Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

August 12, 2012

イロト 不得 トイヨト イヨト

э.

Chapter Abstract

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Periodic orbits exist in abundance in a strange attractor.

The problems are: to find them, to determine how they are organized among themselves.

Whatever mechanism exists to create the strange attractor, it simultaneously organizes all the unstable periodic orbits in the attractor in a unique way.

We can classify *mechanisms* by sets of *integers*.

There is an Aufbau Principal for building up strange attractors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chaos

Chaos

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Motion that is

• Deterministic:

$$\frac{dx}{dt} = f(x)$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Recurrent
- Non Periodic
- Sensitive to Initial Conditions

Strange Attractor

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology o Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへの

Topology of

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Chapter Summary-03

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-03

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Skeletons

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology o Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

UPOs Outline Strange Attractors

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Lefranc - Cargese

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-02

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology o Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Organization of UPOs in R³: Gauss Linking Number

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology o Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Linking Number of Two UPOs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Mechanisms for Generating Chaos

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology o Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Stretching and Folding

20

Mechanisms for Generating Chaos

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motion of Blobs in Phase Space

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Stretching — Squeezing

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Birman - Williams Projection

Collapse Along the Stable Manifold

Identify x and y if

 $\lim_{t\to\infty}|x(t)-y(t)|\to 0$

FLOW ----

Fundamental Theorem

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology of Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology o Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Birman - Williams Theorem

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Then:

Tf:

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology of Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology o Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Birman - Williams Theorem

Certain Assumptions

Then:

Tf:

(ロ)、

Fundamental Theorem

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Tf:

Topology of Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology o Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Birman - Williams Theorem

Certain Assumptions

Then:

Eundamental Theorem

Specific Conclusions

Birman-Williams Theorem

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

• on \mathbb{R}^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0, \qquad \lambda_1 + \lambda_2 + \lambda_3 < 0$

• Generates a <u>hyperbolic</u> strange attractor \mathcal{SA}

IMPORTANT: The underlined assumptions can be relaxed.

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Conclusions, B-W Theorem

• The projection maps the strange attractor SA onto a 2-dimensional branched manifold \mathcal{BM} and the flow $\Phi_t(x)$ on SA to a semiflow $\overline{\Phi}(x)_t$ on \mathcal{BM} .

• UPOs of $\Phi_t(x)$ on SA are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on BM. Moreover, every link of UPOs of $(\Phi_t(x), SA)$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, BM)$.

Remark: "One of the few theorems useful to experimentalists."

A Very Common Mechanism

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Attractor Branched Manifold

Rössler:

・ロト・日本・日本・日本・日本・日本・日本

A Mechanism with Symmetry

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Lorenz: Attractor Branched Manifold

Examples of Branched Manifolds

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Inequivalent Branched Manifolds

◆□> ◆□> ◆三> ◆三> ・三 のへの

Ghrist Universal Template

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-0

Topology o Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology o Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Template Holding All Knot Types

Aufbau Princip for Branched Manifolds

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology o Orbits-01

Topology of Orbits-02

Topology o Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Any branched manifold can be built up from stretching and squeezing units

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

subject to the conditions:

- Outputs to Inputs
- No Free Ends

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Rossler System

(d)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ● ●

[+:-1]

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Lorenz System

Alice in Stretch & SqueezeLand: 4 Topology of Orbits

Chapter Summary-01

Topology of Orbits-01

Topology of Orbits-02

Topology of Orbits-03a

Topology of Orbits-03a1

Topology of Orbits-03a2

Topology of Orbits-03a1-8

Topology of Orbits-03b

Topology of

Poincaré Smiles at Us in R³

- \bullet Determine organization of UPOs \Rightarrow
- \bullet Determine branched manifold \Rightarrow
- \bullet Determine equivalence class of \mathcal{SA}