)

A Chaotic Walk with Friends

Here is a period-one orbit in the attractor.

A Chaotic Walk with Friends

Period-1 and period-2 orbits from the attractor.

A Chaotic Walk with Friends

Robert Gilmore

Introduction-01

Introduction-

Deep Background-

Deep Background

Deep Background

Experimenta

Experimental

nerimental

Lots of them.

Ask the Masters: 4

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimenta 02

Deep

Quantitative Measures for Periodic Orbits ??

Carl Friedrich Gauss They Link: Pairwise, 3-Wise, ...

Dynamics and Topology

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background-01

Deep Background 02

Deep Background

Experimenta

Experimental

Experimenta

Organization of UPOs in R^3 :

Gauss Linking Number

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background 02

Deep Background

Experimenta 01

Experimenta<mark>l</mark> 02

Experimental-

Linking Number of Two UPOs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Determine Topological Invariants

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background-01

Deep Background 02

Deep Background 03

Experimenta 01

Experimental-

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 8, extracted from Belou sov—Zh abotin skii data^a

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8Ь
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
6	011 0M1	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8Ь	01 011 011	3	6	8	12	15	16	21	24	21

All indices are negative.

Mechanisms for Generating Chaos

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta 01

Experimental

Experimental

Stretching and Folding

Mechanisms for Generating Chaos

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background 03

Experimenta 01

Experimental

Experimental-

Tearing and Squeezing

Ask the Masters: 5 & 6

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimental 01

Experimenta 02

Systematics of Linking Number Tables

Robert F. Williams

Collapse Along the Stable Manifold

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimental

Experimental-

Birman - Williams Projection

Identify x and y if

$$\lim_{t \to \infty} |x(t) - y(t)| \to 0$$

Fundamental Theorem

A Chaotic Walk with Friends

Birman - Williams Theorem

If:

Then:

Fundamental Theorem

A Chaotic Walk with Friends

Birman - Williams Theorem

Certain Assumptions Tf:

Then:

Fundamental Theorem

A Chaotic Walk with Friends

> obert Ilmore

Introductio 01

Introduction 02

Deep Background

Deep Background 02

Deep Background 03

01 Experiment

xperiment 2 Birman - Williams Theorem

If: Certain Assumptions

Then: Specific Conclusions

Birman-Williams Theorem

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background-01

Deep Background 02

Deep Background

Experimenta 01

Experimental

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

- on R^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0$.
- Generates a <u>hyperbolic</u> strange attractor SA

IMPORTANT: The underlined assumptions can be relaxed.

Birman-Williams Theorem

A Chaotic Walk with Friends

Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background

Experimenta 01

Experimenta

Conclusions, B-W Theorem

- ullet The projection maps the strange attractor \mathcal{SA} onto a 2-dimensional branched manifold \mathcal{BM} and the flow $\Phi_t(x)$ on \mathcal{SA} to a semiflow $\overline{\Phi}(x)_t$ on \mathcal{BM} .
- UPOs of $\Phi_t(x)$ on \mathcal{SA} are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on \mathcal{BM} . Moreover, every link of UPOs of $(\Phi_t(x), \mathcal{SA})$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, \mathcal{BM})$.

Remark: "One of the few theorems useful to experimentalists."

Ask the Masters: 7 & 8

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background 01

Deep Background 02

Deep Background

Experimental 01

Experimenta 02

Two Standard Strange Attractors

Otto Rössler

Edward Lorenz

A Very Common Mechanism

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-02

Deep Background 01

Deep Background 02

Deep Background

Experimenta 01

Experimental

Experimenta

Rössler:

Attractor Branched Manifold

A Mechanism with Symmetry

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background 01

Deep Background 02

Deep Backgroun 03

Experimenta 01

Experimenta

02

Lorenz:

Attractor Branched Manifold

Examples of Branched Manifolds

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

01 Deep

Background 02

Deep Background

Experimental

Experimental

Experimental

Inequivalent Branched Manifolds

Motion of Blobs in Phase Space

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

Experimental

Stretching — Squeezing

Aufbau Princip for Branched Manifolds

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background

Deep Backgroun

Experimenta 01

Experimental 02 Any branched manifold can be built up from stretching and squeezing units

subject to the conditions:

