Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction-

Overview-0

Overview-03

Overview-03

Overview-0!

. . .

Overview 0

Experimental

Experimental-

Chaos: What Have We Learned?

Robert Gilmore

Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu

Colloquium, Department of Applied Mathematics New Jersey Institute of Technology Newark, New Jersey 07102

October 8, 2009

Abstract

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-0!

Overview O

Overview-07

Experimenta 01

Experimenta

Abstract

Analysis of experimental data from many physical systems (lasers, chemical reactions, electrical circuits, vibrating strings) has lead to a deeper understanding of low-dimensional strange attractors and their perestroikas. They can now be classified. The classification is topological, with four levels of structure. Each is discrete. The signatures that identify these levels can be and have been extracted from experimental data. These advances have raised additional questions that require new mathematics for their resolution.

Table of Contents

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction-02

Overview-01

Overview-02

. . ..

Overview Of

Overview-05

Overview-07

Experimental

Experimenta

Outline

- Overview
- ② Experimental Challenge
- Topology of Orbits
- Topological Analysis Program
- Basis Sets of Orbits
- 6 Bounding Tori
- Covers and Images
- Quantizing Chaos
- Representation Theory of Strange Attractors
- Summary

Background

Chaos: What Have We Learned?

Overview-01

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!

Motivation

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview C

Overview-0

. .

Overview-07

Experimenta

Experimenta

Where is Tredicce coming from?

Feigenbaum:

$$\alpha = 4.66920 \ 16091 \dots$$

$$\delta = -2.50290 78750 \dots$$

Experiment

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

Overview 0

Overview-07

Experimenta

Experimenta

Laser with Modulated Losses Experimental Arrangement

Our Hope

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-04

. .

Overview-c

. . .

Overview or

Experimenta

Experimenta

Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Our Result

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

0 10.11.01. 01

Overview-02

Overview-05

Overview-06

Overview-07

Experimenta

Experimenta

Result

There is now a classification theory.

- It is topological
- ② It has a hierarchy of 4 levels
- 6 Each is discrete
- There is rigidity and degrees of freedom
- **5** It is applicable to R^3 only for now

Topology Enters the Picture

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

. . .

Overview-0

Overview-06

Overview-0

Experiment

Experimenta

The 4 Levels of Structure

- Basis Sets of Orbits
- Branched Manifolds
- Bounding Tori
- Extrinsic Embeddings

New Mathematics

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction 02

0 02

Overview-04

Overview-0

Overview-07

Overview-07

Experimental 01

Experimental

What Have We Learned?

- Cover and Image Relations
- 2 Continuations: Analytical, Topological, Group
- Cauchy Riemann & Clebsch-Gordonnery for Dynamical Systems
- "Quantizing Chaos"
- Sepresentation Theory for Dynamical Systems

What Do We Need to Learn?

- Higher Dimensions
- 2 Invariants
- Mechanisms

Experimental Schematic

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview-0

0

Overview-o.

Overview 07

Experimental-

Experimenta

Laser Experimental Arrangement

Experimental Motivation

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

Overview (

. . .

Overview-0

Overview-0

Overview-0

Experimental

01

Experimental-

Oscilloscope Traces

Results, Single Experiment

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-

Overview-0

O

Overview-03

. . .

Overview-0

. . .

Overview-07

Experimental

Experimenta

Bifurcation Schematics

Some Attractors

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview o.

Overview-07

Overview or

Experimental 01

Experimenta

Coexisting Basins of Attraction

Many Experiments

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

02

0

. .

Overview-0

Overview

Overview O

Experimental

Experimental

Real Data

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introductio

Overview-0

Overview-02

Overview-0

Overview-0

Overview-0

Overview-0

Experimenta 01

Experimenta

Experimental Data: LSA

Lefranc - Cargese

Real Data

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introductio

-

Overview-0

Overview O

Overview-0

Overview-0

Experimenta 01

Experimenta

Experimental Data: LSA

Mechanism

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-I

Overview-03

Overview-0

Overview-0

overview o

Overview-07

Experimenta

Experimenta

Stretching & Squeezing in a Torus

Time Evolution

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview-0

Overview-0

Overview-07

Experimental

Experimental

Rotating the Poincaré Section around the axis of the torus

Time Evolution

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview 0

Overview-0

. . .

. . .

Overview-0

Overview 0

Experimental

Experimental

Rotating the Poincaré Section around the axis of the torus

Figure 2. Left: Intersections of a chaotic attractor with a series of section planes are computed. Right: Their evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.

Overview-03

Overview-0

Overview-06

Overview-0

Experimenta

Experimenta

Chaos

Motion that is

• **Deterministic:** $\frac{dx}{dt} = f(x)$

• Recurrent

Non Periodic

• Sensitive to Initial Conditions

Strange Attractor

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-u.

