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Strange attractors with Lyapunov dimension dr < 3 can be classified by branched manifolds.
They can also be classified by the bounding tori that enclose them. Bounding tori organize
branched manifolds (classes of strange attractors) in the same way that branched manifolds
organize the periodic orbits in a strange attractor. We describe how bounding tori are con-
structed and expressed in a useful canonical form. We present the properties of these canonical
forms, and show that they can be uniquely coded by analogs of periodic orbits of period g — 1,
where g is the genus. We describe the structure of the global Poincaré surface of section for an
attractor enclosed by a genus-g torus and determine the transition matrix for flows between the
g — 1 components of the Poincaré surface of section. Finally, we show how information about a
bounding torus can be extracted from scalar time series.

I. INTRODUCTION

Obtaining a global, qualitative understanding of the
structure of chaotic attractors in dissipative dynami-
cal systems must be pursued using topological methods.
Only in this way can we uncover general properties that
are common to a large class of systems and are invari-
ant under continuous deformations that are orientation
preserving diffeomorphisms. Once obtained, such knowl-
edge can be best utilized by constructing a classification
scheme for chaotic attractors which is of immense impor-
tance for the maturity of the field of non-linear dynamics.

We have recently proposed a new tool - bounding tori
- as a means for classifying low dimensional strange at-
tractors [1]. These are strange attractors that can be
embedded in R®, whose Lyapunov dimension, dr,, is less
than three. The purpose of this work is to provide infor-
mation about how these bounding tori are constructed,
what their properties are, and how they are used. In
Section II we provide background information to show
how this new tool is related to the topological tools that
we have previously introduced to classify and analyze
low dimensional strange attractors. These tools are rela-
tive rotation rates [2], branched manifolds [3], and basis
sets of orbits [4]. In Section III we discuss in detail how
bounding tori are constructed for a well-known strange
attractor - the Lorenz attractor. In particular, we de-
scribe how the bounding torus is expressed in a particular
canonical form. In Section IV we discuss canonical forms
and their general properties. Canonical forms allow us to
provide a precise answer to a difficult question: “What
is the structure of the Poincaré surface of section for a
strange attractor?”. The Poincaré surface of section has
g — 1 disconnected components when the strange attrac-
tor can be enclosed in a torus with g > 3 holes (genus-g
surface). This is shown in Section V. In the following
section we construct transition matrices describing how

the flow distributes initial conditions on each component
to the other components of the Poincaré section. In Sec-
tion VII we introduce three different but related ways to
classify canonical forms. Each involves an orbit of period
g — 1. All canonical forms up to g = 9 are listed in Sec-
tion VIII. Procedures for extracting information about
the canonical form from experimental data are presented,
along with an example, in Section IX. Our results are
summarized in the concluding section.

II. BACKGROUND

Even in low-dimensional dynamical systems we find a
very rich variety of possible structures due to an intri-
cate interplay between topology and dynamics. In this
paper we deal exclusively with chaotic attractors in R3
with Lyapunov exponents A; > 0,A2 = 0,A3 < 0 and
Lyapunov dimension dr, = 2+ A1/|A3] < 3. In phase
space R?® we can rely on a large set of important results
from topology to construct a classification scheme. In [1]
we laid out the foundations of the third coarsest level of
a classification scheme, for which the first two levels have
already been completed [5, 6]. At the finest level strange
attractors are classified by a basis set of orbits [4]. This
is defined as follows - for every finite period there exists a
finite set of unstable periodic orbits embedded with the
attractor that forces the existence of all the other un-
stable periodic orbits. At the intermediate level there is
a classification by branched manifolds. Branched mani-
folds serve as periodic orbit organizers. They are built
from two basic structures - splitting and joining charts.
These charts represent the two basic processes - stretch-
ing and squeezing - that act in phase space to produce
chaotic behavior, generate strange attractors, and orga-
nize all the unstable periodic orbits in the strange at-
tractor in a unique way. Splitting and joining charts are



connected in such a way so that there are no free ends.
Their connected union forms a compact two-dimensional
structure with boundary. It is a manifold everywhere ex-
cept at the singularities of the charts - branch lines for
the joining charts and splitting points for the splitting
charts.

