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Abstract
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Suppose you have data from a physical system that is behaving
Girmere chaotically. What do you do? How do you analyze these data?
e ogucrion. What should you look for? What is the mechanism that
01 generates chaos?

For a large class of systems an algorithm now exists for
addressing each of these questions successively and successfully.
We will go through the steps of this algorithm, showing how
each works using experimental data and pointing out the
connection with topology. In the process we will develop a
classification scheme for strange attractors.
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Our Hope

Alice in

Original Objectives

Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore

Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.
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Our Result
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@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R? only — for now
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¢ Basis Sets of Orbits
e Branched Manifolds
e Bounding Tori

e Extrinsic Embeddings
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Continuations: Analytical, Topological, Group

Cauchy Riemann & Clebsch-Gordonnery for Dynamical
Systems

“Quantizing Chaos”
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Representation Theory for Dynamical Systems

What Do We Need to Learn?

Higher Dimensions
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Some Attractors
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Mechanism
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Time Evolution

Rotating the Poincaré Section
around the axis of the torus

|

Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.

Lefranc - Cargese



Another Visualization

Alice in o
e & Cutting Open a Torus
Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore




Satisfying Boundary Conditions
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Experimental Schematic
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The Lasers in Zaragosa
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TABLE 1 - Folding processes characteristic of the different species of templates

treated in this work
of Topology
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m=0.73

7 1/6 1/5 1/4 173

172 1
Modulation frequency normalized to the natural frequency



Used and Martin, Phys. Rev. E 82, 016218 (2010)
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off Tty corresponding to pump modulation ﬁ'eﬂ;e?rl;y f=4.25 KHz and modulation index
and Chaos =t

0 10 3a 100 1000 | 10010 6a 1001010

0 0
10 9 9
3a 14 28 28

100 14 28 42 28

1000 18 | 37 56 56 55

10010 23 * 70 * 92 92
6a 28 56 * * 12 * 139

1001010 32 * 98 * 119 * * 194
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Nonstationary!
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Orbits to Organization

Alice in
Stretch &
Squeezeland
The Marvels
of Topology

ond Chaos Once you have an embedding:

Robert

Gilmore

Find a Poincaré Section

Construct a First Return Map on the Section
Introduce a Symbolic Encoding

Encode all Unstable Periodic Orbits

Find their Linking Numbers
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Embedded Periodic Orbits
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Some Extracted and Reconstructed Periodic Orbits

Alice in

psichi® Orbit Name Symbolics Local Torsion Self-Linking

Squeezeland

of Topology 1 L 1 1 0
and Chaos 2 21 01 1 1
Gimere 3 31 011 2 2
4 4 0111 3 5

5 51 01 011 3 8

6 62 011 OM1 3 9

7 72 (01)%011 4 16

8a 81 (01)%0111 5 23

8b 83 01(011)2 5 21

9 93 (01)3011 5 28

10a 10 (011)20101 6 33

10b  10g (011)%0111 7 33

11 119 01(011)3 7 40

13a (01)2011 01 0111 8 62

12k 013011 0111 Q A0



Table of Experimental Linking Numbers

Alice in
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S i Symbolics 1 2 3 4 5 6 7 8a 8b
of Topoiogy SR 1011 2 2 2 3 4 3
- 2 01 112 3 4 4 5 6 6
Glimere 3 o011 1 2 2 4 5 6 7 8 8
4 o111 2 3 4 ) 8 8 11 13 12

5 ororr 2 4 5 8 8 10 13 16 15

6 0110M1 2 4 6 8 10 9 14 16 16

7 orortorr 3 5 7 11 13 14 16 21 21

8a 01010111 4 6 8 13 16 16 21 23 24

8b gro11o011 3 6 8 12 15 16 21 24 21

2All indices are negative.




Testing the Result

(a), (c) ¥ compared with y¢. (b), (d) y5* compared with y9.
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e J
e Deterministic: dr — f(z)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor
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S The 0 limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange Attractor



UPOs: Skeletons of Strange Attractors




UPOs: Skeletons of Strange Attractors
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UPOs: Skeletons of Strange Attractors
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UPOs Outline Strange Attractors

Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Dynamics and Topology
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# Interpretations of LN ~ # Mathematicians in World
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Linking Numbers

Linking Number of Two UPOs

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Mechanisms for Generating Chaos

Alice in . .
Steha Stretching and Folding
The Marvel
of Topology

and Chaos

{d)

boundary
layer

squeeze "eich —

{b)




Mechanisms for Generating Chaos
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Motion of Blobs in Phase Space
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Collapse Along the Stable Manifold

Birman - Williams Projection
Identify x and y if

Jim [a(t) — y(t)] 0
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St Birman - Williams Theorem

Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore

If:

Then:
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If: Certain Assumptions

Then:
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Birman-Williams Theorem

St Assumptions, B-W Theorem
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eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

o Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

Alice in

St & Conclusions, B-W Theorem

Squeezeland
The Marvels
of Topology
and Chaos

S e The projection maps the strange attractor S.A onto a
ClieE 2-dimensional branched manifold BM and the flow ®;(x) on
SA to a semiflow ®(z); on BM.

e UPOs of ®4(z) on SA are in 1-1 correspondence with UPOs
of ®(x); on BM. Moreover, every link of UPOs of (®;(z),S.A)
is isotopic to the correspond link of UPOs of (®(x);, BM).