- Outputs to Inputs
- No Free Ends

Dynamics and Topology

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background

Deep Background

Experimenta

Experimental-

Experimental-

Rössler System

 $\frac{dx}{dt} = -y$

 $\frac{dy}{di} = x + ay$

 $\frac{dz}{dt}=b+z(z-a)$

(c)

(f)

 $\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$

0 +1

(d)

Dynamics and Topology

A Chaotic Walk with Friends

Lorenz System

$$\frac{dx}{dt} = -\alpha x + \alpha y$$

$$\frac{dy}{dt} = Rx \cdot y \cdot xz$$

$$\frac{dz}{dt} = -bz + xy$$

$$\left(+i-1\right)$$

(b)

Dynamics and Topology

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background 01

Deep Background 02

Deep Background

Experiment 01

Experimenta

Poincaré Smiles at Us in R³

- Determine organization of UPOs \Rightarrow
- Determine branched manifold \Rightarrow
- Determine equivalence class of \mathcal{SA}

We Like to be Organized

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

)2

We Like to be Organized

A Chaotic Walk with Friends

Robert

Introduction

Introduction-

Deep Background-

01 -

Deep Background 02

Deep Background

Experimenta

Experimental

kperimental !

Usual Culprits: 3 & 4

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimental

The Topological Team

Hernan G. Solari (disguised as Cristal)

Gabriel B. Mindlin

Topological Analysis Program

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background-01

Deep Background-02

Deep Background

Experimenta 01

Experimental

Topological Analysis Program

- Locate Periodic Orbits
- Create an Embedding
- Determine Topological Invariants (LN)
- Identify a Branched Manifold
- Verify the Branched Manifold

Additional Steps

- Model the Dynamics
- Validate the Model

Usual Culprits: 5 & 6

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

The Topological Team

Nicholas B. Tufillaro

Mario A. Natiello

Locate UPOs

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background

Deep Backgroun

Experimenta

Experimenta

Experimenta

Method of Close Returns

Embeddings

A Chaotic Walk with Friends

Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimen

Experimenta

Embeddings (= Black Magic)

Many Methods: Time Delay, Differential, Hilbert Transforms, SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological[†]

None Good

We Demand a 3 Dimensional Embedding

Locate UPOs

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Backgroun 02

Deep Background 03

Experimenta 01

perimental

An Embedding and Periodic Orbits

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Lefranc - Cargese

Usual Culprits: 7

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction 02

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimental

Experimenta

An Embedding and Periodic Orbits

Determine Topological Invariants

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background 01

Deep Background 02

Deep Background

Experimenta 01

Experimental 02

--Experimental-

Linking Number of Orbit Pairs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Tabulate Topological Invariants

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background-01

Deep Background 02

Deep Background 03

Experimenta 01

Experimental-

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 8, extracted from Belousov–Zhabotinskii data^a

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8Ь
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
б	011 0M1	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8Ь	01 011 011	3	6	8	12	15	16	21	24	21

All indices are negative.

Compare Topological Invariants

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta 01

Experimental-

Compare w. LN From Various BM

Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynamics.

	19	1 f	21	3 <i>f</i>	39	41	4_2f	$4_{2}9$	5 ₃ f	539	5 ₂ f	529	5 ₁ f	518
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	2	1	1	1	1	2	2	2	2
01	0	1	1	2	2	3	2	2	2	2	3	3	4	4
001	0	1	2	2	3	4	3	3	3	3	4	4	5	5
011	0	1	2	3	2	4	3	3	3	3	5	5	5	5
0111	0	2	3	4	4	5	4	4	4	4	7	7	8	8
0001	0	1	2	3	3	4	3	4	4	4	5	5	5	5
0011	0	1	2	3	3	4	4	3	4	4	5	5	5	5
00001	0	1	2	3	3	4	4	4	4	5	5	5	5	5
00011	0	1	2	3	3	4	4	4	5	4	5	5	5	5
00111	0	2	3	4	5	7	5	5	5	5	6	7	8	9
00101	0	2	3	4	5	7	5	5	5	5	7	6	8	9
01101	0	2	4	3	5	8	5	5	5	5	8	8	8	10
01111	0	2	4	5	5	8	5	5	5	5	9	9	10	8

Propose Branched Manifold

A Chaotic Walk with Friends

Guess Branched Manifold

Figure 7. "Combing" the intertwined periodic orbits (left) reveals their systematic organization (right) created by the stretching and squeezing mechanisms.

