Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Ecole d'ete Nonlinear Dynamics in Peyresq Peyresq, 23-30 août 2012

June 4, 2012

Abstract

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

02

Overview-02

Overview-03

Overview-05

O VEI VIEW-03

Overview-0

Overview-0

Experimenta 01 Suppose you have data from a physical system that is behaving chaotically. What do you do? How do you analyze these data? What should you look for? What is the mechanism that generates chaos?

For a large class of systems an algorithm now exists for addressing each of these questions successively and successfully. We will go through the steps of this algorithm, showing how each works using experimental data and pointing out the connection with topology. In the process we will develop a classification scheme for strange attractors.

Table of Contents

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-02

02

Overview-02

Overview-03

Overview-0

Overview-0

Overview 07

_

Experimenta

Outline

- Overview
- ② Experimental Challenge
- Topology of Orbits
- Topological Analysis Program
- Basis Sets of Orbits
- O Bounding Tori
- Covers and Images
- Quantizing Chaos
- Representation Theory of Strange Attractors
- Summary

Background

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-01

Overview 02

O vei view-o.

Overview-0

Overview-0

Overview-0

Experimenta

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!

Motivation

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-

Overview-02

Overview-03

. . .

Overview-0

Overview 0

Experimenta

Where is Tredicce coming from?

Feigenbaum:

$$\alpha = 4.66920 \ 16091 \dots$$

 $\delta = -2.50290 \ 78750 \dots$

Experiment

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

0.000.000

Overview-u

Overview-0

Experimental

Laser with Modulated Losses Experimental Arrangement

Our Hope

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-04

Overview-0

Overview-0

Overview-0

Experimenta

Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Our Result

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Overview-05

Result

There is now a classification theory.

- It is topological
- It has a hierarchy of 4 levels
- Each is discrete
- There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

Topology Enters the Picture

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-u.

.

Overview-0

Overview-06

Overview-0

Experimenta

The 4 Levels of Structure

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings

New Mathematics

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Overview-07

What Have We Learned?

- Cover and Image Relations
- Continuations: Analytical, Topological, Group
- Cauchy Riemann & Clebsch-Gordonnery for Dynamical Systems
- "Quantizing Chaos"
- Sepresentation Theory for Dynamical Systems

What Do We Need to Learn?

- Higher Dimensions
- Invariants
- Mechanisms

Experimental Schematic

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Experimental-01

Laser Experimental Arrangement

Experimental Motivation

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-C

Overview-03

. . .

Overview-0!

Overview-07

_ . .

Experimental-

Oscilloscope Traces

Results, Single Experiment

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-02

Overview-us

0.....

Overview-0

Overview-07

Evporimontal

Experimenta

Bifurcation Schematics

Some Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

. . .

O VET VIEW OF

Overview-07

Experimental

Coexisting Basins of Attraction

Many Experiments

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview O

Overview-0

. . .

Overview-0

. . .

Experimenta

Bifurcation Perestroikas

Real Data

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Experimental Data: LSA

Lefranc - Cargese

Real Data

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

0.....

0.000.000

0.000.000

Overview-0

. . ..

Overview-07

Experimenta

Experimental Data: LSA

Real Data

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Experimental Data: LSA

Mechanism

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Stretching & Squeezing in a Torus

Time Evolution

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-

Overview-0

Overview-03

Overview-0

Overview-0!

O

Overview-07

Experimental

Rotating the Poincaré Section around the axis of the torus

Time Evolution

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Rotating the Poincaré Section around the axis of the torus

Figure 2. Left: Intersections of a chaotic attractor with a series of section planes are computed. Right: Their evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.

Another Visualization

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-03

Overview-05

Overview or

Experimental

Cutting Open a Torus

Satisfying Boundary Conditions

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0

. . .

Overview-07

Experimental

Global Torsion

Experimental Schematic

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-0

0.101.11011 01

Overview-07

_ . .

Experimental

A Chemical Experiment

The Belousov-Zhabotinskii Reaction

The Lasers in Zaragosa

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

TABLE 1 - Folding processes characteristic of the different species of templates treated in this work

Species	Horseshoe	Reverse horseshoe	Out-to-in spiral	In-to-out spiral	Staple	S
Code in Fig. 1			11111	Not found here	88888	
Insertion matrix	(0.1)	(1-0)	(0 2 1)	(1 2 0)	(0 2 1) or (1 2 0)	(2 1 0)
Sketch of the folding process	⇒				\$	

Modulation frequency normalized to the natural frequency

Used and Martin, Phys. Rev. E **82**, 016218 (2010)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-i

Overview-0!

Overview-0

Overview-0

Experimental

TABLE 2 – Linking numbers between the UPOs extracted from the time series corresponding to pump modulation frequency f=4.25 KHz and modulation index m=0.73

	0	10	3a	100	1000	10010	6a	1001010
Ō	0							
10	9	9						
3a	14	28	28					
100	14	28	42	28				
1000	18	37	56	56	55			
10010	23	*	70	*	92	92		
6a	28	56	*	*	112	*	139	
1001010	32	*	98	*	119	*	*	194

Belousov-Zhabotinskii Experimental Configuration

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-02

Overview-03

Overview-0!

Overview of

O

0 re. v.e.. 0.

Experimental

Close Returns Plot

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

Overview-(

· · · · · ·

Overview-0

Overview O

Overview 0

Experimental

Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-0

Overview-0

Overview-

Overview-0

Overview-0

Overview-07

Experimenta

First Embedding Attempt: x, \dot{x}, \ddot{x}

Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Second Embedding Attempt: $\int x, x, \dot{x}$

Nonstationary!

Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-0

Overview-0

Overview-I

Overview-0

Overview-0

Overview-07

Experimental

Third embedding attempt: $\int xe^{-t'/\tau}, x, \dot{x}$

Orbits to Organization

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview 0

Overview-0

. .

Overview-u

Experimenta

Once you have an embedding:

- Find a Poincaré Section
- Construct a First Return Map on the Section
- Introduce a Symbolic Encoding
- Encode all Unstable Periodic Orbits
- Find their Linking Numbers

Return Maps

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-u.

Overview O

Overview-0

. . .

Overview-0

Experimental

Two Symbols Suffice! 0 and 1

Embedded Periodic Orbits

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview C

Overview-0

Overview-o.

.

0.000.000

Overview-0

Experimental

Some Named Low-Period Orbits

Orbit

3

4

5

6

9

10a

10b

11

13a

13h

Name

 1_1

 2_1

 3_1

 4_1

 5_{1}

60

 9_3

 10_{6}

 10_{6}

 11_{9}

Some Extracted and Reconstructed Periodic Orbits

Symbolics

01

011

0111

01 011

011~0M1

 $(01)^3011$

 $(011)^20101$

 $(011)^20111$

 $(01)^2011 \ 01 \ 0111$

 $(01)^3011 0111$

 $01(011)^3$

Self-Linking

5

8

9

28

33

33

40

62

Local Torsion

3

U	02	011 01/11	3	Э
7	7_2	$(01)^2011$	4	16
8a	8_1	$(01)^20111$	5	23
8b	8_{3}	$01(011)^2$	5	21

Alice in Stretch &

SqueezeLand The Marvels

of Topology and Chaos

Table of Experimental Linking Numbers

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction 02

Overview-0

Overview-02

3 ve. v.e.v 33

. . .

