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Science or Not?

Nomimear Fundamental Question

Dynamics to
BioMedicine

- If you believe there is no relation between cause and effect,
Gilmore go home now.

If you believe there is, you must work with

RN dynamical systems (Newtonian) equations.

These have the form:

d.m

= f(xs;¢
dt f( 2) k)
T Ck
State Variables Control Parameters
Chemical Concentrations Temperature

Potential Differences Magnetic Fields
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Starting Point
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Starting Point

Noiear Why They Are Our Heroes

Dynamics to
BioMedicine

Robert

Gilmore

@ Fourier: taught us how to use periodic orbits to describe
linear systems.

@ Poincaré: taught us to use periodic orbits to understand
nonlinear systems.
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N Definition of Chaos
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@ Deterministic
@ Bounded
© Recurrent

@ Sensitive to Initial Conditions

Chaos-01
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Nennear Production of Chaos
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Jobert Chaos (chaotic motion, any strange attractor) is generated by
the continuous repetition of two processes:

@ Stretching
@ Squeezing

Chaos-04
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Three Measures: Dynamical

Consequences of Stretching / Squeezing

@ “Stretching” causes nearby points to separate

@ Stretching grows exponentially with time (short times)
ox(t) ~ eMox(0)  A>0

© ) is a Lyapunov exponent
@ Almost all points move apart
© A measure zero set does not

@ Lyapunov exponents can be tricky to estimate
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Studying Chaos
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How to “Measure’” Chaos?

L = Long,

Method Measure Data
Rgmts.
Dynamical Lyapunov Exponents L, C, -
Geometrical Fractal Dimensions LL, CC, SS
Topological Linking Numbers M, M, S

= Clean, S = Stationary



Problems Estimating Lyapunov Exponents
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Problems Estimating Lyapunov Exponents

AT Lorenz Attractor, Comp. with Rosenstein et al.
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Problems Estimating Lyapunov Exponents
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Find the Right Linear Region
(x,y,z) embedding, beta =7.0
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< In(divergence) >
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Problems Estimating Lyapunov Exponents
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Problems Estimating Lyapunov Exponents
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Problems Estimating Lyapunov Exponents
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Problems Estimating Lyapunov Exponents

hom LLE: Slope from moving average window

Nonlinear

Dynamics to window half width = 25*k, k=1,2.3.4.5
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Problems Estimating Lyapunov Exponents

hom LLE slope from moving average window

Nonlinear
Dynamics to window half width = 100%k, k=1,2,34.5
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@ Recurrence causes “Squeezing”.

@ Squeezing causes nearby points to move closer
ox(t) ~ eMox(0)  A<0

© ) is another Lyapunov exponent.

@ Repetition of Squeezing builds up a flakey, milleffeuil like
structure

@ This is called a Fractal
@ The number of points |z — y| < € scales like N(¢) ~ P

@ Fractal dimensions (e.g., D) are also tricky to estimate.
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Mechanisms for Generating Chaos
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Problems Estimating Fractal Dimensions

o Correlation Integral, Fluid Experiment
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Intrinsic Variability of Geometric, Dynamical Estimates
(x.y.z) Projection, beta =4.0
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From Statistics of LLE and D_2
Mtz MR, beta = 4, 1001 samples, N=5000
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Strange Attractor

N Periodic Orbits
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A strange attractor is the ‘Q’ limit set
of the flow.

e There are unstable periodic orbits “in" the strange attractor.
e Many.

e They outline the strange attractor.

e They provide a skeleton for the strange attractor.

e They can be extracted from the attractor.

e Their organization can be determined (in R3).

e This analysis method applies in R? only, for now.
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UPOs Outline Strange attractors

Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10

Lefranc - Cargese
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Linking Numbers

Nonimer Linking Number of Two UPOs
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trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Table 7.2 Linking numbers for all the swmogate periodic orbits, to period 3, evtracted from
Eelon sov—Zh abotin skii data®