Lefranc - Cargese

Comparison Step

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep

Experimenta

Experimenta

Identification & 'Confirmation'

- ullet \mathcal{BM} Identified by LN of small number of orbits
- Table of LN GROSSLY overdetermined
- Predict LN of additional orbits
- Rejection criterion (Fail to Reject H_0)

A Perestroika

A Chaotic Walk with Friends

What Do We Learn?

- BM Depends on Embedding
- Some things depend on embedding, some don't
- Depends on Embedding: Global Torsion, Parity, ...
- Independent of Embedding: Mechanism

A Perestroika

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction 02

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

Experimental

Experimental-

Evolution Under Parameter Change

Perestroikas of Strange Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimental

Evolution Under Parameter Change

Figure 11. Various templates observed in two laser experiments. Top left: schematic representation of the parameter space of forced nonlinear oscillators showing resonance tongues. Right: templates observed in the fiber laser experiment; global torsion increases systematically from one tongue to the next [40]. Bottom left: templates observed in the YAG laser experiment (only the branches are shown); there is a variation in the topological organization across one chaotic tongue [39, 41].

An Unexpected Benefit

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background

Experimental 01

Experimental

Analysis of Nonstationary Data

Figure 16. Top left: time series from an optical parametric oscillator showing a burst of irregular behavior. Bottom left: segment of the time series containing a periodic orbit of period 9. Right: embedding of the periodic orbit in a reconstructed phase space and representation of the braid realized by the orbit. The braid entropy is $h_T = 0.377$, showing that the underlying dynamics is chaotic. Reprinted from [61].

Lefranc - Cargese

A Prediction Realized

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimental

Experimental-02

TABLE 1 – Folding processes characteristic of the different species of templates treated in this work

Species	Horseshoe	Reverse horseshoe	Out-to-in spiral	In-to-out spiral	Staple	S
Code in Fig. 1			11111	Not found here	88888	
Insertion matrix	(0-1)	(1-0)	(0 2 1)	(1 2 0)	(0 2 1) or (1 2 0)	(2 1 0)
Sketch of the folding process				A. Marine III		

Modulation frequency normalized to the natural frequency

Our Hope \rightarrow Now a Result

A Chaotic Walk with Friends

Compare with Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Orbits Can be "Pruned"

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction-

Deep Background

Deep Background

Deep Backgroun

Experimenta

Experimenta

Experimental

There Are Some Missing Orbits

Shimizu-Morioka

Usual Culprits: 8

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background-01

Deep Background

Deep Background 03

Experimental 01

Experimental 02

Experimental-

There Are Some Missing Orbits

Francisco Papoff

Arimondo et al.

- The branched manifold remains unchanged,
- the spectrum of orbits on it changes.

Linking Numbers, Relative Rotation Rates, Braids

A Chaotic Walk with Friends

Topological Orbit Forcing

An Ongoing Problem

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimental

Experimental-

Experimental

Forcing Diagram - Horseshoe

u - SEQUENCE ORDER

An Ongoing Problem

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimenta

Experimenta

Status of Problem

- Horseshoe organization active
- More folding barely begun
- Circle forcing even less known
- Higher genus new ideas required

Usuasl Culprits: 9

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background

Deep Background

Deep Background

Experimental

Experimental

Groups and Strange Attractors

Christophe Letellier

Ask the Masters: 9

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background

Deep Background

Deep Background

Experimental

Experimental 02

Experimental

What is the relation between symmetry groups & strange attractors?