Branched manifolds (also known as templates or knot
holders) were first introduced by Birman and Williams
[7] to facilitate the study of the topological organiza-
tion of knotted and linked periodic orbits for flows in
S3. Their work found an immediate application in the
study of chaotic attractors in three-dimensional dynami-
cal systems but the results apply directly only to hyper-
bolic strange attractors. The hyperbolic limit has never
been observed either in experiments or in numerical solu-
tions of systems of ODEs. The extension of the branched
manifold approach to non-hyperbolic strange attractors
can be done via the mechanism of basis set of orbits de-
scribed above. In the non-hyperbolic case we in general
see fewer unstable periodic orbits in the flow than pre-
dicted by the template. The orbits that are present are
organized exactly as the orbits in the template (the same
set of linking numbers). To characterize the set of orbits
actually present in the flow we need to specify the basis
set of orbits. Different chaotic attractors can be charac-
terized by the same branched manifold but different basis
sets. This is the relation between the first two levels of
the classification scheme.

In this paper we explore the possibility for construction
of a third level of classification. It is based on canonical
forms - planar surfaces with non-zero genus and dressed
with one-dimensional flow reflecting the nature of the
singularities in the branched manifold. These planar sur-
faces are introduced in a formal way as follows. First we
introduce an embedding manifold for the strange attrac-
tor (and its branched manifold). This is not something
pre-existing in phase space with certain size and it should
not be confused with domain of attraction. It is a specifi-
cally constructed compact orientable three-manifold with
boundary. The boundaries are well known and classified
surfaces - tori with genus one or higher. The purpose of
such an embedding manifold is to “enclose” the strange
attractor and isolate it from the fixed points of the flow.
The global topological structure of the chaotic attractor
is determined to a large extent by the type and location
in phase space of such fixed points [8]. The existence of
fixed points in the flow leads to the robust presence of
holes in the body of the attractor. In addition to this
there is also a set of singularities for the flow when re-
stricted to the boundary surface of the embedding man-
ifold. The number of these singularities reflects not only
the genus of the surface but also the number of singular
sets for the branched manifold. At the next step, follow-
ing a formal procedure, we introduce a special type of
planar surface called a canonical form, which is a sim-
plified record of the genus of the embedding manifold
and the singularities on its boundary. It turns out that
canonical forms have a very rich but rigid organization

and are ideally suited for classifying branched manifolds.
In addition, in the same way that knot holders are or-
bit organizers we can say that embedding manifolds and
their canonical forms are knot holder organizers - many
different branched manifolds with the same set of singu-
larities but different number of branches can live inside
the same embedding manifold.

In support of our idea to use embedding manifolds we
would like to make the following remark. This is the
most natural context in which concepts from algebraic
topology such as homology groups and homotopy groups
can be introduced to provide a hint at the global struc-
ture of the attractor. There have been some attempts in
the literature to introduce the notion of homology groups
for a strange attractor [9, 10]. We prefer to use an indi-
rect correspondence since this way the question of precise
mathematical definition of the properties of a strange at-
tractor as a topological space is avoided. Dealing with
well defined smooth topological objects is preferable.

III. EXAMPLE - THE LORENZ SYSTEM.

To illustrate our approach we provide one example.
It is the well known Lorenz system of ODEs [11]. The
equations are :

& =—o(z—y)
y=rrx—y—x2 (1)
z=—-bz+axy

A solution approaching the strange attractor is computed
numerically for parameter values (o,7,b) = (10,28,8/3)
and plotted in Fig. 1. The system is dissipative every-
where in phase space. For the parameter values listed
above there are three fixed points. There is a saddle
fixed point at the origin. The linearized system about
this point has two real negative and one positive eigen-
values. The equations are invariant under the discrete

FIG. 1: Solution of the Lorenz system of ODEs ap-
proaching a strange attractor. Control parameter values:
(o,7,b) = (10, 28,8/3)



rotation group R.(w) and the z-axis is part of the sta-
ble manifold of the saddle fixed point. There are also two
symmetrically placed fixed points. They are unstable foci
- the linearized system about each of them has one real
negative eigenvalue and two complex conjugate eigenval-
ues with positive real part. All solutions of the Lorenz
system remain bounded for all time. Solutions originat-
ing far away from the origin are attracted asymptotically
to an ellipsoid in phase space containing the strange at-
tractor and the three fixed points [11]. From a topologi-
cal point of view this ellipsoid is a three-dimensional ball
whose boundary is a two-dimensional sphere.