Orbit Symbolics 1 2 3 4 3 & 7 Ba Bb
1 1 0 1 1 2 2 2 3 4 3
2 01 1 1 2 3 4 4 b f i
3 011 1 2 2 4 5 & T 8 &
4 0111 2 3 4 5 8 & 11 13 12
5 01011 2 4 5 & 8 10 13 16 15
6 011 OM1 2 4 & & 10 a 14 16 16
7 01ololl 3 & 7 11 13 14 14 21 21
8a 01010111 4 6 8 13 16 16 21 23 24
8h 01011 011 3 6 8 12 15 16 21 24 21

24l indices ar Degative.
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Motion of Blobs in Phase Space (Poincaré)
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Collapse Along the Stable Manifold
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Fundamental Theorem
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If:

Then:



Fundamental Theorem
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If: Certain Assumptions

Then:



Fundamental Theorem
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If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem
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A flow @,(2)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

From

Nrinea Conclusions, B-W Theorem
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Robert
Sitrwere e The projection maps the strange attractor SA onto a

2-dimensional branched manifold BM and the flow ®;(x) on
SA to a semiflow ®(z); on BM.

e UPOs of ®;(x) on SA are in 1-1 correspondence with UPOs
of ®(x); on BM. Moreover, every link of UPOs of (®;(z),S.A)
is isotopic to the correspond link of UPOs of (®(x);, BM).

Remark: “One of the few theorems useful to experimentalists.”
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A Mechanism with Symmetry
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Examples of Branched Manifolds

Inequivalent Branched Manifolds

(a)




Aufbau Princip for Branched Manifolds
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Dynamics and Topology
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Dynamics and Topology
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4



Determinism
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+—= Logistic Map
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Iterate



Some Prediction Results
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Topological Analysis Program

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Model the Dynamics
Validate the Model



Locate UPOs
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Locate

it Method of Close Returns
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Embeddings

et Embeddings
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This is a tricky business. There are many problems ...

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding
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Figure 5. Lefi: a chaotic attractor reconstructed from a time series from a chaotic laser : Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Determine Topological Invariants

Nonimer Linking Number of Orbit Pairs

Dynamics to
BioMedicine

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Determine Topological Invariants
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Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted fiom
Eelom sov—Zhabotin skii data®

Orbit Symbolics 1 2 3 4 5 a 7 Ba Bh
1 1 ] 1 1 2 2 2 3 4 3
2 o1 1 1 2 3 4 4 7] g ]
3 011 1 2 2 4 ] i T ] 5
4 oi11 2 3 4 ) ] 5 11 13 12
5 01011 2 4 5 & ] 1a 13 16 15
] 011 0na1 2 4 i ] 10 a 14 16 15
7 0101011 3 7] T 11 13 14 18 21 21
Ha 01010111 4 ] i 13 16 18 21 23 24
ik 01011 011 3 ] i 12 15 18 21 24 21

24l indices am negative.
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Determine Topological Invariants

Guess Branched Manifold
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Determine Topological Invariants
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s Identification & ‘Confirmation’
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o BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion



Determine Topological Invariants

N What Do We Learn?

Dynamics to
B'T’T':'"e e BM Depends on Embedding

Gilmore e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}
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Evolution Under Parameter Change

m {modulation amplitude) FIBER LASER

-
TN

YAG LASER

Figure 11. Varous templates observed in two laser experiments. Top left:
pammeter space of forced nonlinear oscillators showing resomunce tongu; it templates observed in the
fiber laser experiment: global torsion inc systematically from one to to the next [40]. Bottom left:
templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the
topological organization across one chaotic wngue (39,41

schematic representation of the

Lefranc - Cargese



Perestroikas of Strange Attractors
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X, (arb, units)

X, (arb. units)

X, (arb. units)

Lefranc - Cargese



From
Nonlinear
Dynamics to
BioMedicine

Robert

Gilmore

An Unexpected Benefit

Analysis of Nonstationary Data

(a) k)
k-
]
3
E
¥ Fm
4 =
E azpiy 1
= =

as

£
W) G i

Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment af the time series containing a periodic orbit of penod 9. Right: embedding of the penodic
arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Last Steps

Nomimes Model the Dynamics
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A hodgepodge of methods exist: # Methods ~ # Physicists

Validate the Model

Needed: Nonlinear analog of y? test. OPPORTUNITY:
Tests that depend on entrainment/synchronization.
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Our Hope — Now a Result
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Compare with
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Original Objectives
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.