Elie Cartan

Universal Covering Group

A Chaotic Walk with Friends

Cartan's Theorem for Lie Groups

Modding Out a Rotation Symmetry

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background

Deep Background 02

Deep Background

Experimental-

Experimental 02

Modding Out a Rotation Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \rightarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Experimenta

Lorenz Attractor and Its Image

A Chaotic Walk with Friends

Robert Gilmore

Introduction-01

Introduction

Deep Background

Deep Background

Deep Background

Experiment

Experimental-

Evnerimental.

Lifting an Attractor: Cover-Image Relations

A Chaotic Walk with Friends

Creating a Cover with Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \leftarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Cover-Image Related Branched Manifolds

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experiment

Evperimental

Cover-Image Branched Manifolds

Covering Branched Manifolds

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background 02

Deep Backgrour

Experimenta 01

Experimental

Experimental

Two Two-fold Lifts Different Symmetry

Rotation Symmetry Inversion Symmetry

Topological Indices

A Chaotic Walk with Friends

Topological Index: Choose Group Choose Rotation Axis (Singular Set)

Locate the Singular Set wrt Image

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background 03

Experimenta

Experimental

Different Rotation Axes Produce
Different (Nonisotopic) Lifts

Nonisotopic Locally Diffeomorphic Lifts

A Chaotic Walk with Friends

Indices (0,1) and (1,1)

Two Two-fold Covers Same Symmetry

A Chaotic Walk with Friends

dilliore

01

Introduction

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

Experimental

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background 03

Experimenta 01

Experimental

Three-fold, Four-fold Covers

Two Inequivalent Lifts with V_4 Symmetry

A Chaotic Walk with Friends

Robert Gilmore

Introduction

Introduction

Deep Background-

Deep Background

Deep Background

Experimenta

Experimental

)2

Ask the Masters: 9

A Chaotic Walk with Friends

Robert Gilmore

Introduction-01

Introduction-

Deep Background-

Deep Background-

Deep Background

Experimenta

xperimenta

Elie Cartan

Universal Covering Group

A Chaotic Walk with Friends

Cartan's Theorem for Lie Groups

Universal Image Dynamical System

A Chaotic Walk with Friends

Locally Diffeomorphic Covers of D

D: Universal Image Dynamical System

Perestroikas of Branched Manifolds

A Chaotic Walk with Friends

Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

2

Constraints on Branched Manifolds

"Inflate" a strange attractor

Union of ϵ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

Ask the Masters: 10

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimenta 02

How do we characterize surfaces?

Leonard Euler Count holes: $\chi(\partial \mathcal{M})$

Torus and Genus

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

xperimenta

Experimental

Torus, Longitudes, Meridians

Usual Culprits: 10

A Chaotic Walk with Friends

What kind of "dressed tori" enclose strange attractors?

Tsyetelin D. Tsankov Markov Matrices and Symmetric Cycles

Flows on Surfaces

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background-02

Deep Background

Experimental 01

Experimental

Surface Singularities

Flow field: three eigenvalues: +, 0, -

Vector field "perpendicular" to surface

Eigenvalues on surface at fixed point: +, -

All singularities are regular saddles

$$\sum_{s.p.} (-1)^{\text{index}} = \chi(S) = 2 - 2g$$

fixed points on surface = index = 2g - 2

Flows in Vector Fields

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background

Experimenta

Experimental

Experimental-

Flow Near a Singularity

Some Bounding Tori

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep

Deep Background

Experiment

Experimenta 02

Torus Bounding Lorenz-like Flows

Canonical Forms

A Chaotic Walk with Friends

> Robert Gilmore

Introduction

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

Forestonesia

Twisting the Lorenz Attractor

Constraints Provided by Bounding Tori

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background

Experimenta

Experimental

02

Two possible branched manifolds in the torus with g=4.

Use in Physics

A Chaotic Walk with Friends

Bounding Tori contain all known Strange Attractors

Tab.1. All known strange attractors of dimension $d_L < 3$ are bounded by one of the standard dressed tori.