Overview-0

Overview 0

Overview-C

O VCI VICW O

Experimental

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8b
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
6	$011 \ 0M1$	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8b	01 011 011	3	6	8	12	15	16	21	24	21

^aAll indices are negative.

Testing the Result

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-02

Overview-0

Overview O

0

Overview-u

Experimental

(a), (c) y_1^m compared with y_1^d . (b), (d) y_3^m compared with y_3^d .

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

Overview-01

Overview-02

Overview-us

Overview-0

· · · · · · · · ·

Overview-0

Experimenta

Chaos

Motion that is

- **Deterministic:** $\frac{dx}{dt} = f(x)$
- Recurrent
- Non Periodic
- Sensitive to Initial Conditions

Strange Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

.

Overview 03

Overview-03

Overview-0

Overview 0

Overview-c

Experimenta

Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-02

Overview-u

Overview-04

Overview-0

Overview-06

Overview-07

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-

Introduction-

Overview-01

Overview-02

. . .

Overview-0

Overview-05

. .

O VCI VICW O

Experiment

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-0

Overview-02

. . .

Overview-04

Overview-05

. . .-

O VCI VICW OI

Experimenta

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Skeletons

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introductio

J2

Overview-03

Overview-0

. . .

Overview 0

0.00.000

Experimenta

UPOs Outline Strange Attractors

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Organization of UPOs in \mathbb{R}^3 :

Gauss Linking Number

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

. . .

Overview-0

Overview 06

Overview-07

Experimental-

Linking Number of Two UPOs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Mechanisms for Generating Chaos

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-03

Overview-04

Overview-05

Overview-oc

Overview-07

Experimental

Stretching and Folding

Mechanisms for Generating Chaos

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

Overview-0

Overview-or

Overview-07

Experimental

Tearing and Squeezing

Motion of Blobs in Phase Space

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-

Overview-03

Overview-us

Overview-0

Overview-07

Experimental

Stretching — Squeezing

Collapse Along the Stable Manifold

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-C

Overview-05

Overview-07

Experimental 01

Birman - Williams Projection

Identify x and y if

$$\lim_{t \to \infty} |x(t) - y(t)| \to 0$$

Fundamental Theorem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Tf:

Birman - Williams Theorem

Then:

Fundamental Theorem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Birman - Williams Theorem

Certain Assumptions Tf:

Then:

Fundamental Theorem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-03

Overview-04

Overview-0

Overview-0

Overview-0

Experimental

Birman - Williams Theorem

If: Certain Assumptions

Then: Specific Conclusions

Birman-Williams Theorem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

010111011 02

Overview-o.

Overview-0

Overview-u

. . .

Overview-0

Experimenta

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

- on R^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0$.
- Generates a <u>hyperbolic</u> strange attractor SA

IMPORTANT: The underlined assumptions can be relaxed.

Birman-Williams Theorem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction 02

Overview-03

Overview-0

. .

Overview-0

Experimenta

Conclusions, B-W Theorem

- ullet The projection maps the strange attractor $\mathcal{S}\mathcal{A}$ onto a 2-dimensional branched manifold $\mathcal{B}\mathcal{M}$ and the flow $\Phi_t(x)$ on $\mathcal{S}\mathcal{A}$ to a semiflow $\overline{\Phi}(x)_t$ on $\mathcal{B}\mathcal{M}$.
- UPOs of $\Phi_t(x)$ on \mathcal{SA} are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on \mathcal{BM} . Moreover, every link of UPOs of $(\Phi_t(x), \mathcal{SA})$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, \mathcal{BM})$.

Remark: "One of the few theorems useful to experimentalists."

A Very Common Mechanism

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview 0

Overview-0

. . .

Overview-0

0.000.000

Overview-0

Experimenta

Rössler:

Attractor Branched Manifold

A Mechanism with Symmetry

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

OVERVIEW OF

Overview-0

Overview-0

Experimenta

Lorenz:

Attractor

Branched Manifold

Examples of Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview Of

Overview-03

Overview-0

Overview of

Overview-0

Overview-07

Experimental

Inequivalent Branched Manifolds

Aufbau Princip for Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-u.

Overview O

Overview-0

Overview-07

Overview-0

Experimental

Any branched manifold can be built up from stretching and squeezing units

subject to the conditions:

- Outputs to Inputs
- No Free Ends

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Rossler System

Rössler Equations

$$\frac{dx}{dt} = -y$$

 $\frac{dy}{dz} = x + ay$

$$\frac{dz}{dt}=b+z(z-c)$$

(b)

(c)

(f)

(d)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0

Overview o.

Overview-07

Experimental-

Lorenz System

$$\frac{dx}{dt} = -\alpha x + \alpha y$$

$$\frac{dy}{dt} = Rx \cdot y \cdot xz$$

$$\frac{dz}{dt} = -bz + xy$$

(f)

$$\left(+i-l\right)$$

(b)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Poincaré Smiles at Us in R³

- Determine organization of UPOs ⇒
- Determine branched manifold ⇒
- Determine equivalence class of SA

We Like to be Organized

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

_

Overview-02

Overview-03

3 Tel Tiell 33

Overview-0

Overview-

Overview-07

Experimental

We Like to be Organized

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-

Introduction-

Overview-01

Overview-03

O vei view-o.

0.000.000

Overview-us

Overview 06

Overview-07

Experimental-

Topological Analysis Program

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-03

Overview-04

Overview-0

Overview-0

Experiment

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)

Identify a Branched Manifold

Verify the Branched Manifold

Model the Dynamics

Validate the Model

Locate UPOs

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

--

Overview-02

Overview-0

Overview-0

Overview-0

Overview 0

Overview-07

F.

Experimenta

Method of Close Returns

Locate UPOs

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

Overview-

Overview (

Overview-0

0

Overview-0

Overview-0

Overview-0

Experimental

Method of Close Returns

$$|x_i - x_{i+p}| < \epsilon$$
, pixel \to black

Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

. . ..

Overview-02

Overview-03

Overview-04

Overview-0

Overview-

Overview-C

Experiment

Embeddings

This is a tricky business. There are many problems ...

Many Methods: Time Delay, Differential, Hilbert Transforms, SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological†

None Good

We Demand a 3 Dimensional Embedding

Locate UPOs

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction
01

Introductio

,,

· · · · · ·

Overview O

Overview-0

O

Overview-c

Experimenta

Periodic Orbits Outline the Attractor

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Linking Number of Orbit Pairs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

. . ..

Overview-02

Overview-03

Overview-04

Overview-0

Overview-06

Overview-07

Experimental-

Compute Table of Expt'l LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 8, extracted from Belousov-Zhabotinskii data^a

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8Ь
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
6	011 0M1	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8Ь	01 011 011	3	6	8	12	15	16	21	24	21

All indices are negative.

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

. . .

Overview-0

Overview-03

Overview-04

Overview-0

Overview-u

Overview-07

Experimental

Compare w. LN From Various BM

Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynamics.