Remark: “One of the few theorems useful to experimentalists.”
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A Mechanism with Symmetry
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Examples of Branched Manifolds

Inequivalent Branched Manifolds

(a)




Aufbau Princip for Branched Manifolds
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e QOutputs to Inputs
e No Free Ends
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Dynamics and Topology
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Dynamics and Topology

Alice in
Strecn & Lorenz System
Squeezeland
The Marvels
of Topology

and Chaos

Robert ] Lortenz Equatiens

Gilmore ax
—_—= X+
dr v
dy
— = Ax-y-xz
3 Y
dz
= = - bz + x
dt i

7}

r b}
1o
roood




Dynamics and Topology
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4
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We Like to be Organized
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Topological Analysis Program
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Locate Periodic Orbits
Create an Embedding
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Determine Topological Invariants (LN)
Identify a Branched Manifold
Verify the Branched Manifold

Model the Dynamics
Validate the Model
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Embeddings

Embeddings

This is a tricky business. There are many problems ...

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding
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Figure 5. Lefi: a chaotic attractor reconstructed from a time series from a chaotic laser : Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Determine Topological Invariants

Linking Number of Orbit Pairs

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Determine Topological Invariants

Alice in
Steha Compute Table of Expt’l LN
o
of Topology
and Chaos

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted fiom
Eelom sov—Zhabotin skii data®

Orbit Symbolics 1 2 3 4 5 a 7 Ba Bh
1 1 ] 1 1 2 2 2 3 4 3
2 o1 1 1 2 3 4 4 7] g ]
3 011 1 2 2 4 ] i T ] 5
4 oi11 2 3 4 ) ] 5 11 13 12
5 01011 2 4 5 & ] 1a 13 16 15
] 011 0na1 2 4 i ] 10 a 14 16 15
7 0101011 3 7] T 11 13 14 18 21 21
Ha 01010111 4 ] i 13 16 18 21 23 24
ik 01011 011 3 ] i 12 15 18 21 24 21

24l indices am negative.



Determine Topological Invariants
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Determine Topological Invariants
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e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion



Determine Topological Invariants
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Gilmore e Depends on Embedding: Global Torsion, Parity, ..

e Independent of Embedding: Mechanism
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Evolution Under Parameter Change

m {modulation amplitude) FIBER LASER

-
TN

YAG LASER

Figure 11. Varous templates observed in two laser experiments. Top left:
pammeter space of forced nonlinear oscillators showing resomunce tongu; it templates observed in the
fiber laser experiment: global torsion inc systematically from one to to the next [40]. Bottom left:
templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the
topological organization across one chaotic wngue (39,41

schematic representation of the
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Perestroikas of Strange Attractors

Ssﬁ';ii{“&d Evolution Under Parameter Change
queezelan
oo
and Chaos

Robert

Gilmore

X, (arb, units)

X, (arb. units)

X, (arb. units)
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An Unexpected Benefit

Analysis of Nonstationary Data

(a) k)
k-
]
3
E
¥ Fm
4 =
E azpiy 1
= =

as

£
W) G i

Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment af the time series containing a periodic orbit of penod 9. Right: embedding of the penodic
arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Last Steps
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Gimere Validate the Model

Needed: Nonlinear analog of y? test. OPPORTUNITY:
Tests that depend on entrainment/synchronization.
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Our Hope — Now a Result
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.
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Value

+—= Logistic Map

20 40 60 80 100
Iterate



Some Prediction Results
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Orbits Can be “Pruned”
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Linking Numbers, Relative Rotation Rates, Braids
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An Ongoing Problem
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An Ongoing Problem

=, Status of Problem

Squeezeland
The Marvels
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and Chaos

Robert
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Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required



Nerve Data
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Variable Dependences

s’ Some Variables are
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Projections of the Attractor

28 The Attractor can be Projected

in Many Ways

ya-ys Plane —-ys5 Plane



First Return Maps at Different Temperatures

Streeh & The Return Map
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Some Periodic Orbits




Steps in Constructing Scroll Template
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A Simple Two-Parameter Model of Chaotic Nerves
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A = Stretch
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Perestroikas of Branched Manifolds

Alice in S
Strecn & Constraints
Squeezeland
The Marvels
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and Chaos

Branched manifolds largely constrain the ‘perestroikas” that
forcing diagrams can undergo.

Is there some mechanism /structure that constrains the types of
perestroikas that branched manifolds can undergo?



Perestroikas of Branched Manifolds

vl Constraints on Branched Manifolds

Squeezeland
The Marvels
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Jobert “Inflate” a strange attractor

Union of ¢ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor



Torus and Genus

St Torus, Longitudes, Meridians
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Tori are identified by genus g and dressed with a surface flow
induced from that creating the strange attractor.
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Flows on Surfaces

Surface Singularities

Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2

Singularities organize the surface flow dressing the torus



Flows in Vector Fields
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Some Bounding Tori
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Canonical Forms
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Constraints Provided by Bounding Tori

g8 Two possible branched manifolds
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Labeling Bounding Tori

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks.

