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Chapter Abstract
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pYsseell  Periodic orbits exist in abundance in a strange attractor.

Chapter The problems are: to find them, to determine how they are
Summan-oL organized among themselves.

Whatever mechanism exists to create the strange attractor, it
simultaneously organizes all the unstable periodic orbits in the
attractor in a unique way.

We can classify mechanisms by sets of integers.

There is an Aufbau Principal for building up strange attractors.
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Chaos

Motion that is

e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor
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The Q limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

Topology of
Orbits-02 ° “Abundant"

e Outline the Strange Attractor

e Are the Skeleton of the Strange Attractor



UPOs: Skeletons of Strange Attractors




UPOs: Skeletons of Strange Attractors
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UPOs: Skeletons of Strange Attractors
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Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Dynamics and Topology
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Gauss Linking Number

N(A, B) j{j{ rq —rp)-dryxdrp
T 4r rqa —rpl3

# Interpretations of LN ~ # Mathematicians in World

Topology of
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trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Mechanisms for Generating Chaos
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Mechanisms for Generating Chaos
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Motion of Blobs in Phase Space
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Collapse Along the Stable Manifold
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Identify x and y if

Jim [a(t) — y(t)] 0
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Fundamental Theorem
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If:

Then:



Fundamental Theorem

Ss’?,';iiﬁ"&d Birman - Williams Theorem
queezeland:
4 Topology

of Orbits

If: Certain Assumptions

Then:



Fundamental Theorem

Ss’?,';iiﬁ"&d Birman - Williams Theorem
queezeland:
4 Topology

of Orbits

If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem
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A flow @,(2)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,A3 <0, AMFA+A3<0

o Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.
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e The projection maps the strange attractor SA onto a
2-dimensional branched manifold BM and the flow ®;(x) on
SA to a semiflow ®(z); on BM.

e UPOs of ®4(z) on SA are in 1-1 correspondence with UPOs
of ®(x); on BM. Moreover, every link of UPOs of (®;(z),S.A)
is isotopic to the correspond link of UPOs of (®(x);, BM).

Remark: “One of the few theorems useful to experimentalists.”
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A Mechanism with Symmetry
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Examples of Branched Manifolds

Inequivalent Branched Manifolds

(a)




Ghrist Universal Template




Aufbau Princip for Branched Manifolds
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e QOutputs to Inputs
e No Free Ends
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(a) Rdssler Equations
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Dynamics and Topology
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4
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