	19	1 <i>f</i>	21	3 <i>f</i>	39	41	4_2f	$4_{2}9$	5 ₃ f	539	5 ₂ f	529	5 ₁ f	518
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	2	1	1	1	1	2	2	2	2
01	0	1	1	2	2	3	2	2	2	2	3	3	4	4
001	0	1	2	2	3	4	3	3	3	3	4	4	5	5
011	0	1	2	3	2	4	3	3	3	3	5	5	5	5
0111	0	2	3	4	4	5	4	4	4	4	7	7	8	8
0001	0	1	2	3	3	4	3	4	4	4	5	5	5	5
0011	0	1	2	3	3	4	4	3	4	4	5	5	5	5
00001	0	1	2	3	3	4	4	4	4	5	5	5	5	5
00011	0	1	2	3	3	4	4	4	5	4	5	5	5	5
00111	0	2	3	4	5	7	5	5	5	5	6	7	8	9
00101	0	2	3	4	5	7	5	5	5	5	7	6	8	9
01101	0	2	4	5	5	8	5	5	5	5	8	8	8	10
01111	0	2	4	5	5	8	5	5	5	5	9	9	10	8

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

0. . .

Overview-0

Overview-04

Overview-0

Overview-07

OVERVIEW OF

Experimenta

Guess Branched Manifold

Figure 7. "Combing" the intertwined periodic orbits (left) reveals their systematic organization (right) created by the stretching and squeezing mechanisms.

Lefranc - Cargese

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction 02

.

Overview-u.

Overview 0

0.00.000

Overview-0

Overview-c

Experimenta

Identification & 'Confirmation'

- ullet \mathcal{BM} Identified by LN of small number of orbits
- Table of LN GROSSLY overdetermined
- Predict LN of additional orbits
- Rejection criterion

Determine Topological Invariants

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-03

Overview 0

Overview-0

Overview-0

Experimental

What Do We Learn?

- BM Depends on Embedding
- Some things depend on embedding, some don't
- Depends on Embedding: Global Torsion, Parity, ...
- Independent of Embedding: Mechanism

Perestroikas of Strange Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology

and Chaos

Evolution Under Parameter Change

Figure 11. Various templates observed in two laser experiments. Top left; schematic representation of the parameter space of forced nonlinear oscillators showing resonance tongues. Right; templates observed in the fiber laser experiment: global torsion increases systematically from one tongue to the next [40]. Bottom left: templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the topological organization across one chaotic tongue [39, 41].

Perestroikas of Strange Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction

Introduction

Overview

Overview-0

Overview-0

Overview-0

Overview-0

Overview-06

Overview-07

Experimenta

Evolution Under Parameter Change

Lefranc - Cargese

An Unexpected Benefit

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Analysis of Nonstationary Data

Figure 16. Top left: time series from an optical parametric oscillator showing a burst of irregular behavior. Bottom left: segment of the time series containing a periodic orbit of period 9. Right: embedding of the periodic orbit in a reconstructed phase space and representation of the braid realized by the orbit. The braid entropy is $h_T = 0.377$, showing that the underlying dynamics is chaotic. Reprinted from [61].

Lefranc - Cargese

Last Steps

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Model the Dynamics

A hodgepodge of methods exist: # Methods $\simeq \#$ Physicists

Validate the Model

Needed: Nonlinear analog of χ^2 test. OPPORTUNITY: Tests that depend on entrainment/synchronization.

Our Hope \rightarrow Now a Result

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

)2

Overview 02

Overview M

Overview-0

Overview-C

Jverview-U

Experimenta

Compare with Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Determinism

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

Overview-0

0 07

o (c. ().c.(o)

Experimental

How to predict the future from the past

Some Prediction Results

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

o rei rieir o

Overview o

Overview-0

Overview 07

O (C. () C. ()

Experimenta

Tightly binned predictions suggest determinism

Orbits Can be "Pruned"

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

0

Overview-0

Overview-07

0.000.000

Experimenta

There Are Some Missing Orbits

Lorenz

Shimizu-Morioka

Linking Numbers, Relative Rotation Rates, Braids

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-03

Overview-0

Overview 0

Overview-05

Overview-06

Overview-07

Experimental-

Orbit Forcing

An Ongoing Problem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-0

overview o

Overview-0

O VEI VIEW O

. . .-

Overview-01

Experimental

Forcing Diagram - Horseshoe

u - SEQUENCE ORDER

An Ongoing Problem

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-03

Overview-0

Overview-0

Overview-0

Experimenta

Status of Problem

- Horseshoe organization active
- More folding barely begun
- Circle forcing even less known
- Higher genus new ideas required

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

Overview-0

Overview-0

Experimenta

Is This Predictable or Not?

Variable Dependences

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

(a) 1.2

ሯ

0.8

0.4

-90

Projections of the Attractor

The Attractor can be Projected in Many Ways

of Topology and Chaos

Alice in

Stretch & SqueezeLand The Marvels

Plane $y_4 - y_5$

Plane

First Return Maps at Different Temperatures

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

The Return Map "Drifts" with Temperature

$$T=12^o$$
 C

$$T = 13.5^{o} \text{ C}$$

$$T=16.5^o \; \mathsf{C}$$

Scroll Templates

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-(

Overview-02

Overview-0

O VCI VICW

Overview-0

Overview-0

Overview-0

Experimental

Outside to Inside

a

Branch	Array	c	ı	2	3	4	5	G	7	8	
D	IN-U	G	0	0	G	0	IJ	υ	0	0	
1	-N+0	0	1	2	2	2	2	2	2	2	
2	1341	0	2	2	2	2	2	2	2	2	
3	-N÷:	0	2	2	3	4	4	4	4	4	2
4	1N-2	0	2	2	4	4	4	4	4	4	
5	-N-2	0	2	2	4	4	5	6	6	5	
6	-N-3	0	2	2	4	4	6	6	6	6	
7	-N-3	0	2	2	4	4	6	6	7	8	1

Inside to Outside

Branc	h Array	0	- 1	2	3	4	5	6	7	3	9
0	0	a	a	2	2	4	4	6	ĥ	8	8
1	-1	0	1	2	2	4	4	5	6	8	8
2	+1	2	2	2	2	4	4	6	6	8	8
3	-2	2	2	2	3	4	4	5	6	8	8
4	+2	4	4	4	4	4	4	6	6	8	8
5	-3	4	4	4	e	4	5	6	5	8	8
6	+3	6	6	6	6	6	6	6	6	8	8
7	-4	6	6	6	fi	6	6	6	7	8	8
8	14	8	8	8	8	5	5	9	E	8	8
			۰	۰	۰					۰	0

Some Periodic Orbits

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

(a):
$$4f$$

(b):
$$4r$$

(c):
$$5f$$

(c):
$$5f$$
 (d): $(4f, 5f)$

Steps in Constructing Scroll Template

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-03

Overview-0

Overview-05

Overview-06

Overview-07

Experimental-

A Simple Two-Parameter Model of Chaotic Nerves

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

02

Overview-02

Overview-04

Overview-0!

Overview 0

Overview-0

Experimental

$$\Phi = \mathsf{Drift}$$
 $\lambda = \mathsf{Stretch}$

Perestroikas of Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

.

Overview-03

. . .

Overview-0

Overview-0

Overview-0

Experimenta

Constraints

Branched manifolds largely constrain the 'perestroikas" that forcing diagrams can undergo.

Is there some mechanism/structure that constrains the types of perestroikas that branched manifolds can undergo?

Perestroikas of Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-0

. . .

Overview-0

Overview 0

Overview-u

Experimenta

Constraints on Branched Manifolds

"Inflate" a strange attractor

Union of ϵ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

Torus and Genus

Alice in Torus, Longitudes, Meridians Stretch &

 M_{α}

Tori are identified by genus g and dressed with a surface flow induced from that creating the strange attractor.

