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Abstract

Chaos: What
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Learned?

Girmere Abstract
ot Analysis of experimental data from many physical systems
(lasers, chemical reactions, electrical circuits, vibrating strings)
has lead to a deeper understanding of low-dimensional strange
attractors and their perestroikas. They can now be classified.
The classification is topological, with four levels of structure.
Each is discrete. The signatures that identify these levels can
be and have been extracted from experimental data. These
advances have raised additional questions that require new
mathematics for their resolution.
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Overiewa1 Can you explain my data?

I dare you to explain my data!
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Our Hope
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Construct a simple, algorithmic procedure for:
o Classifying strange attractors

@ Extracting classification information

from experimental signals.
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Our Result
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There is now a classification theory.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
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@ It is applicable to R? only — for now
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e Basis Sets of Orbits
e Branched Manifolds
e Bounding Tori

e Extrinsic Embeddings
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Girmere Cover and Image Relations
Continuations: Analytical, Topological, Group

Cauchy Riemann & Clebsch-Gordonnery for Dynamical
Systems

“Quantizing Chaos”

©6 o000

Representation Theory for Dynamical Systems

What Do We Need to Learn?
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Results, Single Experiment

Chaos: What

o e Bifurcation Schematics

Learned?

Robert

Gilmore

S {arb. units)




Some Attractors

gl Coexisting Basins of Attraction

Robert

Gilmore

S

e
“. 4
1 S N\
N ‘ '
l

._ 'E.‘._ A ‘- - }-J-.-CD—.——A..—- - .u-‘:. -
085 1 LesN




Many Experiments
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Real Data
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Mechanism




Time Evolution

oo Rotating the Poincaré Section

Learned?

Rober around the axis of the torus

Gilmore

(ay




Time Evolution
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Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.
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Chaos

Motion that is

e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor
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The @ limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange Attractor



UPOs: Skeletons of Strange Attractors
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UPOs: Skeletons
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Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Dynamics and Topology
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# Interpretations of LN ~ # Mathematicians in World



Linking Numbers

9l Linking Number of Two UPOs
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trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Mechanisms for Generating Chaos
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Motion of Blobs in Phase Space
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Collapse Along the Stable Manifold
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Fundamental Theorem
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If:

Then:
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If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem
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A flow @(x)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem
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e We Conclusions, B-W Theorem
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e The projection maps the strange attractor SA onto a
2-dimensional branched manifold BM and the flow ®;(x) on
SA to a semiflow ®(z); on BM.

e UPOs of ®4(x) on SA are in 1-1 correspondence with UPOs
of ®(x); on BM. Moreover, every link of UPOs of (®;(z),S.A)
is isotopic to the correspond link of UPOs of (®(x);, BM).

Remark: “One of the few theorems useful to experimentalists.”



A Very Common Mechanism
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A Mechanism with Symmetry
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Learned?

Robert

Gilmre Attractor Branched Manifold




Examples of Branched Manifolds

Inequivalent Branched Manifolds

(a)




Aufbau Princip for Branched Manifolds
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2. BRANCH
LINE

FLCAW

subject to the conditions:
e QOutputs to Inputs

e No Free Ends
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(a) Rdssler Equations




Dynamics and Topology
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Dynamics and Topology
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4
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Topological Analysis Program
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Fove e Topological Analysis Program
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Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Additional Steps

Model the Dynamics
Validate the Model
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Embeddings

Hove e Embeddings
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Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding



Locate UPOs

e e An Embedding and Periodic Orbits
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Figure 5. Lefi: a chaotic attractor reconstructed from a time series from a chaotic laser : Right : Superposition
of 12 perodic orbits of perods from 1w 10



Determine Topological Invariants

gl Linking Number of Orbit Pairs

Learned?