Transition matrix sum of two g-1 x g-1 matrices.

Both are g-1 x g-1 permutation matrices.

They identify mappings of Poincaré sections to P’sections.

Bounding tori labeled by (permutation) group theory.



Some Bounding Tori
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Exponential Growth
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Motivation

Some Genus-9 Bounding Tori
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Aufbau Princip for Bounding Tori

Aufbau Princip for Bounding Tori

These units (" pants, trinions”) surround the stretching and
squeezing units of branched manifolds.



Aufbau Princip for Bounding Tori

SSW  Any bounding torus can be built up

Squeezeland

LAe¥s  from equal numbers of stretching and
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e Outputs to Inputs
e No Free Ends
e Colorless



Poincaré Section
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P. S. = Union .

# Components = g-1



Aufbau Princip for Bounding Tori
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Represerntation Theory Redux

Alice in .
Steha Representation Theory for ¢>1
The Marvels
of Topology
and Chaos

Can we extend the representation theory for strange attractors
“with a hole in the middle” (i.e., genus = 1) to higher-genus
attractors?

Yes. The results are similar.

Begin as follows:



Aufbau Princip for Bounding Tori
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Embeddings
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Embeddings

Ssﬁ';ii{“&d reparations for Embedding tori into
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i

Equivalent to embedding a specific class of directed networks
into R3



Extrinsic Embedding of Bounding Tori
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A specific simple example.
Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Creating Isotopies

Swesch & Equivalences by Injection
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Index ‘ R3 R4 RS
Global Torsion | Z®3(9-1) 22®2(9*1)
Parity 7o i )

Knot Type Gen. KT. - -

In R all representations (embeddings) of a genus-g strange
attractor become equivalent under isotopy.



Modding Out a Rotation Symmetry
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Lorenz Attractor and lts Image
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Lifting an Attractor: Cover-Image Relations
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Cover-Image Related Branched Manifolds

Cover-Image Branched Manifolds




Covering Branched Manifolds

=, Two Two-fold Lifts
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Rotation Inversion

Symmetry Symmetry



Topological Indices
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Locate the Singular Set wrt Image

sl Different Rotation Axes Produce
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Nonisotopic Locally Diffeomorphic Lifts
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(d) e = ~3.14674
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Two Inequivalent Lifts with V; Symmetry
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How to Construct Covers/Images

Alice in S
S & Algorithm
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e Construct Singular Sets

e Determine Topological Indices

e Construct Spectrum of Structurally Stable Covers

e Structurally Unstable Covers Interpolate



Surprising New Findings
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o Clebsch-Gordon Symmetries
e Continuations

o Analytic Continuation
o Topological Continuation
o Group Continuation



Covers of a Trefoil Torus
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You Can Cover a Cover = Lift a Lift
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Isomorphisms and Diffeomorphisms
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Cartan’s Theorem

Dynamical Systems:
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77?7 Anything Useful 77?7



Universal Covering Group
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Universal Image Dynamical System
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Useful Analogs
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Local Isomorphisms
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Useful Analogs
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Creating New Attractors
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Another Visualization
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Satisfying Boundary Conditions
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Two Phase Spaces: R? and D? x S*

Alice in .
Steha Rossler Attractor: Two Representations
queezelan

The Marvels

of Topology R3 D2 X S]-
and Chaos
E Rossler Attractor, Toroidal Representation
20 E E Index (n_1,n_2) = (1,0)
0,0 E— é
iz
Q
Y | 13
20F 4.8
E 15
12
19
3
E ] U
40 |
600 | | Ll |
40 2.0 00 20 40 6.0

x ’ n_1 x Phase Angle / 2 Pi



Other Diffeomorphic Attractors
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Subharmonic, Locally Diffeomorphic Attractors
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Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(2.-1) Index (n_l.n_2) = (2,+1)
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Subharmonic, Locally Diffeomorphic Attractors
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Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(3.-2) Index (n_l,n_2)=(3.-1)
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Subharmonic, Locally Diffeomorphic Attractors
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New Measures
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New Measures, Diffeomorphic Attractors

vl Energy and Angular Momentum
Squeezeland
orToplon
and Chaos

ol Diffeomorphic, Quantum Number n

Gilmore

Torsion Integral Energy Integral
T T T T T T T T T T T
= i
6 — 40 B
ne
O 1 T a0l ]
& &
2 2
E of ] H
g 2
§ 2r 7 2 20 -
£ &2
4f N
s i
10+ —
sk 4
-104- -
1 L L L 1 1 1 L L L 1 1 1 & ? 1 L
-10 s 6 4 0 2 4 3 3 10 1 6 4 4 1




New Measures, Subharmonic Covering Attractors
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Representations
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An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible")

attractor in somebody’s computer.
Embeddings provide a representation of an attractor.
Equivalence is by Isotopy.

Irreducible is by Dimension



Representations
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We use this knowledge as a guiding light.



Representation Labels
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Parity P

Global Torsion N

Knot Type KT
FP’N’KT(SA)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Representation Labels
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Inequivalence in R?
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Creating Isotopies

Alice in
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Squeezeland

The Marvels

of Topology

and Chaos

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible

representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?



