Alice in Stretch & SqueezeLand
The Marvels of Topology and Chaos

Robert Gilmore

Physics Department
Drexel University
Philadelphia, PA 19104
robert.gilmore@drexel.edu

Ecole d’ete Nonlinear Dynamics in Peyresq
Peyresq, 23-30 août 2012

August 12, 2012
Abstract

Suppose you have data from a physical system that is behaving chaotically. What do you do? How do you analyze these data? What should you look for? What is the mechanism that generates chaos?

For a large class of systems an algorithm now exists for addressing each of these questions successively and successfully. We will go through the steps of this algorithm, showing how each works using experimental data and pointing out the connection with topology. In the process we will develop a classification scheme for strange attractors.
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
J. R. Tredicce

Can you explain my data?

I dare you to explain my data!
Motivation

Where is Tredicce coming from?

Feigenbaum:
\[
\alpha = 4.6692016091 \ldots.
\]
\[
\delta = -2.5029078750 \ldots.
\]
Laser with Modulated Losses
Experimental Arrangement
Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.
Our Result

Result

There is now a classification theory.

1. It is topological
2. It has a hierarchy of 4 levels
3. Each is discrete
4. There is rigidity and degrees of freedom
5. It is applicable to \mathbb{R}^3 only — for now
Topology Enters the Picture

The 4 Levels of Structure

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings
New Mathematics

What Have We Learned?

1. Cover and Image Relations
2. Continuations: Analytical, Topological, Group
3. Cauchy Riemann & Clebsch-Gordonnery for Dynamical Systems
4. “Quantizing Chaos”
5. Representation Theory for Dynamical Systems

What Do We Need to Learn?

1. Higher Dimensions
2. Invariants
3. Mechanisms