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Determine Topological Invariants

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted fiom
Eelom sov—Zhabotin skii data®

Orbit Symbolics 1 2 3 4 5 a 7 Ba Bh
1 1 ] 1 1 2 2 2 3 4 3
2 o1 1 1 2 3 4 4 7] g ]
3 011 1 2 2 4 ] i T ] 5
4 oi11 2 3 4 ) ] 5 11 13 12
5 01011 2 4 5 & ] 1a 13 16 15
] 011 0na1 2 4 i ] 10 a 14 16 15
7 0101011 3 7] T 11 13 14 18 21 21
Ha 01010111 4 ] i 13 16 18 21 23 24
ik 01011 011 3 ] i 12 15 18 21 24 21

24l indices am negative.
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Determine Topological Invariants

Guess Branched Manifold
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Determine Topological Invariants

Chaos: What

Hove We Identification & ‘Confirmation’
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o BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion



Determine Topological Invariants

e W What Do We Learn?

Learned?
Robert e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




Perestroikas of Strange Attractors
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Evolution Under Parameter Change

m {modulation amplitude)

T — gird el

YAG LASER

FIBER LASER

——

Figure 11. \".ms:m lcrrrpldm observed in two laser experiments. Top left:
. chowi

chematic representation of the
Right: templates ohserved in the

templates observed in the YAG laser cxpcnmcm {only the branches are \nuwn] there is a variation in the
topological organization across one chaotic tongue (39,41
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Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment of the time series containing a periodic orbit of perod 9. Right: embeddi I the '|'.lt.J'ItJdIC.

arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entmopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Last Steps

oo Model the Dynamics
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Robert A hodgepodge of methods exist: # Methods ~ # Physicists

Validate the Model

Needed: Nonlinear analog of y? test. OPPORTUNITY:
Tests that depend on entrainment/synchronization.

I




Our Hope — Now a Result
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

o Extracting classification information

from experimental signals.



Orbits Can be “Pruned”
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Lorenz Shimizu-Morioka
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An Ongoing Problem
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An Ongoing Problem

e W Status of Problem
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Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required



Bounding Tori
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“Inflate” a strange attractor
Union of ¢ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor
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Flows on Surfaces
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Fove e Surface Singularities
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Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2



Flows in Vector Fields
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Flow Near a Singularity

oN
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Canonical Forms
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(b) o



Constraints Provided by Bounding Tori
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Use in Physics
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Tab.1. All known strange attractors of dimension dz < 3 are bounded by one of the standard drezsed tor.
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Multispiral sktractors An {12yl
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Labeling Bounding Tori
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Hove e Labeling Bounding Tori
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Poincaré section is disjoint union of g-1 disks
Transition matrix sum of two g-1 x g-1 matrices
One is cyclic g-1 x g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory
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Aufbau Princip for Bounding Tori
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Rules

o Outputs to Inputs
@ Colorless
@ No Free Ends
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Poincaré Section
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P. S. = Union .

# Components = g-1



Exponential Growth
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TABLE I Mumber of canonical bounding tori as a fune-
bion of genus, 4.

Nigl g Ng) ¢ Nig
1 o 15 15 2211
1 10 28 14 ER4D
2 11 &7 17 14200
2 12 145 18 56524
o]
i)

15 588 19 B6547
14 8v0 20 252027
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Exponential Growth
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Bounding Torus Entropy
LogN(g)(g-1)

T L S S B

Log[N(g)Jie-1y




Extrinsic Embedding of Bounding Tori
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Have We Extrinsic Embedding of Intrinsic Tori
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Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Modding Out a Rotation Symmetry
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Lifting an Attractor: Cover-Image Relations
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Learned?

Robert

Gilmore X u Re (X + ZY)2
Y || v | = Im (X +iv)?
Z w Z
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Cover-Image Related Branched Manifolds

Chaos: What

Have We Cover-Image Branched Manifolds

Learned?

Robert
Gilmore




Covering Branched Manifolds

Chace, Wt Two Two-fold Lifts

Learned?

Robert Different Symmetry

Rotation Inversion

Symmetry Symmetry



Topological Indices

Chaos: What

Have We Topological Index: Choose Group

Learned?