Overview-0

Overview-0

Overview 0

Overview-0

Experimenta 01

Experimenta

Strange Attractor

The Ω limit set of the flow. There are unstable periodic orbits "in" the strange attractor. They are

- "Abundant"
- Outline the Strange Attractor
- Are the Skeleton of the Strange Attractor

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

Overview-0

Overview-02

. . .

Overview-0

Overview-0

Overview 0

Overview-07

Experimental

Experimental

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-

Introduction-

Overview-0

Overview Of

. .

Overview O

Overview 07

0.000.000

Experimental 01

Experimenta

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-

Overview-0

0

Overview

Overview-0

Overview 07

Experimental 01

Experimenta

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-

Overview-0

Overview-03

. . .

Overview-04

Overview-0

Overview Of

Overview-07

Experimental-

Experimental

Skeletons

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

· · · · · ·

Overview-0

Overview-0

Overview-0

Experimenta

Experimenta

UPOs Outline Strange Attractors

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Dynamics and Topology

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-0

Overview-07

Experimenta

Experimental

Organization of UPOs in R^3 :

Gauss Linking Number

$$LN(A,B) = \frac{1}{4\pi} \oint \oint \frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot d\mathbf{r}_A \times d\mathbf{r}_B}{|\mathbf{r}_A - \mathbf{r}_B|^3}$$

Interpretations of LN $\simeq \#$ Mathematicians in World

Linking Numbers

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

02

Overview

. .

Overview-0

Overview-07

Experimental

Experimental

Linking Number of Two UPOs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Mechanisms for Generating Chaos

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

0

Overview-02

Overview 03

Overview-0

Overview-07

Experimenta 01

Experimental

Stretching and Folding

Mechanisms for Generating Chaos

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview O

. .

Overview-0

Overview-07

Experimental

Experimental

Tearing and Squeezing

Motion of Blobs in Phase Space

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-0

Overview 07

Experimental

Experimenta

Stretching — Squeezing

Collapse Along the Stable Manifold

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-0

Overview-(

Overview-0

Overview-u

Overview-07

Experimental 01

Experimental

Birman - Williams Projection

Identify x and y if

$$\lim_{t \to \infty} |x(t) - y(t)| \to 0$$

Fundamental Theorem

Chaos: What Have We Learned?

Birman - Williams Theorem

Introductio 01

Introduction-

erview-02

i view-oc

rview-04

verview-05

Overview-0

Experimenta

Then:

Fundamental Theorem

Chaos: What Have We Learned?

> Robert Silmore

01

Introduction
02

.

Overview-03

Overview 0

Overview-0

Overview-0

01

Experimenta

Birman - Williams Theorem

If: Certain Assumptions

Then:

Fundamental Theorem

Chaos: What Have We Learned?

> bert more

01

Introduction 02

Overview-u

Overview-0

. . .

Overview-0

0

Overview-0

Experiment 01

Experimenta

Birman - Williams Theorem

If: Certain Assumptions

Then: Specific Conclusions

Birman-Williams Theorem

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview (

Overview-C

Overview-0

Evperiments

Experimenta 01

Experiment:

Assumptions, B-W Theorem

A flow $\Phi_t(x)$

- on R^n is dissipative, $\underline{n=3}$, so that $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 < 0$.
- Generates a <u>hyperbolic</u> strange attractor SA

IMPORTANT: The underlined assumptions can be relaxed.

Birman-Williams Theorem

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-01

0.101.1101.02

Overview-03

Overview-0

Overview-0

Overview-0

Experiment

Experimenta

Conclusions, B-W Theorem

- ullet The projection maps the strange attractor \mathcal{SA} onto a 2-dimensional branched manifold \mathcal{BM} and the flow $\Phi_t(x)$ on \mathcal{SA} to a semiflow $\overline{\Phi}(x)_t$ on \mathcal{BM} .
- UPOs of $\Phi_t(x)$ on \mathcal{SA} are in 1-1 correspondence with UPOs of $\overline{\Phi}(x)_t$ on \mathcal{BM} . Moreover, every link of UPOs of $(\Phi_t(x), \mathcal{SA})$ is isotopic to the correspond link of UPOs of $(\overline{\Phi}(x)_t, \mathcal{BM})$.

Remark: "One of the few theorems useful to experimentalists."

A Very Common Mechanism

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-0

Overview-0

.

Overview-0

Experimenta 01

Experimenta

Rössler:

Attractor Branched Manifold

A Mechanism with Symmetry

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-03

. . .