Equivalences
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Parity reversal is also possible in R* by isotopy.
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Isotopies
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Creating Isotopies

Swesch & Equivalences by Injection
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Parity
Knot Type

There is one Universal reducible representation in RV, N > 5.
In RN the only topological invariant is mechanism.
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Basis Set of Orbits
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Basis Set of Orbits
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Basis Set of Orbits
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To be supplied
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BigView: Logistic Map
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Image Lorenz-01
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Image Lorenz-02
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Robert Logistic & Knife Maps

Gilmore
Logistic Map Knife Map

o' = f(zia) =a—(2)> ¥ = fly:0) =0~ (lyh*/?



Logistic-04

Alice in

Stretch & ... for several values of «

Squeezeland

The Marvels
of Topology ..
and Chaos Logistic Return Map
R r X =a-x"2
s 2:_“”““‘%..‘.“”‘HH‘HH“...“.H‘_:
15F =
i &
0sF 1
*oof .
05 E
-1 é
-1.5F >
S I T S SO IV A RO A A A A M

-l 075 05 025 0 025 05 075 1
X



Lorenz-04

Alice in .
St & Knife Return Maps
o
of Topology

and Chaos Knife Return Map
R

Gilmore

e T b L L L L T

-1 075 05 -0.25 0 025 05 0.75
y
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Orbit Search-01

Alice in

Sueth & Second Return Map
Squeezeland
The Marvels
of Topology

and Chaos Logistic Map, Second Iterate

fx:a)=a-x"2

L e N L (L

—_

0.5

Second Iterate

-15

) S N S A N I AN RN AU, U A L P
-L.5 -1 0.5 0 0.5 1 L5
X
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Orbit Search-02

Alice in ° 4 s S
Streich & Period 1 & 2 Orbits - Logistic
Squeezeland
The Marvels
of Topology
and Chaos Fixed Points of f(x) & *2(x), f(x)=a-x"2
Rl Period-one: Red & Green  Period-two: Black
T T I I I I I T I
15 T

-L.5- -

2 -

! | ! ! ! | !

025 0 025 05 075 1 125 1.5 175 2 225
a




Bifurcation-

Alice in . . .
St & Bifurcation Diagram
The Marvels
of Topology
and Chaos

Robert

Gilmore

05 I e

a i




Bifurcation-02

Sy .. Blow Up .... with Caustics

Stretch &
Squeezeland
The Marvels
of Topology

and Chaos
8 7 858 78687 & TBEEES




Bifurcation-03

Alice in . . . .
St & Knife Map - Bifurcation Diagram
queezelan
The Marvels

of Topology
and Chaos Bifurcation Diagram
Robert ¥ =b-sarthyh
Gilmore 0.75F b
0.5F s
025 . I
. ]
o g
02sF " =
05 / {
. ! !
0

| 1
25 0.5 0.75

(] b (]
No windows! No caustics!



Orbit Search-03

Alice in

Surete & Fixed Points (Knife)

Squeezeland
The Marvels
of Topology
and Chaos Fixed Points for the Knife Map

e " =b - sqrt{lyl)

a5
wn
=L
(=1
wn
_




Orbit Search-04

S & Second Iterates - Knife Map

Squeezeland
The Marvels
of Topology
and Chaos Knife Map, Second Iterate
fy:b) = b - sqrt(lyl)
1.25H T 1 1 T T

075~ 7

=
[
G
I
|

-0.25= =

Second Iterate
=
T
|

5
w
I
|

-0.75- T
-1 -

-1.25 | | | | | | 1 1 | H
-125 -1 -075 -05 -025 0 025 05 075 1 125
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Skeleton-01

S Period-One & Period-Two Orbits

Squeezeland

The Marvels
of Topology . .
and Chaos Fixed points of f(y) & f22(y) f(y)=b-sqrt(lyl)
Period-one: Red & Green  Period-two: Black, Cyan & Magenta
77—
0.8
0.6

0.4
02

02
04

Fixed Points of £2(y)
=
A LR AL RN AR RARLY EARARRALRN AR AR
ETY TEYET EUTSLNUNET NUUTE FUUTE TEUR (FRTTRTNET I

06
-0.8F
1 E P PRI P .
0 0.25 0.75 1

Control pzllrameter b



Skeleton-02

e Attractor boundary (Knife)

Squeezeland
The Marvels
of Topology

and Chaos Boundaries for the Basin of Attraction

Rl ¥ =b-sqrtflyl}

Boundaries of Basin of Attraction




Skeleton-03

Ssﬁiiihi“&d Attractor Boundaries - Logistic
queezelan
oo
and Chaos

Boundaries for the Basin of Attraction
X =a-(xIr2

T
0 L

Boundaries of Basin of Attraction

_3I\\\\I\\I\‘\\\\‘I\\I‘\\\I‘\I\\‘\I\\I\\\\‘\\I\‘I\\\

025 0 025 05 075 1 125 15 175 2 225
a



Rite of Passage-01

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Third Iterate of Knife Map
T b=-0.1,025,1.1
1 T T T T i T i T T




Explosions-01

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Knife Return Map
First Four Iterates at b = 0.1
T T i T i T T T

0.1

yhL, y12, yA3, yh4

[ .
0.008
y

|
0012 0014

| L | L | |
0 0.002  0.004  0.006 0.01



Explosions-02

Alice in
Stretch &
Squeezeland

g Table: Values M(P) of iy where the pth iterate f(P)(y;b) has maxima.

and Chaos These locations are determined by a simple recursion relation (last
Robert line) where the indices s, = %1 are incoherent.