Experimental Schematic
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Experimental Motivation
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Some Attractors
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Time Series Data

o Note the Spikiness
ynamics to
BioMedicine

Robert

Gilmore

[o,]
T

s (arb.units)

w
I

I SRR LLJ

1 1 1
36 72 108 t (periods)



Time Series Data

A Short Part of the Time Series

dicine

vk T w i *\« I H”“‘M

|7ﬂ_‘\‘|
SN H B
1y ‘.f:. U

18700

o
I
: { H U —I L- L.‘




Real Data

Nowiner Experimental Data: LSA
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Mechanism

Stretching & Squeezing in a Torus




Time Evolution
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Time Evolution

o Rotating the Poincaré Section
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around the axis of the torus
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Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.
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Belousov-Zhabotinskii Experimental Configuration
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Embeddings
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Embeddings
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Nonstationary!
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Orbits to Organization
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Find a Poincaré Section

Construct a First Return Map on the Section
Introduce a Symbolic Encoding

Encode all Unstable Periodic Orbits

Find their Linking Numbers
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Embedded Periodic Orbits
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Some Extracted and Reconstructed Periodic Orbits

Orbit Name Symbolics Local Torsion Self-Linking
1 1 1 1 0
2 2 01 1 1
3 3 011 2 2
4 4 0111 3 5
5 51 01 011 3 8
6 62 011 OM1 3 9
7 72 (01)%011 4 16
8a 81 (01)%0111 5 23
8b 83 01(011)2 5 21
9 93 (01)3011 5 28
10a 10 (011)20101 6 33
10b  10g (011)%0111 7 33
11 119 01(011)3 7 40
13a (01)2011 01 0111 8 62
12k 013011 0111 Q A0
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Table of Experimental Linking Numbers

Symbolics 1 2 3 4 5 6 7 8a 8b
1 1 0 1 1 2 2 2 3 4 3
2 01 112 3 4 4 5 6 6
3 o011 1 2 2 4 5 6 7 8 8
4 o111 2 3 4 ) 8 8 11 13 12
5 ororr 2 4 5 8 8 10 13 16 15
6 0110M1 2 4 6 8 10 9 14 16 16
7 orortorr 3 5 7 11 13 14 16 21 21
8a 01010111 4 6 8 13 16 16 21 23 24
8b 01011011 3 6 8 12 15 16 21 24 21

2All indices are negative.



Testing the Result

(a), (c) ¥ compared with y¢. (b), (d) y5* compared with y9.
R
I

¢ / p /



Bifurcation Diagram

s Is This Chaotic or Not?
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Reducing Dimension

From

Nonlinear Correlations Imply Fewer Independent Variables
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Phase Space Projections

g8 Two Different Planar Projections

|||||
BioMedicine

ya-ys Plane Ua-ys Plane



First Return Map
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min ya{i)

N y3(i-17

12° C 13.5° C 16.6° C



Scroll Templates
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Periodic Orbits




Creating the Branched Manifold

(b) Relax (c) Rejoin



Simple Two-Parameter Model
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¢ = Drift A = Stretch (Lyapunov Exp)




The Setup

From

Nonlinear @ Suppose you want real-time data from a certain subject.
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BioMedicine @ And the subject is:




The Setup

From

Nonlinear @ Suppose you want real-time data from a certain subject.