Strange Attractor	Dressed Torus	Period $g = 1$ Orbit
Rossler, Duffing, Burke and Shaw	A_1	1
Various Lasers, Gateau Roule	A_1	1
Neuron with Subthreshold Oscillations	A_1	1
Shaw-van der Pol	$A_1 \cup A_1^{(1)}$	1 U 1
Lorenz, Shimizu-Morioka, Rikitake	A_2	$(12)^2$
Multispiral attractors	A_n	$(12^{n-1})^2$
C_n Covers of Rossler	C_n	1 ⁿ
C ₂ Cover of Lorenz ^(a)	C_4	14
C ₂ Cover of Lorenz ^(b)	A_3	$(122)^2$
C_n Cover of Lorenz ^(a)	C_{2n}	1 ²ⁿ
C _n Cover of Lorenz ^(b)	P_{n+1}	$(1n)^n$
$2 \rightarrow 1$ Image of Fig. 8 Branched Manifold	A_3	$(122)^2$
Fig. 8 Branched Manifold	Ps	(14)4
(a) Rotation axis through origin.		

(b) Rotation axis through one focus.

Labeling Bounding Tori

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experiment 01

Experimenta

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks

Transition matrix sum of two g-1 \times g-1 matrices

One is cyclic g-1 \times g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory

Some Bounding Tori

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimenta 02

Bounding Tori of Low Genus

TABLE I: Bnumeration of canonical forms up to genus 9

Tann	1110		uncer perme n
	m		$n_1 n_2 \dots n_{g-1}$
1	1	(0)	1
3	2	(2)	11
4 5	3	(3)	111
	4	(4)	1111
5	3	(2,2)	1212
- 5	5	(5)	11111
6	4	(3,2)	12112
7	ô	(6)	111111
7	5	(4,2)	112121
7	5	(3,3)	112112
7	4	(2,2,2)	122122
7	4	(2,2,2)	131313
8	?	(7)	11111111
8	ô	(5,2)	1211112
8	ô	(4,3)	1211121
8	5	(3,2,2)	1212212
8	5	(3,2,2)	1 221 221
8	5	(3,2,2)	1313131
9	8	(8)	11111111
9	7	(6,2)	11111212
9	?	(5,3)	11112112
9	7	(4,4)	11121112
9	6	(4,2,2)	11122122
9	ð	(4,2,2)	11131313
9	ð	(4,2,2)	11212212
9	6	(4,2,2)	12121212
9	6	(3,3,2)	11212122
9	ð	(3,3,2)	11221122
9	ô	(3,3,2)	11221212
9	ô	(3,3,2)	11311313
9	5	(2,2,2,2)	12221222
9	5	(2,2,2,2)	12313132
0	Б,	(2 2 2 2)	14141414

Motivation

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

02

Background-

Deep Background

Deep Background

Experimenta

Experimental

Experimental

Some Genus-9 Bounding Tori

Aufbau Princip for Bounding Tori

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background 01

Deep Background 02

Deep Background

Experimental-01

Experimental

Any bounding torus can be built up from equal numbers of stretching and squeezing units

- Outputs to Inputs
- No Free Ends
- Colorless

Aufbau Princip for Bounding Tori

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background 02

Deep Background

Experimenta

Experimenta 02

Application: Lorenz Dynamics, g=3

Poincaré Section

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

02

Background-01

Deep Background 02

Deep Background

Experimenta

Experimental

Experimental-

Construction of Poincaré Section

P. S. = Union

Components = g-1

Exponential Growth

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background-01

Deep Background

Deep Background

Experimenta 01

Experimental

02

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

g	N(g)	g	N(g)	g	N(g)
3	1	9	15	15	2211
4	1	10	28	16	5549
5	2	11	67	17	14290
ð	2	12	145	18	3 6 824
7	5	13	3 6 8	19	96347
8	6	14	870	20	252927

Experimenta

Usual Culprits: 11

A Chaotic Walk with Friends

How quickly does the number of bounding tori increase with q?

Jacob Katriel Magician with permutation group cycles.