Overview-0

Overview-c

Overview-07

Experimenta

Experimenta

Lorenz:

Attractor Branched Manifold

Examples of Branched Manifolds

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

Overview 0

Overview-0

Overview-0

Overview-0

Overview-07

Experimental

Experimental

Inequivalent Branched Manifolds

Aufbau Princip for Branched Manifolds

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-03

Overview-04

Overview-0

Overview 0

Experimental

Experimental-

Any branched manifold can be built up from stretching and squeezing units

subject to the conditions:

- Outputs to Inputs
- No Free Ends

Dynamics and Topology

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview-0

. . .

Overview-07

Experimental 01

Experimental

Rossler System

 $\frac{dx}{dt} = -y - \epsilon$

 $\frac{\mathrm{d}y}{\mathrm{d}i}=x+ay$

 $\frac{dz}{dt} = b + z(z-a)$

(f)

 $\begin{bmatrix}
-1 & 0 \\
0 & 0
\end{bmatrix}$

0 +1

(d)

Dynamics and Topology

Chaos: What Have We Learned?

Lorenz System

(B) Lorenz Equations

$$\frac{dx}{dt} = -\alpha x + \alpha y$$

$$\frac{dy}{dt} = Rx \cdot y \cdot xz$$

$$\frac{dz}{dt} = -bz + xy$$

$$\left(+i-1\right)$$

(b)

Dynamics and Topology

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-03

Overview-04

Overview-0

Overview 0

Overview-0

Experimenta

Experimenta

Poincaré Smiles at Us in R³

- Determine organization of UPOs \Rightarrow
- Determine branched manifold ⇒
- Determine equivalence class of SA

We Like to be Organized

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-02

Overview-03

Overview-04

Overview-05

O

Overview-07

Experimental-01

Experimental

We Like to be Organized

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

0 1 01

Overview-u

Overview-0

Overview-0

Overview-06

Overview-07

Experimental

Experimental

Topological Analysis Program

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Jverview-02

Overview-0

Overview-0

Overview 0

Experimenta

Experimental

Topological Analysis Program

- Locate Periodic Orbits
- Create an Embedding
- Determine Topological Invariants (LN)
- Identify a Branched Manifold
- Verify the Branched Manifold

Additional Steps

- Model the Dynamics
- Validate the Model

Locate UPOs

Chaos: What Have We Learned?

Method of Close Returns

Embeddings

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction 02

Jverview-01

Overview-us

Overview-0

Overview-0

. . .

Experiment

Experimenta

Embeddings

Many Methods: Time Delay, Differential, Hilbert Transforms, SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological[†]

None Good

We Demand a 3 Dimensional Embedding

Locate UPOs

Chaos: What Have We Learned?

Robert Gilmore

Introduction

Introduction

02

. . .

Overview-0

Overview-0

. . .

Overview-0

Overview 0

Experimenta

Experimenta

An Embedding and Periodic Orbits

Figure 5. Left: a chaotic attractor reconstructed from a time series from a chaotic laser; Right: Superposition of 12 periodic orbits of periods from 1 to 10.

Chaos: What Have We Learned?

Robert Gilmore

Introduction 01

Introduction

02

Overview 0

Overview-0

Overview-07

Experimental

Experimental

Linking Number of Orbit Pairs

Figure 6. Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two knots that is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

Lefranc - Cargese

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview 03

Overview-0

. . .

Overview-0

Experimental-

Experimental

Compute Table of Experimental LN

Table 7.2 Linking numbers for all the surrogate periodic orbits, to period 8, extracted from Belousov–Zhabotinskii data^a

Orbit	Symbolics	1	2	3	4	5	6	7	8a	8Ь
1	1	0	1	1	2	2	2	3	4	3
2	01	1	1	2	3	4	4	5	6	6
3	011	1	2	2	4	5	6	7	8	8
4	0111	2	3	4	5	8	8	11	13	12
5	01 011	2	4	5	8	8	10	13	16	15
6	011 0M1	2	4	6	8	10	9	14	16	16
7	01 01 011	3	5	7	11	13	14	16	21	21
8a	01 01 0111	4	6	8	13	16	16	21	23	24
8Ь	01 011 011	3	6	8	12	15	16	21	24	21

All indices are negative.

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-02

Overview-01

Overview-02

O VCI VICVV O.

Overview-0

Overview-0

. .

Overview-0

Experimental-

Experimental

Compare w. LN From Various \mathcal{BM}

Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynamics.