Dynamics to

BioMedicine @ And the subject is:

Robert CALVIN

Gilmore




Brain Rampant
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GRITTINGS. M4 NAT 15
 KARLFIN. HEERYOR LUNGOKE,
TAY ASKODL.
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Dad’s of the World — Watch Out !

From
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Motivation-01

Motivation-02

ATREFID EXPIORER SPACEMAN SPIFT LODS | SPIFF SETS OOT IN
Contents B UNCHARTED PLANET. WHAT STRANGE ERICH OF SEMTENT
- HDERS WILL WE DISTOVER WERE ?

Nonlinear-01

Nonlinear-02

Nonlinear-03

Nonlinear-04

Nonlinear-05

Chaos-01

Chaos-02

Chaos-03

Chaos-04

Chaos-05



Advance in Technology

From

Sl A normal implant would provide one time series.

ynamics to . . . _

BioMedicine This guy has a behavioral time scale approx. 107! sec.
Robert Use an electrode array implant to record lots of time series

simultaneously.




Record from Lots of Spots

N Now Calvin is Wired
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Highly Effervescent Time Series

From
Nonlinear
Dynamics to
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Gilmore

a: PB & J Sandwich e: Drives Spaceship

b: Skool f: Speaks with Martian
c: Toboggan on Hobbes g: A GIRL !

d: Dad Explains Something



Underlying Assumption

Nomimes Biological Algorithm
Dynamics to
BioMedicine

Robert

Gilmore

Use the Ergodic Theorem (Hypothesis, Guess, Hope,
Desperation Wish) to assume lots of short snippets from the
10%5%0-5 electrodes can be reconstructed into a single long
times series, one for each behavioral mode.

The reconstruction can be carried out via a “biological
algorithm”.



Biological Algorithm for Data Annealing

From . . .
Nonlinear @ Time-tag time series from each electrode
Dynamics to
BioMedicine

@ Cut out short snippets w. same time-tag from each
Cioore electrode record

@ Use DNA type comparison to join them

.GACTC TAGC
ATCG TATT..

@ Study each longer time series to determine behavior
fingerprint



Biological Algorithm for Data Annealing

From

v Interpolating Connection Between Snippets

Dynamics to
BioMedicine

Robert

Gilmore




Reconstruction

o Rossler Attractor
ynamlz_:s_to
B'OFYTd'C'"e This period-7 orbit was reconstructed from 4 short snippets.

Gilmore




Reconstruction

N Rossler Attractor

Dynamics to
BioMedicine

N Return maps for the original attractor and the attractor
obert
Gilmore reconstructed from many short snippets.
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Reconstruction

From
ot Lorenz Attractor
ynamics to
B'OFMTd'C'"e Return maps for the original attractor and the attractor
obert

Gilmore reconstructed from many short snippets.
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Orbits Can be “Pruned”

Wi There Are Some Missing Orbits

Dynamics to
BioMedicine

Lorenz Shimizu-Morioka



Linking Numbers, Relative Rotation Rates, Braids

Orbit Forcing
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An Ongoing Problem

o Forcing Diagram - Horseshoe
ynamics to
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An Ongoing Problem

s Status of Problem

Dynamics to
BioMedicine

Robert

Gilmore

Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required



Perestroikas of Branched Manifolds

i Constraints on Branched Manifolds

Nonlinear
Dynamics to
BioMedicine

Robert

Gilmore

“Inflate” a strange attractor
Union of ¢ ball around each point
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor



Torus and Genus

From

Norlinear Torus, Longitudes, Meridians
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Flows on Surfaces

o Surface Singularities
ynamics to
BioMedicine

Robert

Gilmore

Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2



Flows in Vector Fields

ot Flow Near a Singularity



Some Bounding Tori

Torus Bounding Lorenz-like Flows




Canonical Forms

From

Nonimer Twisting the Lorenz Attractor
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(a)

(b) o



Constraints Provided by Bounding Tori

From

i Two possible branched manifolds
in the torus with g—4.