Next we carry out a construction that is common in
topology - starting from a given topological space we turn
it into a different space by removing certain regions in
it. First we remove the fixed points from the ellipsoid
(the ball). Next we remove one-dimensional invariant
manifolds of the fixed points that extend globally and
intersect the bounding two-sphere of the ball. For the
two foci this means a removal of their one-dimensional
stable manifolds, and for the saddle point at the ori-
gin - elimination of the z-axis altogether. In fact the
stable (two dimensional) manifold of the fixed point at
the origin has a very complex structure that has pro-
found influence on the behavior of chaotic solutions. We
can, however, delete the z-axis from it on the premises
that solutions starting on the z-axis remain there forever
- nothing interesting happens. Thus we started with a
three-ball containing the attractor and the fixed points,
and then we drill holes in it along the one dimensional
stable invariant manifolds through the fixed points that
intersect the boundary of the attracting ellipsoid. This
turns the ellipsoid into a solid block with three holes.
The technical term for such an object is a handle-body
of genus three. The boundary of this three-manifold is a
closed orientable two-dimensional surface - a torus with
genus three. This boundary is a trapping surface in some
rather loose sense - all solutions starting on the outside
of the handle-body and tending to the chaotic attractor
cross the boundary in finite time, from the outside to
the inside, and never escape from the interior. Note that
parts of the invariant manifolds of the saddle fixed point
at the origin still exist inside the handle-body.

By the above construction we establish a formal corre-
spondence between the chaotic attractor for the Lorenz
system and an embedding three-manifold (a handle-
body) that is bounded by a torus with genus three. This
may seem rather arbitrary at this stage but it is not en-
tirely unjustified since it is based not only on topological
considerations but also on dynamical ones. To provide
an alternative view, next we look at the branched man-
ifold associated with the chaotic attractor of the Lorenz
system.

First, we start with the branched manifold given in the
usual “mask” representation - it is shown at the top of
Fig. 2. Note that in this representation the branch line is
degenerate - the semi-flow upon crossing it is redirected
into two different regions of the branched manifold. It is

possible to split the branch line in two and “slide” the
pieces around the circular holes in the template. This is
an example of a branched manifold transformation called
a local move. The possible local moves are discussed
in [6]. In the next stages we extend the splitting point
back-wards and then give the right branch line a half
twist. The result is a branched manifold as shown at the
bottom of Fig. 2.

FIG. 2: Transformation of the branched manifold for the
Lorenz system into a different form by applying a series
of local moves.

Note that in the final form of the template, when
viewed in this projection on the plane, the semi-flow
goes around the circular holes in the same direction -
clockwise. Now we can “blow up” the resulting branched
manifold back to a three-manifold. This is done by sur-
rounding each point in the branched manifold by a small
three-dimensional ball of radius € and taking the union of
these balls. It is clear that in this case the resulting space
has the topology of a handle-body of genus three; this is
consistent with our previous conclusion. All branched
manifolds in Fig. 2 describe the same topological orga-



nization of periodic orbits and thus they correspond to
chaotic attractors that are related by orientation preserv-
ing diffeomorphisms.

Now let us go back to the original phase space and con-
sider what happens when the flow crosses the torus that
bounds the embedding handle-body. We assume that
the boundary is a smooth surface. This can always be
achieved since we allow ourselves to modify the bound-
ary any way we wish, provided we do not change the
genus. If the handle-body is H B, its boundary is OHB.
At each point on the boundary we can decompose the
flow into a tangential ¢ and normal ¢, component. The
normal component never vanishes since the flow goes into
the bounded region. The tangential component could be
zero and this leads to a fixed point for the surface flow.
The Euler characteristic for the torus with genus g = 3 is
X = 2—2g = —4. A well known theorem from topology -
the Poincaré-Hopf Index Theorem [12] - relates the sum
of the indices evaluated at all fixed points i of the flow
restricted to the surface to the Euler characteristic of the
surface.