SqueezeLand The Marvels of Topology and Chaos

Flows on Surfaces

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Surface Singularities

Flow field: three eigenvalues: +, 0, -

Vector field "perpendicular" to surface

Eigenvalues on surface at fixed point: +, -

All singularities are regular saddles

$$\sum_{s.p.} (-1)^{\text{index}} = \chi(S) = 2 - 2g$$

fixed points on surface = index = 2g - 2

Singularities organize the surface flow dressing the torus

Flows in Vector Fields

Alice in Flow Near a Singularity Stretch & SqueezeLand The Marvels

of Topology and Chaos

Some Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-I

Overview-03

Overview-0

A

Overview-0

.

Overview

Experimental

Torus Bounding Lorenz-like Flows

Canonical Forms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-(

Overview-0

. . .

Overview-0

Overview-0

Experimenta

Twisting the Lorenz Attractor

(d)

Constraints Provided by Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview-0

Overview 07

Overview-o

Experimenta

Two possible branched manifolds in the torus with g=4.

Labeling Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks.

Transition matrix sum of two g-1 \times g-1 matrices.

Both are g-1 \times g-1 permutation matrices.

They identify mappings of Poincaré sections to P'sections.

Bounding tori labeled by (permutation) group theory.

Some Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-I

. .

Overview 0

Overview-0

Experimental

Bounding Tori of Low Genus

TABLE I: Bnumeration of canonical forms up to genus 9

Snumeration of canonical forms up							
g m :) n1n2ng-1					
1 1	(0)	1					
3 2	(2)	11					
4 3	(3)	111					
5 4	(4)	1111					
5 3	(2,2)	1212					
6.5	(5)	11111					
5 4	(3,2)	12112					
7 6	(6)	111111					
7.5	(4,2)	112121					
7.5	(3,3)	112112					
7 4	(2,2,2)	122122					
7 4	(2,2,2)	131313					
8 7	(7)	1111111					
8 6	(5,2)	1211112					
8 6	(4,3)	1211121					
8 5	(3,2,2)	1212212					
8 5	(3,2,2)	1 221 221					
8 5	(3,2,2)	1313131					
9.8	(8)	11111111					
9 7	(6,2)	111111212					
9 7	(5,3)	11112112					
9 7	(4,4)	11121112					
9 6	(4,2,2)	11122122					
9 6	(4,2,2)	11131313					
9 6	(4,2,2)	11212212					
9 6	(4,2,2)	12121212					
9 6	(3,3,2)	11212122					
9.6	(3,3,2)	11221122					
9 6	(3,3,2)	11221212					
9 6	(3,3,2)	11311313					
9.5	(2,2,2,2)	12221222					
9.5	(2,2,2,2)	12313132					
9 5	(2,2,2,2)	14141414					

Exponential Growth

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

Overview-02

Overview-03

Overview-

Overview-0

Overview-0

Experimental-

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

9 1	N(g)	g	N(g)	g	N(g)
3	1	9	15	15	2211
4	1	10	28	16	5549
5	2	11	67	17	14290
ð	2	12	145	18	3 6 824
7	5	13	3 6 8	19	96347
8	6	14	870	20	252927

Motivation

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview

Overview 0

Overview-0

Overview-us

Overview-(

Overview-07

Experimental

Some Genus-9 Bounding Tori

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction

02

0

Overview-0

Overview 0

Overview-c

Experiment

Aufbau Princip for Bounding Tori

These units ("pants, trinions") surround the stretching and squeezing units of branched manifolds.

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Any bounding torus can be built up from equal numbers of stretching and squeezing units

- Outputs to Inputs
- No Free Ends
- Colorless

Poincaré Section

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Gilmore

Introduction 01

Introduction-

02

Overview-02

Overview-0

Overview-0

. .

Experimental-

Construction of Poincaré Section

P. S. = Union

Components = g-1

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-us

Overview-04

Overview-05

. . .

Overview-0

Experimental

Application: Lorenz Dynamics, g=3

Represerntation Theory Redux

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

Overview-01

Overview-03

overview oo

Overview-0

. . .

Overview-0

Experimenta

Representation Theory for g > 1

Can we extend the representation theory for strange attractors "with a hole in the middle" (i.e., genus = 1) to higher-genus attractors?

Yes. The results are similar.

Begin as follows:

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

O VCI VICVV O.

Overview-o

Overview-us

Overview-06

Overview-07

Experimental

Application: Lorenz Dynamics, g=3

Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview O

. . .

0.00.000

0

Overview-0

. . .

_ .

Experimental

Embeddings

Embeddings

reparations for Embedding tori into

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-0

0.10.1.0.1

Overview-0!

Overview O

Overview-0

Experimenta

Equivalent to embedding a specific class of directed networks into ${\cal R}^3$

Extrinsic Embedding of Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-03

Overview-03

Overview-0

Overview 07

Overview-u*i*

Experimenta

Extrinsic Embedding of Intrinsic Tori

A specific simple example.

Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.

Creating Isotopies

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-0.

Overview-0

0.000.000

0----

Overview-u

Experimenta

Equivalences by Injection Obstructions to Isotopy

Index	R^3	R^4	R^5
Global Torsion	$Z^{\otimes 3(g-1)}$	$Z_2^{\otimes 2(g-1)}$	-
Parity	Z_2	-	-
Knot Type	Gen. KT.	-	-

In R^5 all representations (embeddings) of a genus-g strange attractor become equivalent under isotopy.

Modding Out a Rotation Symmetry

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction

--

Overview-03

Overview-03

Overview-04

Overview-0

Overview-0

Overview-07

Experimental

Modding Out a Rotation Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \to \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Lorenz Attractor and Its Image

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

. . .

Overview-0

Overview-0

Overview-0

Overview-0

Overview 0

Overview-07

Experimental

Lifting an Attractor: Cover-Image Relations

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-

Introduction

02

Overview-03

Overview-us

Overview-0

Overview-u

0

Overview-07

Experimenta

Creating a Cover with Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \leftarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Cover-Image Related Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview 0

Overview-0

. . .

Experimenta

Cover-Image Branched Manifolds

Covering Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Two Two-fold Lifts Different Symmetry

Rotation Symmetry

Inversion Symmetry

Topological Indices

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-(

Overview-02

Overview-0

0.000.000

Experimental

Topological Index: Choose Group Choose Rotation Axis (Singular Set)

Locate the Singular Set wrt Image

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

0

Overview-0

0.000.000

Overview-0

Experimental

Different Rotation Axes Produce Different (Nonisotopic) Lifts

Nonisotopic Locally Diffeomorphic Lifts

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction
01

Introduction-

Overview-I

Overview-02

Overview-u

Overview-u

Overview-0

Overview-0

Overview-0

Experimental-

(0,1)(1,1)**Indices** and

Two Two-fold Covers Same Symmetry

Stretch & SqueezeLand The Marvels of Topology and Chaos

Alice in

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-0

Overview-0

Overview-0

Overview-0

Overview-0

Two Inequivalent Lifts with V_4 Symmetry

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

. .

Overview-0

Overview-0

Overview-0

Overview-0

Experimental-

How to Construct Covers/Images

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Algorithm

- Construct Invariant Polynomials, Syzygies, Radicals
- Construct Singular Sets
- Determine Topological Indices
- Construct Spectrum of Structurally Stable Covers
- Structurally Unstable Covers Interpolate

Surprising New Findings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

. . ..

Overview-02

Overview-03

Overview-0!