Exponential Growth

A Chaotic Walk with Friends

The Growth is Exponential The Entropy is log 3

Extrinsic Embedding of Bounding Tori

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background

Experimental 01

Experimental

Extrinsic Embedding of Intrinsic Tori

Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.

Ask the Masters: 11

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimental

Experimental 02

Experimental-

Could there be representation theory for strange attractors?

Eugene Wigner Of course.

There is a representation theory for everything!

Embeddings

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimental

Experimenta

Embeddings

An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension

Usual Culprits: 12

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta 01

Experimental

Is there a representation theory for strange attractors?

What is it? How does it work?

Daniel J. Cross Hard at work (pretending)!

Daniel J. Cross Instructing us.

Representation Labels

A Chaotic Walk with Friends

Gilmore

ontroduction

Introduction 02

Deep Background-01

Deep Background 02

Deep Background 03

Experimenta

Experimental 02

perimental

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

 $\begin{array}{ccc} \mathsf{Parity} & \mathsf{P} \\ \mathsf{Global\ Torsion} & \mathsf{N} \\ \mathsf{Knot\ Type} & \mathsf{KT} \end{array}$

$$\Gamma^{P,N,KT}(\mathcal{SA})$$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

Creating Isotopies

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background

Experimenta

Experimenta

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension (irreducible representations).

Are these obstructions removed by injections into higher dimensions (reducible representations)?

Systematically?

Creating Isotopies

A Chaotic Walk with Friends

Equivalences by Injection Obstructions to Isotopy

 R^3 R^4 R^5 Global Torsion Global Torsion **Parity** Knot Type

There is one *Universal* reducible representation in \mathbb{R}^N , $N \geq 5$. In \mathbb{R}^N the only topological invariant is mechanism.

Usual Culprits: 13 & 14

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-02

Deep Background-01

Deep Background

Deep Background

Experimental

Experimental

After fixed points — Organizing curves? What? How?

Tim Jones

Jean-Marc Ginoux

Creating New Attractors

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Background

Experimental

Experimental-

Experimental

Rotating the Attractor

$$\frac{d}{dt} \left[\begin{array}{c} X \\ Y \end{array} \right] = \left[\begin{array}{c} F_1(X,Y) \\ F_2(X,Y) \end{array} \right] + \left[\begin{array}{c} a_1 \sin(\omega_d t + \phi_1) \\ a_2 \sin(\omega_d t + \phi_2) \end{array} \right]$$

$$\begin{bmatrix} u(t) \\ v(t) \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t \\ \sin \Omega t & \cos \Omega t \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = R\mathbf{F}(R^{-1}\mathbf{u}) + R\mathbf{t} + \Omega \begin{bmatrix} -v \\ +u \end{bmatrix}$$

$$\Omega = n \, \omega_d$$

$$q \Omega = p \omega_d$$

Global Diffeomorphisms

Local Diffeomorphisms

Two Phase Spaces: R^3 and $D^2 \times S^1$

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

Experimental

Experimental

Rossler Attractor: Two Representations

$$D^2\times S^1$$

Other Diffeomorphic Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction-01

Introduction-

Deep Background-01

Deep Background 02

Deep Background

Experimental

Experimenta

Rossler Attractor:

Two More Representations with $n = \pm 1$

Subharmonic, Locally Diffeomorphic Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background-01

Deep Background 02

Deep Background 03

Experimenta

Experimenta

Rossler Attractor:

Two Two-Fold Covers with $p/q = \pm 1/2$

Subharmonic, Locally Diffeomorphic Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction-01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

Experimenta

Rossler Attractor:

Two Three-Fold Covers with p/q = -2/3, -1/3

Subharmonic, Locally Diffeomorphic Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction-01

Introduction-

Deep Background-01

Deep Background 02

Deep Background

Experimental

Experimental

Experimental-

Rossler Attractor:

And Even More Covers (with p/q = +1/3, +2/3)