X(OHB) = Zindi @) (2)

The fixed points for the surface flow can only be saddles
due to the fact that there is one positive and one neg-
ative Lyapunov exponent in directions transverse to the
flow. The index of each fixed point for the surface flow
is (—1)™, where n,, is the number of unstable directions
for the flow. In our case the index can be only —1. We
have a total of 4 saddle points for the surface flow on
the torus bounding the branched manifold at the bottom
of Fig. 2. The singularities on the genus-3 surface en-
closing the branched manifold shown at the bottom of
Fig. 2 are shown in Fig. 3. Note also that the branched
manifold has 4 singular sets - two branch lines and two
splitting points. This shows that there is some relation
between the singular sets of the branched manifold and
the fixed points for the flow on the surface of the bound-
ing torus. Thus we are lead to look for some convenient
way to express this relation.

We now propose an algorithm for constructing this
canonical form. First, in the original phase space we
construct a smooth surface ¥ that is an embedding of a
two-dimensional disk in R®. Apart from being orientable
and bounded by a topological circle, the surface is con-
structed so that the following conditions are true:

1. It contains the two unstable focal points.

2. The two-dimensional unstable manifolds of the fo-
cal points are tangent to the surface X at the loca-
tions of the foci.

3. The flow on these unstable manifolds provides an
orientation for the surface.

FIG. 3: The branched manifold at the bottom of Fig. 2
is shown enclosed by a bounding torus of genus-3. All
three fixed points in the vector field generating the flow
are outside the bounding torus. The flow around the two
foci, as well as the regular saddle that separates them, is
shown. The four singularities on the surface induced by
the flow in the neighborhood of the central hole are shown
as dots and the flow directions in the neighborhood of
these four singularities are shown. All four singularities
are regular saddles.

4. The z-axis (which was to be removed when con-
structing the handle-body as an embedding mani-
fold) intersects the surface at one point.

Condition 3 forces the surface to be non-flat (twisted) as
viewed in the embedding handle-body. When walking on
one side of the surface ¥ we see the flow going around
both focal points in the same sense (let us say clockwise).
Next we remove three points from the surface - the two
focal points and the point of intersection with the z-axis.
This turns ¥ into a genus three surface 2. Consider a
small circle in €2, surrounding the just-removed point of
intersection with the z-axis. The induced one dimen-
sional flow along this circle will have four singularities
that are alternately sources and sinks (joining and split-
ting points). They correspond in a formal way to the
singularities in the branched manifold of the attractor -
respectively to the branch lines and the splitting points.
The surface 2 can be mapped one-to-one to a planar sur-
face having the same genus, orientation, and the same
number and type of singular points. This is represented
in Fig. 4. Next we simplify the matter even further by in-
troducing something that we call a canonical form. It is a
planar surface with genus three in the case of the Lorenz
attractor. The outside boundary is given an orientation.
The inside boundary consists of three disjoint pieces - two
circles and a square in between. The circles are provided
with the same orientation as the outside boundary. The
square is dressed with one-dimensional flow in such a way
that the vertices of the square are alternately sources and
sinks for the flow (cf. Fig. 3). The canonical form is a
simplified representation of Q2 and its flow singularities.
There is a correspondence between these four objects - a
chaotic attractor, an embedding manifold (with no fixed



FIG. 4: (a) Two-dimensional genus three surface 2 that
has an orientation induced by the flow around the focal
points. (b) Planar equivalent of 2 indicating the singular
set of the induced flow. (¢) Canonical form.

points inside), a branched manifold and a canonical form.
The relationship is illustrated as follows:

<— Branched Manifold

H

Embedding Manifold <—  Canonical Form

Strange Attractor

This means that there is a 1-1 correspondence between
strange attractors and branched manifolds (with a basis
set of orbits). There is also a 1-1 correspondence be-
tween embedding manifolds and their canonical forms,
up to smooth deformations. Many inequivalent strange
attractors can be contained in the same embedding mani-
fold. In the same way, many different branched manifolds
can be enclosed by the same bounding torus. For exam-
ple in Fig.5 we show two different branched manifolds
represented by the same canonical form.