Overview-0

Overview-0

Experimenta

Symmetries Due to Symmetry

- Schur's Lemmas & Equivariant Dynamics
- Cauchy Riemann Symmetries
- Clebsch-Gordon Symmetries
- Continuations
 - Analytic Continuation
 - Topological Continuation
 - Group Continuation

Covers of a Trefoil Torus

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0

Overview-0!

. . .

Overview-07

Experimental

Granny Knot

Square Knot

Trefoil Knot

You Can Cover a Cover = Lift a Lift

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Covers of Covers of Covers

Universal Branched Manifold

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

. .

Overview-0

. . .

Overview-0

Overview-0

Experimenta

EveryKnot Lives Here

Isomorphisms and Diffeomorphisms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-04

Overview-0

. . .

Overview-0

F

Experimenta

Local Stuff

Groups:
Local Isomorphisms
Cartan's Theorem

Dynamical Systems:
Local Diffeomorphisms

??? Anything Useful ???

Universal Covering Group

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

02

Overview-02

Overview-03

Overview-05

Overview 0

0 ve. v.e.v 0

Experimenta

Cartan's Theorem for Lie Groups

Universal Image Dynamical System

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0!

Experimenta

Locally Diffeomorphic Covers of \underline{D}

<u>D</u>: Universal Image Dynamical System

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-C

verview-0

Jverview-04

Overview-0

Overview-0

verview-0

Experimenta

Local Isomorphisms & Diffeomorphisms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Gilmore

Introduction 01

Introduction 02

Overview-0

o . . .

veniew 0

o ve. v.e.v o

Overview 0

Overview-0

Experimenta

Local Isomorphisms & Diffeomorphisms

Lie Groups

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

0

Overview-0

Overview-u

Overview-u

Experimenta

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction
02

.

Overview-0

.

Overview-0

Experimenta

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-oc

Overview-0

. . .

Overview-0

Experimenta

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms Local Diffeos

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Local Isomorphisms & Diffeomorphisms

Lie Groups

Dynamical Systems

Local Isomorphisms Local Diffeos

Creating New Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Rotating the Attractor

$$\frac{d}{dt} \left[\begin{array}{c} X \\ Y \end{array} \right] = \left[\begin{array}{c} F_1(X,Y) \\ F_2(X,Y) \end{array} \right] + \left[\begin{array}{c} a_1 \sin(\omega_d t + \phi_1) \\ a_2 \sin(\omega_d t + \phi_2) \end{array} \right]$$

$$\begin{bmatrix} u(t) \\ v(t) \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t \\ \sin \Omega t & \cos \Omega t \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = R\mathbf{F}(R^{-1}\mathbf{u}) + R\mathbf{t} + \Omega \begin{bmatrix} -v \\ +u \end{bmatrix}$$

$$\Omega = n \ \omega_d$$

$$q \Omega = p \omega_d$$

Global Diffeomorphisms

Local Diffeomorphisms (p-fold covers)

Another Visualization

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-0

Overview-03

Overview-0!

0

Experimental

Cutting Open a Torus

Satisfying Boundary Conditions

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-0

. . .

Overview-0

Overview 0

Overview-07

Experimental

Global Torsion

Two Phase Spaces: R^3 and $D^2 \times S^1$

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Overview 02

0.000.000

Overview-0

Overview of

Overview-0

Experimenta

Rossler Attractor: Two Representations

Other Diffeomorphic Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-03

Overview-0

OVERVIEW OF

Overview-0

Experimental

Rossler Attractor:

Two More Representations with $n = \pm 1$

Subharmonic, Locally Diffeomorphic Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

02

Overview-02

Overview-03

Overview-0

Overview of

Overview-0

Experimental

Rossler Attractor:

Two Two-Fold Covers with $p/q = \pm 1/2$

Subharmonic, Locally Diffeomorphic Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Rossler Attractor:

Two Three-Fold Covers with p/q = -2/3, -1/3

Subharmonic, Locally Diffeomorphic Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-us

Overview-us

Overview-0

Experimental

Rossler Attractor:

And Even More Covers (with p/q = +1/3, +2/3)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction

Overview-u

. . .

Overview-04

Overview-05

. . .

Overview-07

Experimental-

Angular Momentum and Energy

$$L(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} X dY - Y dX \quad K(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{1}{2} (\dot{X}^2 + \dot{Y}^2) dt$$

$$L(\Omega) = \langle u\dot{v} - v\dot{u}\rangle$$
 $K(\Omega) = \langle \frac{1}{2}(\dot{u}^2 + \dot{v}^2)\rangle$

$$= L(0) + \Omega \langle R^2 \rangle$$

$$= K(0) + \Omega L(0) + \frac{1}{2} \Omega^2 \langle R^2 \rangle$$

$$\langle R^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (X^2 + Y^2) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (u^2 + v^2) dt$$

New Measures, Diffeomorphic Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

. .

O VCI VICW O

Overview-0

0.000.000

. . .

Overview-07

Experimental

Energy and Angular Momentum

Diffeomorphic, Quantum Number n

New Measures, Subharmonic Covering Attractors

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Energy and Angular Momentum Subharmonics, Quantum Numbers p/q

Representations

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

-

Overview-03

0.000.000

Overview-0

. . .

Overview-0

Experimenta

Representations

An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension

Representations

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

_

Overview-0

Overview-0

Overview-0

. .

Overview 0

Experimental

Representations

We know about representations from studies of groups and algebras.

We use this knowledge as a guiding light.

Representation Labels

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

. .

Overview-0

Overview-06

Overview-07

Experimental

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT

$$\Gamma^{P,N,KT}(\mathcal{SA})$$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

Representation Labels

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-

Overview-0

0

Overview-04

Overview-05

Overview 0

Experimental

Global Torsion & Parity

Inequivalence in \mathbb{R}^3

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-0

Overview-0

0.000.000

Overview-0

Experimental

Inequivalence in R³

Creating Isotopies

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-0

0 10111011 0

Overview-0

Experimenta

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension (irreducible representations).

Are these obstructions removed by injections into higher dimensions (reducible representations)?

Systematically?

Equivalences

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview 0

Overview-02

Overview-03

Overview-04

Overview-0

Overview-0

Overview-0

Experimental

Crossing Exchange in R^4

Parity reversal is also possible in \mathbb{R}^4 by isotopy.

Isotopies

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-02

Overview-0

Overview-0

. . .

Overview-0

Experimenta

2 Twists = 1 Writhe = Identity

Z

 \longrightarrow

 Z_2

Global Torsion \longrightarrow Binary Op

Creating Isotopies

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

Overview-0

Overview-0

. . .

Overview-0

Overview-0

Overview-07

Experimenta

Equivalences by Injection Obstructions to Isotopy

 R^3 o R^4 o R^5 Global Torsion Global Torsion Parity Knot Type

There is one *Universal* reducible representation in R^N , $N \geq 5$. In R^N the only topological invariant is *mechanism*.

Overview-01

Alice in Stretch & What We Did

SqueezeLand The Marvels of Topology

and Chaos

01

Introduction

Overview-01

Overview-0

Overview-0

Overview-05

Overview-0

Overview-0

Experimen 01

Overview-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

.

Overview-0

Overview-0

Overview-05

Overview-0

Experiment

What We Found

Rössler Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-(

Overview-02

Overview-0

Overview-0

Overview-0!

Overview-06

Overview-07

Experimental

Rössler Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-

. . .