BioMedicine

Robert
Gilmore




Use in Physics

From

il DBounding Tori contain all known
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o Strange Attractors

Gilmore

Tab.1. All known strange attractors of dimension dz < 3 are bounded by one of the standard drezsed tor.

Stronge Atkroctor Direseed Torma | Pericd g — 1 Orhit
Foesler, Duffing, Burke and Shom Ar 1
Vorious Lazers, Gatesnn Foule Ar 1
MNeuron with Subthreshold Osdllations A 1
Shase-wan der Pal Agu A 1u1
Lerens, Shirnizu- Moricka, Rildtske As {12y
Multispiral sktractors An {12yl
Co Clovers of Feesler i 1

Cz Clover of Larenz '™ [+ 1#

{3 Caver of Lerenz™ Az (122)%
Cn Clover of Lorenzi®! Con 1%
Cn Cover of Larenz® Pt {1m)"

2 — 1 Image of Fig. & Branched BManifold Ay {122)®
Fig. & Branched Manifcld Py (14

87 Fiotakion asds through crigin
) Retation axi= through one facue




Labeling Bounding Tori

From

Nomines Labeling Bounding Tori

Dynamics to
BioMedicine

Robert

Gilmore

Poincaré section is disjoint union of g-1 disks
Transition matrix sum of two g-1 x g-1 matrices
One is cyclic g-1 x g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory



Some Bounding Tori

From

Norlinear Bounding Tori of Low Genus

Dynamics to

BioMedicine
Robert TABLE I Brumerakion of canonical dorms up ko gemus 8
Gilmore {](% £n)

52 (2 11

a5 5 TIT

54 (@ I

53 (22) 1212

55 0 T
84 (39 12112
78 G TITHT
5 (43 1213
75 (33) 12m3
4 (323 12213
ta (223 11
T M T
5o (02 1212
o (43 12
55 (323  1mam
a5 (322  1mo
85 (329  1mum
CER) T
o7 (53 1z
97 (33 11212
97 (49 1112112
98 (422 11122122
96 (422 11131315
96 (422 11212212
96 (422 12121212
56 (332 11m2122
56 (332 1120122
56 (332 11221212
08 (339 1131313
25 (2.2,2,2) 12221222
25 (2.2.2,2) 12313132
25 (2.2,2,2) 14141414



Motivation

Some Genus-9 Bounding Tori




Labels for Bounding Tori

From

Nonlinear Each is described by a Transition Matrix. This is the sum of a

Dynamics to

CEVEINN  general cyclic rotation and another Permutation Group
Robert Element. For second case, previous:

Gilmore

11000000
00100001
00011000
00011000
00000 1 1 0] =(12345678)+(1)(28)(357)(4)(6)
00000T1T10
00100001
(1100000 0




Aufbau Princip for Bounding Tori

From

i Any bounding torus can be built up
}/namlz_:s_ (o]

e from equal numbers of stretching and
squeezing units

¢ Outputs to Inputs
e No Free Ends
e Colorless



Aufbau Princip for Bounding Tori

Application: Lorenz Dynamics, g=3
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Poincaré Section

From

Nonlinear Construction of Poincaré Section
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P. S. = Union .

# Components = g-1



Exponential Growth

From

Nomiear The Growth is Exponential

Dynamics to
BioMedicine

TABLE I Mumber of canonical bounding tori as a fune-
bion of genus, 4.

Nigl g Ng) ¢ Nig
1 o 15 15 2211
1 10 28 14 ER4D
2 11 &7 17 14200
2 12 145 18 56524
o]
i)

15 588 19 B6547
14 8v0 20 252027
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Exponential Growth

From

Nomiear The Growth is Exponential

Dynamics to
BioMedicine

b The Entropy is log 3

Bounding Torus Entropy
Log[N(g)l(g-1)

Log[N(g)Jig-1)

gl



Extrinsic Embedding of Bounding Tori

From

Nonlinear Extrinsic Embedding of Intrinsic Tori

Dynamics to
BioMedicine

Robert

Gilmore

Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.
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