Gilmore

p  Number Max. Coordinate Values
1 1 0

2 2 +b?

3 4 +(b 4+ b?)?

p+1 2r M@ = 5, (b + MP))2



Explosions-03

Alice in . . .
Fahl As p — oo, with all s; = +1, the abscissa of the rightmost
T}eTMa:vels point goes to a limit. The quadratic equation for this limit
Ll e gives:

Robert

N y(b)_(;—b— i—b)

At b= i the bounding box is a square — beyond that the
diagonal fails to intersect all the zig - zags. Orbits begin to gen
pruned away in singulr saddle node bifurcations.




Explosions-04

Alice in

=, Structural Stability: o<v<!

Squeezeland
The Marvels

of Topology

and Chaos Knife Map, fifth iterate at b=0.15

02k

-

bt L

o 0l

I r

2 |

Z o

~ I

b [

i -01F

W f

-0.2




Rite of Passage-02

Sterch & End Play - Near »-1

Squeezeland
The Marvels

of Topology
and Chaos Iterates of the Knife Map
Robert p=8 b=038
0.8+ i
0.6 _
oo 041 -
<
E ]
02 u
O = -
-1 1




Rite of Passage-03

Alice in

Suretch & Iterates Near v-1
Squeezeland

The Marvels

of Topology .

aid] Clheres Iterates of Second Return, Knife Map
b=l-epsilon.  epsilon=0.1

Rober ol 77—

Gilmore

O — -
-0.02~ _
-0.04 -

IR N RN S . N T
-0.02 -0.015 -0.01 -0.005 0
y

implosion1



Renormalization-01

Alice in L3 .
S & Note Scaling Relations
Squeezeland
The Marvels
of Topology
and Chaos Knife Return Map
First Four Iterates at b = 0.1
T T I T I T 1 T

0.1

yAL, yA2, yA3, yhd

[ .
0.008
y

|
0012 0014

| L | L | |
0 0.002  0.004  0.006 0.01



Explosions-05

St Structural Stability:
queezelan
The Marvels
of Topology

and Chaos Knife Map: 10th iterate near y=0

fA(10)(y;b=0.85)
2 o

(=]

v’

e
f=1
G

P .
0 0.025 0.05
y



Orbit Search-05

Alice in

Stretch & Hunt for Saddle-Node Bifurcations

Squeezeland

The Marvels Caustic Crossings
of Topology
and Chaos
Robert Search for Superstable Orbits
Gilmore Logistic Map
2 . —
15~
[ /
L )
i
o 05+
= \
S 0
\a L
& 05F
1
1.5~
I L I |
875 1 1.25 L5




Orbit Search-06

St Hunt for Singular
The Marvel
of Topology

and Chaos Search for Orbit Creation

Knife Map

075—

025

£Ap(O:D) - 0

025 I

0751 .




Orbit Search-07

St Anti Caustic Crossings
queezelan
The Marvels
of Topology

and Chaos AntiCaustics of the Knife Map
Robert )by, p=1..8
e e L B
0.8
. 0.6 C §
0.4 =
02+ i

(=]

0.4}

AntiCaustics, p=1 ...
=)
(3]

-0.6—
08

Ll L1 Ll
0 0.25 0.5 0.75
Control Parameter b

—



Orbit Search-08

F8 Anti Caustic Crossings: Expansion
queezelan
The Marvels

of Topology
and Chaos AntiCaustics of the Knife Map
P(pNO:b), p=1..8

Robert

Gilmore

=1..8

s o 2 o o

S o = G &
‘

=
=

AntiCaustics p
=

PP R A AU AT TRV SR R
0.25 0.3 0.35 0.4 045 0.5 0.55 0.6
Control Parameter b




Orbit Search-09

oy Period Three Singular SNB

Stretch &
Squeezeland
The Marvels

of Topology
and Chaos Knife Map, Third Iterate

Creation of Period-3 Orbits.

05—

=0.45)

3(y.b




Renormalization-02

Alice in ) . .
Stretch & Local expression near y = 0 for the period-three explosion:
Squeezeland
The Marvels
of Topology

and Chaos
hiy:b) = fD(y:b) =0~ \/\b— b= VIl

Gilmore

h(bs + €y) — <b3— \/g—b?)) +

( 20hs — 1

4/V/bs — b3/bs ) <4¢ﬁ\/@)m



Renormalization-03

Alice in . . . .
Stretch & Renormalization for the period-three explosion.
Squeezeland
The Marvels

nd Choes Yy =hy;bs +€) = Ab—b3) + a/ly| =
Robert

Gilmore

1.286974759(b — bs) + 0.7869747590+/]y]

2 = (Afa?) (b —b) = /Tl



Alice in
Stretch &
Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore

Renormalization-04

Renormalization Algorithm: K10*
@ Write down the symbol sequence for the primary period-p
orbit: K10 = Ko10o2---0p_1.