Overview 0

Overview-us

Overview-00

Overview-0

Experimenta

Rössler Attractor - Return Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Lorenz Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-0

Overview-04

Overview-0!

Overview 0

Experimental

Return Map for Lorenz Attractor

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

· · · · · · · ·

O vei view-o.

O VCI VICW O

Experimenta

Image of Lorenz Return Map

To be supplied

Comparison-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Stability Regions

BigView: Logistic Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction-

02

Overview-02

Overview-04

O VCI VICW OC

Overview 06

Overview-07

Experimental-

BigView: Knife Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-02

. . .

Overview-04

Overview 03

Overview-07

Experimental na

Comparison-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Stability Regions

Logistic-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

Overview-05

Overview-07

Overview-or

Experimental

Return Map - Rössler Attractor

Image Lorenz-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-0

Overview-0

0.000.000

. . ..

O VCI VICW O

Experimental

Return Map - Lorenz Image

Logistic 02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

Overview-0!

Overview oc

Overview-0

Experimental

Return Map Approximations

The Rossler return map is well approximated by the following maps:

$$x' = \lambda x (1 - x)$$

$$x' = a - x^2$$

$$x' = 1 - \mu x^2$$

$$x' = 1 - \left| \frac{x - m}{w} \right|^2$$

Image Lorenz-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

-

Overview 0

Overview-0

Overview-0

Overview-0

Overview-(

Overview-C

Experimenta

Image of Lorenz Return Map

The image of the Lorenz return map is well approximated by the following maps:

$$y' = b - |y|^{1/2}$$

$$y' = 1 - \mu |y|^{1/2}$$

$$y' = 1 - \left| \frac{y - m}{w} \right|^{1/2}$$

Side by Side-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Comparison:

Logistic & Knife Maps

Logistic Map

Knife Map

$$x' = f(x; a) = a - (|x|)^2$$

$$x' = f(x; a) = a - (|x|)^2$$
 $y' = f(y; b) = b - (|y|)^{1/2}$

Logistic-04

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction-

Overview-0

. .

. .

Overview-0

Overview-0

Overview 07

O VCI VICVV OI

Experimental

... for several values of a

Image Lorenz-04

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Knife Return Maps

Knife Return Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-0

. .

Overview-0

Overview-0

Overview-05

Overview-0

Overview-07

Experimental

Second Return Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview-0

Overview-05

Overview-0

Experimental

Period 1 & 2 Orbits - Logistic

Bifurcation-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Bifurcation Diagram

Bifurcation-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

.. Blow Up with Caustics

Bifurcation-03

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Knife Map - Bifurcation Diagram

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-

Introduction-

Overview-02

. .

Overview-0

Overview-0!

Overview 07

Experimenta

Fixed Points (Knife)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

02

Overview 0

Overview-0

Overview-0!

Overview-0

Experimental

Second Iterates - Knife Map

Skeleton-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Period-One & Period-Two Orbits

Skeleton-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Attractor boundary (Knife)

> Robert Gilmore

Introduction-

Introduction-

Overview-0

Overview-02

Overview-us

Overview 0

Experimental

Attractor Boundaries - Logistic

Boundaries for the Basin of Attraction

Rite of Passage-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-0

Overview-u

Overview-0!

Overview-07

Experimental

Forcing Diagram - Horseshoe

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0

Overview-05

Overview 06

Overview-07

Experimental

Forcing Diagram - Horseshoe

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

. . .

Overview-0

Overview-0

Experimental

Table: Values $M^{(p)}$ of y where the pth iterate $f^{(p)}(y;b)$ has maxima. These locations are determined by a simple recursion relation (last line) where the indices $s_p=\pm 1$ are incoherent.

p	Number Max.	Coordinate Values
1	1	0
2	2	$\pm b^2$
3	4	$\pm (b \pm b^2)^2$
	• • •	• • •
p+1	2^p	$M^{(p+1)} = s_p(b + M^{(p)})^2$

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-02

Overview 02

Overview-03

Overview-0

Overview-0

Overview-(

Overview-0

Experimental

As $p\to\infty$, with all $s_j=+1$, the abscissa of the rightmost point goes to a limit. The quadratic equation for this limit gives:

$$y(b) = \left(\frac{1}{2} - b - \sqrt{\frac{1}{4} - b}\right)$$

At $b=\frac{1}{4}$ the bounding box is a square — beyond that the diagonal fails to intersect all the zig - zags. Orbits begin to gen pruned away in singulr saddle node bifurcations.

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-0

Overview-0

Overview-0

Overview-0

Overview-07

Experimental

Structural Stability: $0 < b < \frac{1}{4}$

Knife Map, fifth iterate at b=0.15

Rite of Passage-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-

Overview-0

O ver view-o.

Overview-05

Overview-06

Overview-07

Experimental

End Play - Near b=1

Rite of Passage-03

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Iterates Near b=1

implosion1

Renormalization-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-0

Overview-0

Overview-05

Overview-07

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Structural Stability: $\frac{3}{4} < b < 1$

Knife Map: 10th iterate near y=0

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-04

Overview-05

Overview-06

Overview-07

Experimental-

Hunt for Saddle-Node Bifurcations Caustic Crossings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

Overview-0!

Overview-06

Overview-07

Experimental

Hunt for Singular SNBs

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

<u>-</u>

Overview-02

Overview-u.

Overview-04

Overview-05

Overview-u

Experimental

Anti Caustic Crossings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-0

0

Overview-0!

Overview-07

Experimental-

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-0

Overview-0

Overview-0

. . .

Overview-0!

O VCI VICW OC

Overview-07

Experimental

Period Three Singular SNB

Renormalization-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-us

Overview-05

Overview-0

Experimenta

Local expression near y = 0 for the period-three explosion:

$$h(y;b) = f^{(3)}(y;b) = b - \sqrt{|b - \sqrt{|b - \sqrt{|y|}|}}$$

$$h(b_3 + \epsilon; y) \rightarrow \left(b_3 - \sqrt{\sqrt{b_3} - b_3}\right) +$$

$$\left(1+\frac{2\sqrt{b_3}-1}{4\sqrt{\sqrt{b_3}-b_3}\sqrt{b_3}}\right)\epsilon + \left(\frac{1}{4\sqrt{\sqrt{b_3}-b_3}\sqrt{b_3}}\right)\sqrt{|y|}$$

Renormalization-03

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Overview-0

Overview-0

Overview-

Overview-0

Overview-

Overview-C

Experiment

Renormalization for the period-three explosion.

$$y' = h(y; b_3 + \epsilon) \rightarrow \Delta(b - b_3) + \alpha \sqrt{|y|} =$$

$$1.286974759(b - b_3) + 0.7869747590\sqrt{|y|}$$

$$z' = (\Delta/\alpha^2)(b_3 - b) - \sqrt{|z|}$$

> Robert Gilmore

Introduction-01

Introduction

Overview 0

Overview-02

Overview-03

Overview-05

Overview-06

Overview-07

Experimenta

Renormalization Algorithm: K10*

- ① Write down the symbol sequence for the primary period-p orbit: $K10* = K\sigma_1\sigma_2\cdots\sigma_{p-1}$.
- 2 Make the identification $\sigma = +1 \rightarrow s = +1, \sigma = 0 \rightarrow s = -1.$
- **3** Construct $f^{(p)}(b;y) \rightarrow$

$$b - \sqrt{s_{p-1}(b - \cdots \sqrt{s_2(b - \sqrt{s_1(b - \sqrt{y})})} \cdots)}$$

4 Taylor expand this function to terms linear in b and \sqrt{y} and determine the value of b for which the constant term vanishes.