	19	1 <i>f</i>	21	3 <i>f</i>	39	41	4_2f	$4_{2}9$	5 ₃ f	539	5 ₂ f	529	5 ₁ f	518
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	2	1	1	1	1	2	2	2	2
01	0	1	1	2	2	3	2	2	2	2	3	3	4	4
001	0	1	2	2	3	4	3	3	3	3	4	4	5	5
011	0	1	2	3	2	4	3	3	3	3	5	5	5	5
0111	0	2	3	4	4	5	4	4	4	4	7	7	8	8
0001	0	1	2	3	3	4	3	4	4	4	5	5	5	5
0011	0	1	2	3	3	4	4	3	4	4	5	5	5	5
00001	0	1	2	3	3	4	4	4	4	5	5	5	5	5
00011	0	1	2	3	3	4	4	4	5	4	5	5	5	5
00111	0	2	3	4	5	7	5	5	5	5	6	7	8	9
00101	0	2	3	4	5	7	5	5	5	5	7	6	8	9
01101	0	2	4	5	5	8	5	5	5	5	8	8	8	10
01111	0	2	4	5	5	8	5	5	5	5	9	9	10	8

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

Overview-0

. . .

Overview-0

Overview Of

Overview-07

Experimental

Experimenta

Guess Branched Manifold

Figure 7. "Combing" the intertwined periodic orbits (left) reveals their systematic organization (right) created by the stretching and squeezing mechanisms.

Lefranc - Cargese

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

0 01

Overview-02

Overview-03

Overview-0

Overview-0

Experimenta

Experimenta

Identification & 'Confirmation'

- ullet \mathcal{BM} Identified by LN of small number of orbits
- Table of LN GROSSLY overdetermined
- Predict LN of additional orbits
- Rejection criterion

Chaos: What Have We Learned?

What Do We Learn?

- BM Depends on Embedding
- Some things depend on embedding, some don't
- Depends on Embedding: Global Torsion, Parity, ...
- Independent of Embedding: Mechanism

Perestroikas of Strange Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-03

Overview-0

Overview-C

Overview-07

Experimenta

Experimental

Evolution Under Parameter Change

Perestroikas of Strange Attractors

Chaos: What Have We Learned?

Gilmore

Introduction
01

Introduction

Overview-(

Overview-02

Overview-0

Overview-0

Overview-u

Overview-07

Experimental

Experimental

Evolution Under Parameter Change

Figure 11. Various templates observed in two laser experiments. Top left: schematic representation of the parameter space of forced nonlinear oscillators showing resonance tongues. Right: templates observed in the fiber laser experiment: global torsion increases systematically from one tongue to the next [40]. Bottom left: templates observed in the YAG laser experiment (only the branches are shown); there is a variation in the topological organization across one chaotic tongue [39, 41].

An Unexpected Benefit

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

. . .

Overview 0

.

Overview-0

Overview-07

Experimenta

Experimenta

Analysis of Nonstationary Data

Figure 16. Top left: time series from an optical parametric oscillator showing a burst of irregular behavior. Bottom left: segment of the time series containing a periodic orbit of period 9. Right: embedding of the periodic orbit in a reconstructed phase space and representation of the braid realized by the orbit. The braid entropy is $h_T = 0.377$, showing that the underlying dynamics is chaotic. Reprinted from [61].

Lefranc - Cargese

Last Steps

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-0

O

Overview-0

Overview-C

Overview-0

Experimenta

Experimenta

Model the Dynamics

A hodgepodge of methods exist: # Methods $\simeq \#$ Physicists

Validate the Model

Needed: Nonlinear analog of χ^2 test. OPPORTUNITY: Tests that depend on entrainment/synchronization.

Our Hope \rightarrow Now a Result

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

. . .

Overview-u

Overview-0

Experimenta

Experimenta

Compare with Original Objectives

Construct a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Orbits Can be "Pruned"

Chaos: What Have We Learned?

Robert Gilmore

Introduction 01

Introduction

02

Overview 0

O VCI VICW O

. .

Overview-u

Overview-07

Experimenta

Experimental

There Are Some Missing Orbits

Lorenz

Shimizu-Morioka

Linking Numbers, Relative Rotation Rates, Braids

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

. . .

Overview-02

Overview

Overview-0

Overview-06

Overview-07

Experimental 01

Experimental

Orbit Forcing

An Ongoing Problem

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview 0

Overview-0

Overview-0

Overview-C

Overview-0

Overview-07

Experimental 01

Experimental

Forcing Diagram - Horseshoe

u - SEQUENCE ORDER

An Ongoing Problem

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview 03

0.000.000

Overview 0

. . .

Overview-0

Experimenta

Experimenta

Status of Problem

- Horseshoe organization active
- More folding barely begun
- Circle forcing even less known
- Higher genus new ideas required

Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

Overview-04

Overview-0

0

Overview-0

Experimenta

Experimenta

Constraints on Branched Manifolds

"Inflate" a strange attractor

Union of ϵ ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

Torus and Genus

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview O

Overview-u.