G Choose Rotation Axis (Singular Set)




Locate the Singular Set wrt Image

Chaos: What

Hove Vi Different Rotation Axes Produce
Different (Nonisotopic) Lifts




Nonisotopic Locally Diffeomorphic Lifts

Chaos: What
Have We
Learned?

Robert
Gilmore

{c) p=—2.083 (e) p= —4.166

(b) o = —0.84548 (d) e = ~3.14674




Chaos: What

Hove We Two Two-fold Covers

Learned?

Robert Same Symmetry

Gilmore

0,5

-0,5




fold Covers

, Four-
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Three-




Chaos: What
Have We
Learned?

Robert

Gilmore

Two Inequivalent Lifts with V; Symmetry




How to Construct Covers/Images

Chaos: What .
Fove e Algorithm
Learned?
f‘uburt
Grmere e Construct Invariant Polynomials, Syzygies, Radicals
e Construct Singular Sets
e Determine Topological Indices

e Construct Spectrum of Structurally Stable Covers

e Structurally Unstable Covers Interpolate



Surprising New Findings

Chaos: What

ove Wi Symmetries Due to Symmetry
Learned?

Robert

Gmere @ Schur’'s Lemmas & Equivariant Dynamics

@ Cauchy Riemann Symmetries

o Clebsch-Gordon Symmetries
e Continuations

o Analytic Continuation
o Topological Continuation
e Group Continuation



Covers of a Trefoil Torus

Chaos: What
Have We
Learned?

Square Knot

Trefoil Knot



You Can Cover a Cover = Lift a Lift

Chaos: What

o e Covers of Covers of Covers

Learned?

Robert
Gilmore

Lorenz

Ghrist



Universal Covering Group

Chaos: What

Have We Cartan’s Theorem for Lie Groups

Learned?

Robert
Gilmore Simply connected

Lie group
G
oo
o ~
Multiply = g
=3y =2
connected — — S = = p—
. G/D, G/D,| §.8||E2 o o o G/D,
Lie SR ~
sroups g |
£ ||™
S|
Linearization
"LOG" (unique) Lie

algebra




Universal Image Dynamical System

Chaos: What

Have We Locally Diffeomorphic Covers of D

Learned?

Robert

Gilmore

Do e Dl,{ﬁfGl "o Dg;pll.lng Dg;ﬁf@g - ]

D

D: Universal Image Dynamical System



Creating New Attractors

oo Rotating the Attractor

Learned?

Robert

Gilmore

ag sin(wgt + ¢2)

1X ] [Ban ] [omrson

[ u(t) } _ [ cos Qt  —sin Ot } [X(t) }

sinQt  cosQt Y(t)

i[“]:RF(R—lu)+Rt+Q[ _”]

v +u
Q=nwy qQ=puwy
Global Diffeomorphisms Local Diffeomorphisms

(p-fold covers)



Two Phase Spaces: R? and D? x S*

Chaos: What

A7 Rossler Attractor: Two Representations

Learned?

. R3 D? x §1
F Rossler Attractor, Toroidal Representation
20 E Index (n_1,n_2) = (1,0)
;
E =
Q
Y 18
205 1.5
E 15
2
EI-)
<1
E ] U -
40 E
600 I I Ll I
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x ’ n_1 x Phase Angle / 2 Pi



Other Diffeomorphic Attractors

Chaos: What

Hove We Rossler Attractor:

Learned?

Robert

Gilmore Two More Representations with n=+1

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Tndex (n_l.n_2) = (1,-1) Tndex (n_l.n_2) = (1,+1)

4

2

=
2
=]
R
2
=
<
<

Coordinate u

n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

Chaos: Wha
Hove We. Rossler Attractor:

Learned?

Robert

Gilmore Two Two-Fold Covers with p/q=+1/2

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(2.-1) Index (n_l.n_2) = (2,+1)

Coordinate u
Coordinate u

1
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

Chaos: What

Hove We Rossler Attractor:

Learned?

Robert

S Two Three-Fold Covers with p/q=-2/3,-1/3

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(3.-2) Index (n_l,n_2)=(3.-1)
2 T

Coordinate u

1 2 K 1 2
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

Chaos: What

Hove We Rossler Attractor:

Learned?