@ Make the identification
c=4+1—=-s=41,0=0—s=—1.

© Construct f®)(b;y) —

b_\/spl o faalo = 0= )

@ Taylor expand this function to terms linear in b and /y
and determine the value of b for which the constant term
vanishes.




Renormalization-05

e Equations: K10*

Squeezeland

e For the saddle node pair 5o = K1001 this algorithm gives
of Topology
and Chaos

Robert

Gilmore

b— J (+1)(b - \/(—1)(b - \/(—1)(6 — (D0 = vY)))

The constant term vanishes for b = 0.418656, and for this
value of b

y' = A(b—bs,) + a/|y| = —3.231180Ab — 1.983690+/]y]



Renormalization-06

s Results: K10* to Period 6
queezelan
The Marvels
of Topology

and Chaos y, = A(b — bC) + « ’y‘ y,7 y ~ 0
Robert
Gilmore
Orbit  Symbolics be A Q
31 K10 0.465571 1.286974  0.786974
49 K100 0.360157 2.624703 1.180563

53  K1000 0.318897  4.647225  1.664335
5  K1001 0.418656 —3.231180 —1.983690
5  K1011 0.513175  2.628970  1.509712
65  K10000 0.297846  7.481728  2.233184
64  K10001 0.340328 —8.535145 —3.639587
63  K10011 0.380540  7.596535  3.574548



Renormalization-07

Alice in . . .
Stretch & Renormalization for the final period-two explosion.
Squeezeland
The Marvels

of Topology

€ 1 €
and Chaos f(Q)(l — e,y) ~ —5 + <§ + Z) V |y| (1)



Orbit Search-05

Alice in

Stretch & Hunt for Saddle-Node Bifurcations

Squeezeland
The Marvels
of Topology
and Chaos Search for Superstable Orbits
Logistic Map
—

Robert

Gilmore

< 05
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S}:O
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Orbit Search-08

sl - unt for S. Saddle-Node Bifurcation:

Squeezeland
The Marvels
of Topology . . .
and Chaos AntiCaustics of the Knife Map
fA(p)O:b), p=1..8
Robert S —

Gilmore

g
=
T

=1..8
N
b ) e =

=
=

AntiCaustics p
=

PP R A AU AT TRV SR R
0.25 0.3 0.35 0.4 045 0.5 0.55 0.6
Control Parameter b




Important Markers

Alice in

Stretch & : il
Samspedll  Table: Important parameter values for global stability and unstable

I?eTorvrlszvjzlvs periodic orbit behavior.
a":'fhi°5 Global Unstable
Sober Stability ~ Orbits
0.0
1/4 1/4

0.5957439420
3/4

0.7825988587

1.0



U Sequence

Alice in
Stretch &
Squeezeland

Table 2.1 Sequence of bifurcations in the logistic map up to period 8 {from top and to bottom
and lefi to right)®

" ETL\Q?JZ?VS Name Bifurcation | Name |, Bifurcation | Name Bifurcation
and Chaos
¢ 18] 0010191 73fs) 000191 6408
C 01 yfs; x 2] | 00101091 8g[sd] 00011151 8y;[s3)
0111 445, x 2] 00191  5,[s%] V001191 %77 [s7)
01010111 &;[s; x 2] | 00111091  Bg[sd] 20011091 83a[s2%
011191 61[s] 0011191 740s%] 00091 53[ef]
01111191 84fsl] 00111191 &[sd] 00062091 8y5st]
0111191 7y[sdl 001191 658} 0000193 7s[ed]
01191 5fst) 00110191 8gfsl] 000011 91 814fs3”
0110131 7afs) 0011091 Ts[sd] 000091 65]sd]
01201191 8g[e] 0091 4pfsd] 00000191 8&5[si%]
091 34[s4] 00610011 8gfal x 21 | 0000091  7o[s))
001011  6afss x 34) | 0001081  Telsd 00000091 8y4(sL?]
00101191 84[sd] 00010191 81q[s3]

8The notation P; refers to the ith hifurcation of period 2. We also give inside brackets an alternative
classification that distinguishes between saddle-node and peried-doubling bifurcations. In this scheme,
the ith saddle-node bifurcation of period P is denoted 5%, and 54, x 2" is the orbit of pedod P x 2k
belonging to the period-doubling cascade eriginating from s%.




Endplay-01

Alice in

il Symbol Exchange Near Endplay

Squeezeland
The Marvels
of Topology
and Chaos Anticaustics for the Knive Map
p=14,16,18,20,22
L

Robert

Gilmore

=
o
T

14, 16, 18, 20, 22

p:

fA(p)(O;b),
T T BT

<
to




Endplay-02

Ssﬁ'eiii{“&d Symbol Exchange Near Endplay
The Marvel
of Topology

and Chaos

Jobert @ Symbols 0, 1 created at b =0

New orbit, (11), created at b = %

Symbol pair - 11 -, replaced by - (11) - as b — 1
Implosions begin at b = 0.5957..., end at midpoin.

Explosions begin at midpoint, end at b = 0.7825..