0

Overview o

0

O VCI VICW O

Experimenta 01

Experimenta

Torus, Longitudes, Meridians

Flows on Surfaces

Chaos: What Have We Learned?

Surface Singularities

Flow field: three eigenvalues: +, 0, -

Vector field "perpendicular" to surface

Eigenvalues on surface at fixed point: +, -

All singularities are regular saddles

$$\sum_{s.p.} (-1)^{\text{index}} = \chi(S) = 2 - 2g$$

fixed points on surface = index = 2g - 2

Flows in Vector Fields

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-

Overview-0

Overview-0

Overview

Overview-0

Overview-(

Overview-07

Experimental

Experimental-

Flow Near a Singularity

Some Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-

Overview-

. . .

Overview-0

Overview 0

Experimenta

Experimenta

Torus Bounding Lorenz-like Flows

Canonical Forms

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview 0

Overview-0

Overview-u

Overview-or

Experimenta 01

Experimenta

Twisting the Lorenz Attractor

Constraints Provided by Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview

Overview-0

Overview O

Overview-0

Overview-07

Experimenta

Experimenta

Two possible branched manifolds in the torus with g=4.

Use in Physics

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction-02

Overview-0

Overview-0

Overview-0

Overview-07

Experimental

Experimental-

Bounding Tori contain all known Strange Attractors

Tab.1. All known strange attractors of dimension $d_L < 3$ are bounded by one of the standard dressed tori.

Strange Attractor	Dressed Torus	Period $g-1$ Orbit
Rossler, Duffing, Burke and Shaw	A_1	1
Various Lasers, Gateau Roule	A_1	1
Neuron with Subthreshold Oscillations	A_1	1
Shaw-van der Pol	$A_1 \cup A_1^{(1)}$	1 U 1
Lorenz, Shimizu-Morioka, Rikitake	A_2	$(12)^2$
Multispiral attractors	A_n	$(12^{n-1})^2$
C_n Covers of Rossler	C_n	1 ⁿ
C2 Cover of Lorenz (a)	C_4	14
C ₂ Cover of Lorenz ^(b)	A_3	$(122)^2$
C_n Cover of Lorenz ^(a)	C_{2n}	1^{2n}
C _n Cover of Lorenz ^(b)	P_{n+1}	$(1n)^n$
$2 \rightarrow 1$ Image of Fig. 8 Branched Manifold	A_3	$(122)^2$
Fig. 8 Branched Manifold	P_5	(14)4
(a) Rotation axis through origin.		
(b) D_1_1:11		

(6) Rotation axis through one focus.

Labeling Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

0 70.7.0.. 01

Overview-02

. . .

Overview-0

Overview 0

Evperiment

Experimenta 01

Experimenta

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks

Transition matrix sum of two g-1 \times g-1 matrices

One is cyclic g-1 \times g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory

Some Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-

Overview-0

. .

Overview-C

Overview-05

. . .

Overview-0

Experimental

Experimenta

Bounding Tori of Low Genus

TABLE I. Enumeration of canonical forms up to genus

Snumeration of canonical forms up t						
$g \ m \ (p_1, p_2, \dots p_m) \ n_1 n_2 \dots n_{g-1}$						
1 1	(0)	1				
3 2	(2)	11				
3 2 4 3 5 4	(3)	111				
	(4)	1111				
5 3	(2,2)	1212				
5.5	(5)	11111				
5 4	(3,2)	12112				
7.6	(6)	111111				
7.5	(4,2)	112121				
7.5	(3,3)	112112				
7 4	(2,2,2)	122122				
7 4	(2,2,2)	131313				
8 7	(7)	1111111				
8 6	(5,2)	1211112				
8 6	(4,3)	1211121				
8 5	(3,2,2)	1212212				
8 5	(3,2,2)	1 221 221				
8 5	(3,2,2)	1313131				
9 8	(8)	11111111				
9 7	(6,2)	11111212				
9 7	(5,3)	11112112				
9 7	(4,4)	11121112				
9 6	(4,2,2)	11122122				
9 6	(4,2,2)	11131313				
9 6	(4,2,2)	11212212				
9 6	(4,2,2)	12121212				
9 6	(3,3,2)	11212122				
9 6	(3,3,2)	11221122				
9 6	(3,3,2)	11221212				
9 6	(3,3,2)	11311313				
9.5	(2,2,2,2)	12221222				
9.5	(2,2,2,2)	12313132				
9 5	(2,2,2,2)	14141414				

Motivation

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

Overview-(

. . .

. . .

Overview 0

Overview 0

Experimental-

Experimental

Some Genus-9 Bounding Tori

Aufbau Princip for Bounding Tori

Chaos: What Have We Learned?