Robert

G And Even More Covers (with p/q = +1/3,+2/3)

Rossleer Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_1.n_2) = (3,+1) Index (n_1L,n_2) = (3,4+2)

Coordinate u

1 2 1 2
n_I x Phase Angle /2 Pi n_l x Phase Angle /2 Pi



New Measures

Chaos: Wha
[.avevgst Angular Momentum and Energy

Robert

Gilmore . 1 T 1 . .

| 1 /7 K(0) = lim / —(X24+Y?)dt
L(0) = lim - [ XdY-YdX 0 2

T—00 T 0

_ 2 1
= L(0) + Q(R) = K(0) + QL(0) + 50X
(R?) = lim 1 (X2 +Y?)dt = lim 1 (u? + v?)dt
T—00 T 0

T—00 T 0



New Measures, Diffeomorphic Attractors

Chaos: What

Have We Energy and Angular Momentum

Learned?

Robert

Gilmore

Diffeomorphic, Quantum Number n

Torsion Integral Energy Integral

T T T T T T T T T 7 T T

o
6 ° B 401 o -

Energy Integral
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New Measures, Subharmonic Covering Attractors

Chaos: What

Have We Energy and Angular Momentum

Learned?

Robert

Gimere Subharmonics, Quantum Numbers p/q

Torsion Integral Energy Integral
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Embeddings

oy Embeddings

Robert

Gilmore

An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible")
attractor in somebody’s computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is of Minimum Dimension



Representation Labels

Chaos: What

A Inequivalent Irreducible Representations

Learned?

Robert

Gilmore

Irreducible Representations of 3-dimensional Genus-one
attractors are distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT
FP’N’KT(S.A)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Creating Isotopies

Chaos: What

Have We Equivalent Reducible Representations

Learned?

Robert

Gilmore

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible
representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?



Creating Isotopies

Chaos: What

Fove e Equivalences by Injection

Learned?

Robert

Gimere Obstructions to Isotopy

R4

R3 — R 5
Global Torsion Global Torsion R
Parity (mod 2)

Knot Type

There is one Universal reducible representation in RN, N > 5.
In RY the only topological invariant is mechanism.



The Road Ahead

Chaos: What

e Ve Summary

Learned?

Robert

Gilmore

1 Question Answered = 2 Questions Raised

We must be on the right track !



Our Hope

Chaos: What

Fove e Original Objectives Achieved

Learned?

Robert

Gilmore

There is now a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

s What Have We Learned?

Robert

Gilmore

There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R? only — for now



Four Levels of Structure

Cmewe The Classification Theory has

Learned?

4 Levels of Structure



Four Levels of Structure

Cmewe The Classification Theory has

Learned?

4 Levels of Structure

@ Basis Sets of Orbits



Four Levels of Structure

Cmewe The Classification Theory has

Learned?
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Gilmore

4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds



Four Levels of Structure

Cmewe The Classification Theory has
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4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
© Bounding Tori



Four Levels of Structure

Cmewe The Classification Theory has

Learned?

Robert

S 4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
© Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

Chaos: What
Have We
Learned?

FORCING OF HORSESHOT:
ORDITS TO PERIOD §



Topological Components

Poetic Organization

eeeeee

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

Chaos: What

e We Some Unexpected Results

Learned?

Robert

Gilmore

@ Perestroikas of orbits constrained by branched manifolds
Routes to Chaos = Paths through orbit forcing diagram
Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)

Universal image dynamical systems

NLD version of Cartan's Theorem for Lie Groups
Topological Continuation — Group Continuation
Cauchy-Riemann Symmetries

Quantizing Chaos

Representation labels for inequivalent embeddings
Representation Theory for Strange Attractors



Unanswered Questions

Chaos: What
Have We o
Learned? o

Robert

Glimere Robust topological invariants for RV, N >3

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D* — n x D? (eg., Lorenz), DV — DN N > 2

@ A new Representation theory

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Catastrophe Theory < Nonlinear Dynamics Connection
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