Implosions and explosions symmetrically matched



Basis Set of Orbits

Alice in

Seten & Forcing Diagram - Horseshoe

Squeezeland
The Marvels
of Topology
and Chaos Return Maps for Chaotic Attractors
k=2, a=L55 and k=1/2.a = 0.65

\‘.\/}44‘4_\\\\.“.\\\.\‘|7

Robert
Gilmore 15

05




Rossler 03

Alice in . .
Stretch & Return Map Approximations

Squeezeland
The Marvels

f Topol . . .
PSS  The Rossler return map is well approximated by the following

Robert mapS

Gilmore

¥ = dx(l—2x)

¥ = a—2a?
= 11— pa?
r—ml?
d = 1-
w




Basis Set of Orbits

Alice in
Srech & Image of Lorenz Return Map
queezelan
The Marvels

f Topol . . .
PRVESS  The image of the Lorenz return map is well approximated by

Robert the following maps:

Gilmore

y = b—[y|'/?

y = 1-— ply/'?
1/2

w




Basis Set of Orbits

Alice in .
St & Class of Lopsided Maps
The Marvel
of Topology
and Chaos k

Robert r—m

Gilmore x/ - f(CC; k, a) == 1 -

w

@ Zerocrossingsatx =+4+landz=a, -1 <a<0
@ Maximum at m = 1%“

© Half-width w = 17?“

O m+tw=1



Basis Set of Orbits

Alice in

Seten & Forcing Diagram - Horseshoe

Squeezeland
The Marvels
of Topology
and Chaos Return Maps for Chaotic Attractors
k=2, a=L55 and k=1/2.a = 0.65

\‘.\/}44‘4_\\\\.“.\\\.\‘|7

Robert
Gilmore 15

05




Basis Set of Orbits

Alice in . °
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Return Maps for Strange Attractors
k=2, b=-0.200322581, k=1/2, b=-0.612451550

L

L
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Basis Set of Orbits

S Map Comparisons
Squeezeland
The Marvels

of Topology
and Chaos Modified Logistic Return Map Lorenz-image Return Map
a=-06 a=06
I 1 -
Robert
R 09+ B 09F E
Gilmore
08 B 08F E
071 B 07F E
0.6 B 0.6F E
“0.5 1 wOSE . E
04 B 04F E
03 — 03 E|
02 B 02fF E
0.1 N 01F E
L Il Il " 1 Il Il I

I I L I I I L Ll il
06 04 02 0 02 04 06 08 1 04 02 0 02 04 06 08 1
X X



Basis Set of Orbits

St Forcing Diagram - Horseshoe
queezelan
The Marvels
of Topology

and Chaos Transformation Between Control Parameter Values

¥ =aly(1/2)  y'=1-lx-m)/wi(1/2)
T T

1 L L | L
0.25 0.5 0.75 1
a



Basis Set of Orbits

St Forcing Diagram - Horseshoe
queezelan

of Topoisy

and Chaos

Robert

Gilmore

Superstable Orbits for Logistic Map

fAp(m) - m




Basis Set of Orbits

Alice in . .
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Homoclinic Orbits, Lorenz-Image Map
Robert
Gilmore




Basis Set of Orbits

St Forcing Diagram - Horseshoe
The Marvel

of Topology

and Chaos Modified LOgiSt.iC Map

Third Tterate, a = -0.15

09
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

R R A NN N NN R A
K 0oL 02 03 04 05 06 07 08 09
X
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Basis Set of Orbits

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Modified LOgiSt.iC Map
Third Iterate. a = -0.143

Lprrrr e

09
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

AR R T NN N NN R WA
OO 0oL 02 03 04 05 06 07 08 09
X
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Basis Set of Orbits

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Modified LOgiSt.iC Map
Third Tterate. a = -0.11

L T T T T T TR

09
08
0.7
0.6
#0.5

0O 01 02 03 04 05 06 07 08 09
X

—



Basis Set of Orbits

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Lorenz-Image Map
Third Iterate, a = - 0.365

L [ T T T

; Il ;
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X
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Basis Set of Orbits

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Lorenz-Image Map
Third Iterate, a = - 0.37
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Basis Set of Orbits

Alice in L] L]
St & Forcing Diagram - Horseshoe
Squeezeland
The Marvels
of Topology
and Chaos Lorenz-Image Map
Third Tterate, a = -0.35
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Alice in
Stretch &
Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore

Comparison: Logistic and Knife

Scaling

Logistic: SNB Period 3 = scaled version SNB of M.
Renormalization theory applies.

U Sequence

Knife: S-SNB Period 3 = scaled version S-SNB of K.

Renormalization theory applies.

U~! Sequence



The Road Ahead

Summary

1 Question Answered -

2 Questions Raised

We must be on the right track !