Any bounding torus can be built up from equal numbers of stretching and squeezing units

Rules

- Outputs to Inputs
- Colorless
- No Free Ends

Aufbau Princip for Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview 0

. . .

Overview 0

Overview 0

0.000000000

Experimenta 01

Experimenta

Application: Lorenz Dynamics, g=3

Poincaré Section

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

. .

0

Overview 0

Experimental

Experimental

Construction of Poincaré Section

P. S. = Union

Components = g-1

Exponential Growth

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction 02

Overview-01

Overview-02

Overview-0

. . .

Overview-0

Overview-0

Overview-0

Experimental

Experimental

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

g	N(g)	g	N(g)	g	N(g)
3	1	9	15	15	2211
4	1	10	28	16	5549
5	2	11	67	17	14290
ð	2	12	145	18	3 6 824
7	5	13	3 6 8	19	96347
8	6	14	870	20	252927

Exponential Growth

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction-

Overview-0

Overview-02

. . .

0

0 10.11.01. 0.

0.....

0.000.000

Experimental-01

Experimental

The Growth is Exponential The Entropy is log 3

Extrinsic Embedding of Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-02

Overview-03

Overview-0

O VCI VICW O.

Overview-07

Experimental-

Experimental

Extrinsic Embedding of Intrinsic Tori

Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.

Modding Out a Rotation Symmetry

Chaos: What Have We Learned?

Robert Gilmore

Introduction-01

Introduction

Overview-0

Overview-02

Overview-03

Overview-(

Overview-07

Experimental

Experimental

Modding Out a Rotation Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \to \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Lorenz Attractor and Its Image

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

Overview-01

Overview-02

Overview-0

Overview-u

Experimental

Experimental 01

Experimenta

Lifting an Attractor: Cover-Image Relations

Chaos: What Have We Learned?

Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-0

Overview-

01

Experimental

Creating a Cover with Symmetry

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \leftarrow \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} Re \ (X+iY)^2 \\ Im \ (X+iY)^2 \\ Z \end{pmatrix}$$

Cover-Image Related Branched Manifolds

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

02

Overview-

Overview-0

Overview-0

Overview-0

Overview-0

Experimenta

Experimenta

Cover-Image Branched Manifolds

Covering Branched Manifolds

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0

Overview-0

Overview-0

Overview-(

Overview-07

Experimental

Experimental

Two Two-fold Lifts Different Symmetry

Rotation Symmetry Inversion Symmetry

Topological Indices

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-I

. . .

Overview C

Overview-u

. . .

Overview-07

Experimenta

Experimenta

Topological Index: Choose Group Choose Rotation Axis (Singular Set)

Locate the Singular Set wrt Image

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

~_

Overview-0

Overview-0

Overview-0

O VCI VICW O

Overview-0

Experimental

Experimental

Different Rotation Axes Produce Different (Nonisotopic) Lifts

Nonisotopic Locally Diffeomorphic Lifts

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction 02

02

Overview-0

O VCI VICW O.

Overview-u

Overview-

Overview-0

Overview-07

Experimental 01

Experimental-

Indices (0,1) and (1,1)

Two Two-fold Covers Same Symmetry

Chaos: What Have We Learned?

Robert Gilmore

Introduction 01

Introduction

-

A

Overview 0

Overview-0

Overview-0

Overview-07

Experimental

Experimenta

Chaos: What Have We Learned?

Robert Gilmore

Introduction

Introduction

Overview-

Overview-02

Overview-0

. . .

Overview-0

. . .

Overview-07

Experimental

Experimental

Three-fold, Four-fold Covers

Two Inequivalent Lifts with V_4 Symmetry

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction

Overview-

Overview-02

Overview-0

Overview (

O VEI VIEW O

Overview 07

Experimental 01

Experimental

How to Construct Covers/Images

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-01

Overview-02

Overview-03

Overview-04

Overview-0

Overview-0

Experimenta 01

Experimenta

Algorithm

- Construct Invariant Polynomials, Syzygies, Radicals
- Construct Singular Sets
- Determine Topological Indices
- Construct Spectrum of Structurally Stable Covers
- Structurally Unstable Covers Interpolate

Surprising New Findings

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

OVERVIEW OF

Overview-03

Overview-03

Overview-0

Overview 0

Overview-0

Experimenta

Experimenta

Symmetries Due to Symmetry

- Schur's Lemmas & Equivariant Dynamics
- Cauchy Riemann Symmetries
- Clebsch-Gordon Symmetries
- Continuations
 - Analytic Continuation
 - Topological Continuation
 - Group Continuation

Covers of a Trefoil Torus

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-o

O VEI VIEW-02

Overview-C

Overview-0

Overview-0

Experimental-

Experimental

Granny Knot

Square Knot

Trefoil Knot

You Can Cover a Cover = Lift a Lift

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-0

. . .