New Measures

A Chaotic Walk with Friends

Angular Momentum and Energy

$$L(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} X dY - Y dX \qquad K(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{1}{2} (\dot{X}^2 + \dot{Y}^2) dt$$

$$L(\Omega) = \langle u\dot{v} - v\dot{u}\rangle \qquad K(\Omega) = \langle \frac{1}{2}(\dot{u}^2 + \dot{v}^2)\rangle$$

$$= L(0) + \Omega \langle R^2 \rangle$$

$$= K(0) + \Omega L(0) + \frac{1}{2} \Omega^2 \langle R^2 \rangle$$

$$\langle R^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (X^2 + Y^2) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (u^2 + v^2) dt$$

New Measures, Diffeomorphic Attractors

A Chaotic Walk with Friends

Robert Gilmore

O1

Introduction-02

Deep Background 01

Deep Background 02

Deep Background 03

Experimental

Experimenta

02

Energy and Angular Momentum

Diffeomorphic, Quantum Number n

New Measures, Subharmonic Covering Attractors

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

Experimenta

E. ... and ... and al

Energy and Angular Momentum Subharmonics, Quantum Numbers p/q

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta

xperimenta

Experimenta

Summary

1 Question Answered >

2 Questions Raised

We must be on the right track!

Our Hope

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background 01

Deep Background 02

Deep Background

Experimenta

Experimental

02

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

A Chaotic Walk with Friends

Gilmore

Introduction 01

Introductionno

Deep Background-01

Deep Background 02

Deep Background

Experimental

Experimenta 02

Result

There is now a classification theory for low-dimensional strange attractors.

- 1 It is topological
- 2 It has a hierarchy of 4 levels
- Secondaria Each is discrete
- 4 There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

A Chaotic Walk with Friends

Gilmore

01

02

Deep Background 01

Deep Background 02

Deep Background

Experimenta

kperimenta

02

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction 02

Deep Background

Deep Background

Deep Background

Experimenta

xperimenta

)2

The Classification Theory has
4 Levels of Structure

Basis Sets of Orbits

A Chaotic Walk with Friends

- Basis Sets of Orbits
- Branched Manifolds

A Chaotic Walk with Friends

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background 02

Deep Background

Experiment 01

Experimenta

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction-

Deep Background

Deep Background

Deep Rackground

03

Experimenta 01

Experimental

Evporimental

Topological Components

A Chaotic Walk with Friends

Robert Gilmore

Introduction 01

Introduction

Deep Background

Deep Background

Deep Background

Experimenta

Experimental

Poetic Organization

organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS

LINKS OF PERIODIC ORBITS

organize

Answered Questions

A Chaotic Walk with Friends

> Robert Gilmore

Introduction-01

Introduction-

Deep Background-01

Deep Background-02

Deep Background

Experimental-01

Experimental

Some Unexpected Results

- Perestroikas of orbits constrained by branched manifolds
- Routes to Chaos = Paths through orbit forcing diagram
- Perestroikas of branched manifolds constrained by bounding tori
- Global Poincaré section = union of g-1 disks
- Systematic methods for cover image relations
- Existence of topological indices (cover/image)
- Universal image dynamical systems
- NLD version of Cartan's Theorem for Lie Groups
- Topological Continuation Group Continuuation
- Cauchy-Riemann symmetries
- Quantizing Chaos
- Representation labels for inequivalent embeddings
- Representation Theory for Strange Attractors

Unanswered Questions

A Chaotic Walk with Friends

> Robert Gilmore

Introduction 01

Introduction-

Deep Background 01

Deep Background 02

Deep Background 03

Experimenta 01

Experimental

We hope to find:

- ullet Robust topological invariants for \mathbb{R}^N , N>3
- A Birman-Williams type theorem for higher dimensions
- An algorithm for irreducible embeddings
- Embeddings: better methods and tests
- Analog of χ^2 test for NLD
- Better forcing results: Smale horseshoe, $D^2 \to D^2$, $n \times D^2 \to n \times D^2$ (e.g., Lorenz), $D^N \to D^N$, N>2
- Representation theory: complete
- Singularity Theory: Branched manifolds, splitting points (0 dim.), branch lines (1 dim).
- Singularities as obstructions to isotopy