Our Hope

Alice in

2zl Original Objectives Achieved

Squeezeland
The Marvels
of Topology
and Chaos

Robert

Gilmore

There is now a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

Alice in

Result
Squeezeland
The Marvels

of Topology
and Chaos

Robert

Gimere There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R3 only — for now



Four Levels of Structure

¥ The Classification Theory has

4 Levels of Structure



Four Levels of Structure

¥ The Classification Theory has

4 Levels of Structure

@ Basis Sets of Orbits



Four Levels of Structure

2 The Classification Theory has

Squeezeland
The Marvels
of Topology

4 Levels of Structure

Robert
Gilmore

@ Basis Sets of Orbits
@ Branched Manifolds



Four Levels of Structure

2 The Classification Theory has

Squeezeland
The Marvels
of Topology

4 Levels of Structure

Robert
Gilmore

@ Basis Sets of Orbits
@® Branched Manifolds
©® Bounding Tori



Four Levels of Structure

2 The Classification Theory has

Squeezeland
The Marvels
of Topology

4 Levels of Structure

Robert
Gilmore
@ Basis Sets of Orbits
@ Branched Manifolds
©® Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

Alice in
Stretch &
Squeezeland
The Marvels
of Topology
and Chaos FORGING OF HORSESHOR
ORDITS 10 FERIGD 5

o
a
e



Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

Alice in
Siee There is a Representation Theory for Strange Attractors
queezelan
The Marvels

of Topology There is a complete set of rerpesentation labels for strange
attractors of any genus g.

Robert
Gilmore

The labels are complete and discrete.

Representations can become equivalent when immersed in
higher dimension.

All representations (embeddings) of a 3-dimensional strange
attractor become isotopic (equivalent) in R®.

The Universal Representation of an attractor in R® identifies
mechanism. No embedding artifacts are left.

The topological index in R® that identifies mechanism remains
to be discovered.



Answered Questions

Alice in

2= Some Unexpected Results

Squeezeland
The Marvels

o Ty @ Perestroikas of orbits constrained by branched manifolds

Robert @ Routes to Chaos = Paths through orbit forcing diagram

Gilmore

Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)
Universal image dynamical systems

NLD version of Cartan's Theorem for Lie Groups
Topological Continuation — Group Continuuation

Cauchy-Riemann symmetries

Quantizing Chaos



Unanswered Questions

Alice in

We hope to find:
Squeezeland

The Marvels
of Topology

and Chaos

Robust topological invariants for RN, N > 3

Robert
Gilmore

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D? — n x D? (e.g., Lorenz), DN - DN N >2

@ Representation theory: complete

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Singularities as obstructions to isotopy



Alice in
Stretch &
Squeezeland
The Marvels
of Topology
and Chaos

Robert
Gilmore

Thanks

To my colleagues and friends:

Jorge Tredicce Elia Eschenazi
Hernan G. Solari Gabriel B. Mindlin
Nick Tufillaro Mario Natiello
Francesco Papoff Ricardo Lopez-Ruiz
Marc Lefranc Christophe Letellier
Tsvetelin D. Tsankov Jacob Katriel
Daniel Cross Tim Jones

NSF PHY 8843235
NSF PHY 9987468
NSF PHY 0754081

Thanks also to:



Folding - Squeezing - Global torsion

8 Basic Stretch - Fold - Roll Template
queezelan

The Marvels

of Topology e

and Chaos .""\
- \
Robert
Gilmore
Gilohal ¢ Folding
torsion:; X .
a— Squeszing
4 half
—
urns )
FIG. 1. (Color online) Typical scheme of a template.

Javier Used and Juan Carlos Martin,

Multiple topological structures of chaotic attractors ruling the
emission of a driven laser,

Phys. Rev. E82, 016218 (2010).



Three Branch Template

Alice in
Stretch &
Squeezeland
The Marvels

i Gt The “S” Folding Mechanism
Robert

Gilmore

FIG. 2. (Color online} Scheme of atemplate with three branches
and an § folding process.



Folding Possibilities

Alice in
Stretch &
Squeezeland
The Marvels

2 Branches & 3 Branches
of Topology

and Chaos

ABLE 1. (Color onling) Folding processes characteristic of the different species of templates treated in
this work.

Specics Horseshoe Reverse Oul-to-in In-to-out Staple 3
horseshoe | spiral spiml
Codein Fig. 1 b’ Not found
o oz here =
Insertion {02 1jor
matrix 1 {10y 02n 120 20 21m
— —r - :
Sketch of the e, 3 T e «
- - =
Tolding C -
1 Process 11 . * )] *.—b)




Resonance Regions & Behavior

Swesch & Spectrum of Behaviors

Squeezeland
The Marvels
of Topology

and Chaos in Resonance Regions

Robert

Gilmore

1 10 19 87 6 |5 4 '3 2
- . o T——

m=0.T3
-l
) . w07
- R e - R = 4 R - — -
| 1 1 | | |
17 1’6 s 14 (] 12 1

Maoduhtion frequency normalized to the miural fequency



Return

Alice in
Stretch & .
S Land
e virv Constraints:
of Topology
and Chaos




Poincaré Sections
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Return Maps on Poincaré Sections
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TABLE Il Linking numbers between the UPOs extracted from the time series corresponding to pump modulation frequency f
=425 KHz and modulation index m=0.73

o o B 00 1000 10010 6a 1001010 8a
[ 0
10 9 9
3a 14 2 2
100 14 28 42 2%
1000 18 37 56 56 55
10010 23 » 70 . 92 92
6a 2% 56 . . 12 » 139
1001010 32 » 98 . 129 » . 194

8a 57 74 11 1 148 » » » 259
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