Overview-0!

Overview-0

Overview-07

Experimental

Experimental

Covers of Covers

Universal Covering Group

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-uz

Overview-us

Overview-04

Overview-0!

Overview 07

Overview-07

Experimental

Experimenta

Cartan's Theorem for Lie Groups

Universal Image Dynamical System

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

0

Overview-0

Overview-0

Overview-0

Overview-0

. .

Overview 07

Overview-01

Experimenta 01

Experimenta

Locally Diffeomorphic Covers of \underline{D}

<u>D</u>: Universal Image Dynamical System

Creating New Attractors

Chaos: What Have We Learned?

Rotating the Attractor

$$\frac{d}{dt} \left[\begin{array}{c} X \\ Y \end{array} \right] = \left[\begin{array}{c} F_1(X,Y) \\ F_2(X,Y) \end{array} \right] + \left[\begin{array}{c} a_1 \sin(\omega_d t + \phi_1) \\ a_2 \sin(\omega_d t + \phi_2) \end{array} \right]$$

$$\begin{bmatrix} u(t) \\ v(t) \end{bmatrix} = \begin{bmatrix} \cos \Omega t & -\sin \Omega t \\ \sin \Omega t & \cos \Omega t \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} u \\ v \end{bmatrix} = R\mathbf{F}(R^{-1}\mathbf{u}) + R\mathbf{t} + \Omega \begin{bmatrix} -v \\ +u \end{bmatrix}$$

$$\Omega = n \ \omega_d$$

$$q \Omega = p \omega_d$$

Global Diffeomorphisms

Local Diffeomorphisms (p-fold covers)

Two Phase Spaces: R^3 and $D^2 \times S^1$

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-u

Overview-02

Overview-u.

Overview 0

Overview-0

. . .

Overview-07

Experimental 01

Experimenta

Rossler Attractor: Two Representations

$$D^2 \times S^1$$

Other Diffeomorphic Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

02

Overview-02

Overview 03

Overview-0

. . .

Overview-07

Experimenta 01

Experimental

Rossler Attractor:

Two More Representations with $n = \pm 1$

Subharmonic, Locally Diffeomorphic Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

. . .

0 ve. v.e.v 0e

Overview-0

Overview-07

Experimental

Experimental

Rossler Attractor:

Two Two-Fold Covers with $p/q = \pm 1/2$

Subharmonic, Locally Diffeomorphic Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-02

Overview-0

O

Overview-07

Experimenta

Experimenta

Rossler Attractor:

Two Three-Fold Covers with p/q = -2/3, -1/3

Subharmonic, Locally Diffeomorphic Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

0 01

Overview-02

Overview-0

. . .

Overview-0

Overview-or

Overview-07

Experimenta

Experimental

Rossler Attractor:

And Even More Covers (with p/q = +1/3, +2/3)

New Measures

Chaos: What Have We Learned?

Angular Momentum and Energy

$$L(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} X dY - Y dX \qquad K(0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{1}{2} (\dot{X}^2 + \dot{Y}^2) dt$$

$$L(\Omega) = \langle u\dot{v} - v\dot{u}\rangle \qquad K(\Omega) = \langle \frac{1}{2}(\dot{u}^2 + \dot{v}^2)\rangle$$

$$= L(0) + \Omega \langle R^2 \rangle$$

$$= K(0) + \Omega L(0) + \frac{1}{2} \Omega^2 \langle R^2 \rangle$$

$$\langle R^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (X^2 + Y^2) dt = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} (u^2 + v^2) dt$$

New Measures, Diffeomorphic Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

02

Overview-02

Overview-u

Overview-0

Overview-07

Experimental

Experimental

Energy and Angular Momentum

Diffeomorphic, Quantum Number n

New Measures, Subharmonic Covering Attractors

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-0

Overview-02

Overview-0

. . .

Overview-

o verview o

Overview-07

Experimenta

Experimental

Energy and Angular Momentum Subharmonics, Quantum Numbers p/q

Embeddings

Chaos: What Have We Learned?

Gilmore

Introduction 01

Introduction

Overview-u2

Overview-03

Overview-0

Overview 0

_ .

Experimenta 01

Experimenta

Embeddings

An embedding creates a diffeomorphism between an ('invisible') dynamics in someone's laboratory and a ('visible') attractor in somebody's computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is of Minimum Dimension

Representation Labels

Chaos: What Have We Learned?

Gilmore

Introduction-01

Introduction N2

Overview-02

0.000000

Overview-

Overview-0

Overview-07

Experimental

Experimental

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one attractors are distinguished by three topological labels:

Parity P
Global Torsion N

Global Torsion N Knot Type KT

$$\Gamma^{P,N,KT}(\mathcal{SA})$$

Mechanism (stretch & fold, stretch & roll) is an invariant of embedding. It is independent of the representation labels.