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-0

Overview-0

Overview-o.

Overview-0

Experimenta

Equations: K10*

For the saddle node pair $5_2=K1001$ this algorithm gives

$$b - \sqrt{(+1)(b - \sqrt{(-1)(b - \sqrt{(-1)(b - \sqrt{y})})})}$$

The constant term vanishes for b=0.418656, and for this value of b

$$y' = \Delta(b - b_{5_2}) + \alpha\sqrt{|y|} = -3.231180\Delta b - 1.983690\sqrt{|y|}$$

> Robert Gilmore

Introduction-01

Introduction

Overview 0

Overview-0

Overview-o.

Overview-u

Overview-c

0

Overview-u

Experimenta 01

Results: K10* to Period 6

$$y' = \Delta(b - b_c) + \alpha \sqrt{|y|}$$
 $y', y \simeq 0$

Orbit	Symbolics	b_c	Δ	α
$\overline{}_{3_1}$	K10	0.465571	1.286974	0.786974
4_2	K100	0.360157	2.624703	1.180563
5_3	K1000	0.318897	4.647225	1.664335
5_2	K1001	0.418656	-3.231180	-1.983690
5_1	K1011	0.513175	2.628970	1.509712
6_5	K10000	0.297846	7.481728	2.233184
6_4	K10001	0.340328	-8.535145	-3.639587
6_3	K10011	0.380540	7.596535	3.574548

Renormalization-07

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-

Overview-

Overview-0

. . .

0

0.00.000

Experiment

Renormalization for the final period-two explosion.

$$f^{(2)}(1-\epsilon,y) \simeq -\frac{\epsilon}{2} + \left(\frac{1}{2} + \frac{\epsilon}{4}\right)\sqrt{|y|}$$
 (1)

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview 0

Overview-0

Overview-03

Overview-us

Overview-or

Experimenta

Hunt for Saddle-Node Bifurcations

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Hunt for S. Saddle-Node Bifurcations

Important Markers **Breakpoints**

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

Overview-03

Overview-

Overview-05

Overview-0

Overview-0

Experimental

Table: Important parameter values for global stability and unstable periodic orbit behavior.

Global Stability	Unstable Orbits		
	0.0		
1/4	1/4		
	0.5957439420		
3/4			
·	0.7825988587		
	1.0		

U Sequence

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction 02

Overview-02

Overview-03

Overview-05

Overview-07

Experimental-

Table 2.1 Sequence of bifurcations in the logistic map up to period 8 (from top and to bottom and left to right)^a

Name	Bifurcation	Name	$_{\varsigma}$ Bifurcation	Name	Bifurcation
0	$1_1[s_1]$	00101 01	$7_3[s_7^3]$	0001 11	$6_4[s_6^3]$
· 01	$2_1[s_1 \times 2^1]$	001010 01	$8_5[s_8^4]$	000111 11	$8_{11}[s_8^9]$
0111	$4_1[s_1 imes 2^2]$	001 01	$5_2[s_5^2]$	00011 11	$*7_{7}[s_{7}^{7}]$
01010111	$8_1[s_1 \times 2^3]$	001110 1	$8_6[s_8^5]$	000110 1	$8_{12}[s_8^{10}]$
0111^{0}_{1}	$6_1[s_6^1]$	00111 01	$7_4[s_7^4]$	000 11	$5_3[s_5^3]$
011111 Ŷ1	$8_2[s_8^1]$	001111 91	$8_7[s_8^6]$	000010 11	$8_{13}[s_8^{11}]$
$01111^{\frac{5}{1}}$ 1	$7_1[s_7^1]$	0011 ⁰ 1	$6_3[s_6^2]$	00001 01	$7_8[s_7^8]$
$011^{\frac{5}{1}}1$	$5_1[s_5^1]$	001101 1	$8_8[s_8^7]$	000011 11	$8_{14}[s_8^{12}]$
$01101^{0}1$	$7_2[s_7^2]$	00110 1	$7_5[s_7^5]$	0000 11	$6_5[s_6^4]$
011011 1	$8_3[s_8^2]$	00 1	$4_2[s_4^1]$	000001 11	$8_{15}[s_8^{13}]$
0 1	$3_1[s_3]$	00010011	$8_9[s_4^1 \times 2^1]$	00000 01	$7_9[s_7^9]$
001011	$6_2[s_3 \times 2^1]$	00010 11	$7_6[s_7^6]$	000000 1	$8_{16}[s_8^{14}]$
$001011_{1}^{0}1$	$8_{4}[s_{8}^{3}]$	000101 11	$8_{10}[s_8^8]$	_	

^aThe notation P_i refers to the *i*th bifurcation of period P. We also give inside brackets an alternative classification that distinguishes between saddle-node and period-doubling bifurcations. In this scheme, the *i*th saddle-node bifurcation of period P is denoted s_P^i , and $s_P^i \times 2^k$ is the orbit of period $P \times 2^k$ belonging to the period-doubling cascade originating from s_P^i .

Endplay-01

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

. . .

Overview-0

. .

A

0

Overview-01

Experimental

Symbol Exchange Near Endplay

Endplay-02

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction 02

Overview-01

Overview-03

Overview-0

Overview-C

Overview-0

Experimenta

Symbol Exchange Near Endplay

- Symbols 0, 1 created at b=0
- New orbit, (11), created at $b=\frac{3}{4}$
- ullet Symbol pair 11 -, replaced by (11) as b o 1
- Implosions begin at b=0.5957..., end at midpoin.
- Explosions begin at midpoint, end at b = 0.7825...
- Implosions and explosions symmetrically matched

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-0

Overview O

Overview-0

Overview O

Experimental

.

Overview-02

Overview-03

Overview-05

Overview-06

Overview-07

Experimental

Return Map Approximations

The Rossler return map is well approximated by the following maps:

$$x' = \lambda x (1-x)$$

$$x' = a - x^2$$

$$x' = 1 - \mu x^2$$

$$x' = 1 - \left| \frac{x - m}{w} \right|^2$$

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

Overview-C

Overview-02

Overview-03

Overview-0

Overview-05

Overview-0

Overview-0

Experimental

Image of Lorenz Return Map

The image of the Lorenz return map is well approximated by the following maps:

$$y' = b - |y|^{1/2}$$

$$y' = 1 - \mu |y|^{1/2}$$

$$y' = 1 - \left| \frac{y - m}{w} \right|^{1/2}$$

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction-02

Overview 03

Overview-0

Overview-I

Overview-0

Experimenta

Class of Lopsided Maps

$$x' = f(x; k, a) = 1 - \left| \frac{x - m}{w} \right|^k$$

- **1** Zero crossings at x=+1 and x=a, $-1 \le a \le 0$
- 2 Maximum at $m = \frac{1+a}{2}$
- **3** Half-width $w = \frac{1-a}{2}$

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-0

Overview O

Overview-0

Overview O

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

Overview-0

. . .

Overview-0

Overview-0!

Overview 06

Overview-07

Experimental-

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-0.

. . .

Overview-o

Experimenta

Map Comparisons

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

-

Overview-02

. . .

Overview-04

Overview-05

Overview-07

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

02

Overview-02

Overview-0

Overview-0

Overview-05

o ve. v.e.v o.

