August 12, 2012
Chapter Abstract

This journey began with a request to “help me explain my data.”

It introduced a third tool for the analysis of chaotic data: geometric, dynamical, topological.

When applicable \((d = 3)\) it provides information about mechanism, is robust against noise, and carries its own rejection criterion.

It has stimulated an exchange of information between mathematicians and physicists.

It has opened many doors and has pointed to new directions in which to search.
Summary

1 Question Answered ⇒
2 Questions Raised

We must be on the right track!
Our Hope

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.
Result

There is now a classification theory for low-dimensional strange attractors.

1. It is topological
2. It has a hierarchy of 4 levels
3. Each is discrete
4. There is rigidity and degrees of freedom
5. It is applicable to R^3 only — for now
The Classification Theory has 4 Levels of Structure
The Classification Theory has 4 Levels of Structure

1. Basis Sets of Orbits
The Classification Theory has 4 Levels of Structure

1. Basis Sets of Orbits
2. Branched Manifolds
The Classification Theory has 4 Levels of Structure

1. Basis Sets of Orbits
2. Branched Manifolds
3. Bounding Tori
Four Levels of Structure

The Classification Theory has 4 Levels of Structure

1. Basis Sets of Orbits
2. Branched Manifolds
3. Bounding Tori
4. Extrinsic Embeddings
Four Levels of Structure
Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS organize
BOUNDING TORI organize
BRANCHED MANIFOLDS organize
LINKS OF PERIODIC ORBITS
There is a Representation Theory for Strange Attractors

There is a complete set of representation labels for strange attractors of any genus g.

The labels are complete and discrete.

Representations can become equivalent when immersed in higher dimension.

All representations (embeddings) of a 3-dimensional strange attractor become isotopic (equivalent) in R^5.

The *Universal Representation* of an attractor in R^5 identifies mechanism. No embedding artifacts are left.

The topological index in R^5 that identifies mechanism remains to be discovered.
Some Unexpected Results

- Perestroikas of orbits constrained by branched manifolds
- Routes to Chaos = Paths through orbit forcing diagram
- Perestroikas of branched manifolds constrained by bounding tori
- Global Poincaré section = union of $g - 1$ disks
- Systematic methods for cover - image relations
- Existence of topological indices (cover/image)
- Universal image dynamical systems
- NLD version of Cartan’s Theorem for Lie Groups
- Topological Continuation – Group Continuation
- Cauchy-Riemann symmetries
- Quantizing Chaos
Unanswered Questions

We hope to find:

- Robust topological invariants for \mathbb{R}^N, $N > 3$
- A Birman-Williams type theorem for higher dimensions
- An algorithm for irreducible embeddings
- Embeddings: better methods and tests
- Analog of χ^2 test for NLD
- Better forcing results: Smale horseshoe, $D^2 \to D^2$, $n \times D^2 \to n \times D^2$ (e.g., Lorenz), $D^N \to D^N$, $N > 2$
- Representation theory: complete
- Singularity Theory: Branched manifolds, splitting points (0 dim.), branch lines (1 dim).
- Singularities as obstructions to isotopy
Thanks

To my colleagues and friends:

Jorge Tredicce
Hernan G. Solari
Nick Tufillaro
Francesco Papoff
Marc Lefranc
Tsvetelin D. Tsankov
Daniel Cross

Elia Eschenazi
Gabriel B. Mindlin
Mario Natiello
Ricardo Lopez-Ruiz
Christophe Letellier
Jacob Katriel
Tim Jones

Thanks also to:

NSF PHY 8843235
NSF PHY 9987468
NSF PHY 0754081