Creating Isotopies

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction

Overview-02

Overview-0!

Overview-0

Experiment

Experimenta

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for embeddings of minimum dimension (irreducible representations).

Are these obstructions removed by injections into higher dimensions (reducible representations)?

Systematically?

Creating Isotopies

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-0.

Overview-02

Overview-03

Overview-04

Overview-C

Overview-0

Experimental

Experimenta

Equivalences by Injection Obstructions to Isotopy

 R^3 $ightharpoonup R^4$ $ightharpoonup R^5$ Global Torsion (mod 2)

Knot Type

There is one *Universal* reducible representation in \mathbb{R}^N , $N \geq 5$. In \mathbb{R}^N the only topological invariant is *mechanism*.

The Road Ahead

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction 02

Overview-01

Overview-02

Overview (

Overview-0

Overview-0

. . .

Overview 0

Experimental

Experimenta

Summary

1 Question Answered \Rightarrow 2 Questions Raised

We must be on the right track!

Our Hope

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-01

Overview-02

Overview-03

. . .

Overview-0

Overview C

Overview-0

Experimenta

Experimenta

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

- Classifying strange attractors
- Extracting classification information

from experimental signals.

Our Result

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

O VEI VIEW 01

Overview-02

Overview-04

Overview-0

. . .

Overview-07

Experimenta 01

Experimenta

What Have We Learned?

There is now a classification theory for low-dimensional strange attractors.

- It is topological
- 2 It has a hierarchy of 4 levels
- 6 Each is discrete
- There is rigidity and degrees of freedom
- **1** It is applicable to R^3 only for now

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-

erview-(

Overview-0

Overview-0

. . .

Overview 0

Experimenta 01

Experimenta

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview of

Overview-02

Overview-u.

Overview-0

Overview-0

Overview 0

Overview-or

Experimenta 01

Experimenta

The Classification Theory has 4 Levels of Structure

Basis Sets of Orbits

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-0

Overview 0

O VCI VICW O

. . .

Overview-0

Experimenta

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-us

Overview-04

Overview-0

Overview-0

Overview-0

Experimenta

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview 01

010.11.011 02

. . .

Overview-0

overview o

Experimenta

Experimenta

- Basis Sets of Orbits
- ② Branched Manifolds
- Bounding Tori
- 4 Extrinsic Embeddings

Chaos: What Have We Learned?

> Robert Gilmore

Introduction

Introduction-

Overview-01

Overview-0

Overview-0

Overview 0

Overview-0

Overview-0

Overview-07

Experimental-

Experimenta

Q0D:f

Topological Components

Chaos: What Have We Learned?

Poetic Organization

LINKS OF PERIODIC ORBITS organize BOUNDING TORI organize BRANCHED MANIFOLDS organize LINKS OF PERIODIC ORBITS

Answered Questions

Chaos: What Have We Learned?

> Robert Gilmore

Introduction-01

Introduction-02

Overview-01

Overview-03

0 . 04

Overview-05

Overview-07

Experimental

Experimental 02

Some Unexpected Results

- Perestroikas of orbits constrained by branched manifolds
- Routes to Chaos = Paths through orbit forcing diagram
- Perestroikas of branched manifolds constrained by bounding tori
- Global Poincaré section = union of g-1 disks
- Systematic methods for cover image relations
- Existence of topological indices (cover/image)
- Universal image dynamical systems
- NLD version of Cartan's Theorem for Lie Groups
- Topological Continuation Group Continuation
- Cauchy-Riemann Symmetries
- Quantizing Chaos
- Representation labels for inequivalent embeddings
- Representation Theory for Strange Attractors

Unanswered Questions

Chaos: What Have We Learned?

> Robert Gilmore

Introduction 01

Introduction

Overview-02

Overview-03

Overview-05

Overview-06

Overview-07

Experimental

Experimental 02

HELP:

- ullet Robust topological invariants for ${\cal R}^N$, ${\cal N}>3$
- A Birman-Williams type theorem for higher dimensions
- An algorithm for irreducible embeddings
- Embeddings: better methods and tests
- Analog of χ^2 test for NLD
- Better forcing results: Smale horseshoe, $D^2 \to D^2$, $n \times D^2 \to n \times D^2$ (e.g., Lorenz), $D^N \to D^N$, N>2
- A new Representation theory
- Singularity Theory: Branched manifolds, splitting points (0 dim.), branch lines (1 dim).
- $\bullet \ \ \, \text{Catastrophe Theory} \, \leftrightarrow \, \text{Nonlinear Dynamics Connection} \\$