Experimental

Forcing Diagram - Horseshoe

Superstable Orbits for Logistic Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-0

Overview-0

Overview-05

Overview-07

Experimental

Forcing Diagram - Horseshoe

Homoclinic Orbits, Lorenz-Image Map

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

02

Overview-02

Overview-0

Overview-0

0 . 0-

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction-

02

Overview-02

Overview-0

Overview-0

Overview-05

. . ..

Overview-07

Evporimental

Experimenta

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-03

Overview-0

Overview-05

. . ..

Overview-07

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

02

Overview-0

Overview-0

Overview-05

Overview-07

Experimental

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

. . .

Overview-02

Overview-0

Overview-i

Overview-05

Overview-ou

Overview-07

Experimental

Comparison: Logistic and Knife

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-03

Overview-0

. . .

Overview-0

Experimenta

Scaling

- Logistic: SNB Period 3 = scaled version SNB of M.
- Renormalization theory applies.
- U Sequence
- Knife: S-SNB Period 3 = scaled version S-SNB of K.
- Renormalization theory applies.
- U^{-1} Sequence

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-03

2 . . .

Overview-0

0 10 11 10 11 0

Overview-0

Experimental

Summary

1 Question Answered ⇒

2 Questions Raised

We must be on the right track!

Our Hope

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-0

Overview-07

Experimenta

Result

There is now a classification theory for low-dimensional strange attractors.

- 1 It is topological
- 2 It has a hierarchy of 4 levels
- 6 Each is discrete
- There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

J vei view-u.

0.0000000

Overview-05

Overview-07

Experimenta

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

The Classification Theory has 4 Levels of Structure

Basis Sets of Orbits

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview 0

O VCI VICW O

O VEI VIEW O

. . .

Overview-o

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

J2

Overview 02

.

Overview-0

Overview 0

Overview-0

Overview-o

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

. . .

Overview-0

Overview-0

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction-

-

Overview-03

0

O VCI VICVV O.

Overview-u

Overview-0

Overview-0

Experimental-

Topological Components

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

--

Overview-03

Overview-0

Overview-0

0 10111011 0

Overview-0

Experimental

Poetic Organization

organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS

Answered Questions

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

There is a Representation Theory for Strange Attractors

There is a complete set of respessentation labels for strange attractors of any genus q.

The labels are complete and discrete.

Representations can become equivalent when immersed in higher dimension.

All representations (embeddings) of a 3-dimensional strange attractor become isotopic (equivalent) in \mathbb{R}^5 .

The *Universal Representation* of an attractor in \mathbb{R}^5 identifies mechanism. No embedding artifacts are left.

The topological index in \mathbb{R}^5 that identifies mechanism remains to be discovered.

Answered Questions

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction

Jverview-01

Overview-02

Overview-03

Overview-0

. . .

Overview-07

Experimenta

Some Unexpected Results

- Perestroikas of orbits constrained by branched manifolds
- Routes to Chaos = Paths through orbit forcing diagram
- Perestroikas of branched manifolds constrained by bounding tori
- ullet Global Poincaré section = union of g-1 disks
- Systematic methods for cover image relations
- Existence of topological indices (cover/image)
- Universal image dynamical systems
- NLD version of Cartan's Theorem for Lie Groups
- Topological Continuation Group Continuuation
- Cauchy-Riemann symmetries
- Quantizing Chaos

Unanswered Questions

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction 02

Overview-02

Overview-03

Overview-0

Overview-00

Overview-0

Experimental

We hope to find:

- Robust topological invariants for \mathbb{R}^N , N>3
- A Birman-Williams type theorem for higher dimensions
- An algorithm for irreducible embeddings
- Embeddings: better methods and tests
- Analog of χ^2 test for NLD
- Better forcing results: Smale horseshoe, $D^2 \to D^2$, $n \times D^2 \to n \times D^2$ (e.g., Lorenz), $D^N \to D^N$, N>2
- Representation theory: complete
- Singularity Theory: Branched manifolds, splitting points (0 dim.), branch lines (1 dim).
- Singularities as obstructions to isotopy

Thanks

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introductior 02

Overview-01

Overview-02

Overview-0.

Overview-0

. . .

Overview-0

Overview-u

Experimenta

To my colleagues and friends:

Jorge Tredicce Hernan G. Solari Nick Tufillaro Francesco Papoff Marc Lefranc Tsvetelin D. Tsankov Daniel Cross Elia Eschenazi
Gabriel B. Mindlin
Mario Natiello
Ricardo Lopez-Ruiz
Christophe Letellier
Jacob Katriel
Tim Jones

Thanks also to:

NSF PHY 8843235 NSF PHY 9987468 NSF PHY 0754081

Folding - Squeezing - Global torsion

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction 01

Introduction

Overview-03

Overview-0

Overview-07

_ . .

Experimental

Basic Stretch - Fold - Roll Template

FIG. 1. (Color online) Typical scheme of a template.

Javier Used and Juan Carlos Martin, Multiple topological structures of chaotic attractors ruling the emission of a driven laser, Phys. Rev. E82, 016218 (2010).

Three Branch Template

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction

Overview-

. . .

Overview-0

. . .

Overview 0

Overview-o.

Experimenta

The "S" Folding Mechanism

FIG. 2. (Color online) Scheme of a template with three branches and an S folding process.

Folding Possibilities

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction-01

Introduction-

02

Overview 03

Overview-03

Overview-0

Overview-0!

Overview-0

Overview-C

Experimental

2 Branches & 3 Branches

TABLE I. (Color online) Folding processes characteristic of the different species of templates treated in this work.

Species	Horseshoe	Reverse horseshoe	Out-to-in spiral	In-to-out spiral	Staple	S
Code in Fig. 1			11111	Not found here	599988	
Insertion matrix	(0.1)	(1-0)	(0 2 1)	(1 2 0)	(0 2 1) or (1 2 0)	(2 1 0)
Sketch of the folding process	\$				*	

Resonance Regions & Behavior

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

. .

Overview-0!

0 10.11.0... 0

_

Experimental

Spectrum of Behaviors in Resonance Regions

Modulation frequency normalized to the natural frequency

Return Maps

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction

Introduction-

02

Overview-

Overview o

Overview-0

. . .

Experimenta

Constraints:

Poincaré Sections

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

Robert Gilmore

Introduction

Introduction

Overview-0

Overview-02

Overview-0

. . .

Overview-u

0

Overview-o

Experimenta

Poincaré Sections & Periodic Orbits

Return Maps on Poincaré Sections

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

"Generating" Partition

Symbol Sets - Periodic Orbits

Attractor Intersections

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

_

Overview-02

Overview-03

. . .

Overview-0

Overview-(

Overview-0

Experimental

20 Equally-Spaced Planes

Table of Linking Numbers

Alice in Stretch & SqueezeLand The Marvels of Topology and Chaos

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-0

O

Overview-0

Overview 0

Overview-0

Experimental

Linking Numbers for Certain Orbits

TABLE II. Linking numbers between the UPOs extracted from the time series corresponding to pump modulation frequency f = 4.25 KHz and modulation index m = 0.73.

	ō	10	3a	100	1000	10010	6a	1001010	8a
ō	0								
10	9	9							
3a	14	28	28						
100	14	28	42	28					
100	18	37	56	56	55				
10010	23		70		92	92			
ба	28	56			112		139		
1001010	32		98		129			194	
8a	37	74	111	111	148				259