(a)

£5

(©

FIG. 5: (a) Branched manifold describing the 3-fold cover
of the Rossler system. (b) Branched manifold for attrac-
tor with no symmetry. (c) Canonical form for both sys-
tems.

IV. BOUNDING TORI AND CANONICAL
FORMS

The boundary of the embedding manifold for a strange
attractor in R® is a union of closed orientable two-
dimensional surfaces of genus g > 1. This boundary also
encloses the branched manifold since the unstable peri-
odic orbits in the attractor are mapped to the branched
manifold under the Birman-Williams projection. In that
sense the branched manifold “sits” inside and is enclosed
by the bounding torus. The flow for the original dynami-
cal system that generates a strange attractor has 2(g—1)
singularities when restricted to the genus-g surface. An
algorithm for projecting these flow properties onto a pla-
nar surface (previous section and Fig. 4) generates a
disk with an outer boundary and g interior holes. The
flow on the outer disk boundary is in a single direction
(either clockwise or counterclockwise) without singulari-
ties. All singularities are distributed around the interior
holes. The singularities occur in pairs. We call these
(s,j) pairs, where an s-type singularity splits the flow
and a j-type singularity occurs where flows from differ-
ent regions join. Singularities of types s and j describe
the nearby presence of splitting and joining charts in the
embedded branched manifold. The distribution of singu-
larities around the interior holes has a profound affect on
the structure of the flow. We show holes with 0, 2, 4, and
6 singularities in Fig. 6. For the most part, holes sepa-
rate the flow, as represented by the branched manifold,
from the singularities in the vector field that generates
the flow. The hole in Fig. 6(a) has no singularities. It
separates a focus from the flow. The flow itself bears an
imprint of this focus. The regular saddle shown in Fig.
6(c) induces four singularities on the hole surrounding it.
This saddle also leaves its imprint on the structure of the



flow in its neighborhood. The three-fold degenerate sad-
dle shown in Fig. 6(d) induces 2 x 3 singularities on the
surrounding hole in the canonical form. This degener-
ate saddle also provides an unmistakable imprint on the
structure of the neighboring flow in the interior of the
embedding manifold.

Holes supporting only one (s, j) pair of singularities do
not have the same properties as holes with 0, 4, 6, ---
singularities. As shown in Fig. 6(b) they do not leave
an imprint on the surrounding flow. Such holes can be
removed without changing the nature of the neighboring
flow. They can be removed by “zipping them up” [13].
That is, we identify the two boundaries connecting the s
and j singularities.

Holes with two singularities can be encountered for a
number of reasons. They are often drawn in representa-
tions of the standard Smale horseshoe branched manifold
to allow easy distinction between the two branches. Such
holes do not exist except in the hyperbolic limit, which
has never been observed in experimental data, or even in
numerical simulations of ordinary differential equations.
Such holes can also be observed when large numbers of
orbits have been pruned away. They can be observed
in Rossler dynamics [14] and in the Shimizu-Morioka at-
tractor for some parameter values. They are encountered
in short data sets. They are also seen when invariant sets
penetrate the flow (for example, placing your finger in a
laminar fluid flow). This occurs, for example, when the
Lorenz attractor is mapped to a Rdssler-like attractor by
modding out the symmetry [15]. They also occur around
real or virtual saddle-node pairs, as shown in Fig. 6(b).
In all instances, holes with two singularities can be (topo-
logically) zipped up. The two singularities and the hole
they are on disappear without changing the asymptotic
properties of the flow.

As a result, interior holes without singularities can be
regarded as circles and those with singularities as regular
polygons with 4, 6, 8, --- sides.

A canonical form for a bounding torus with genus 1 has
one interior hole and no singularities anywhere. The flow
on the exterior boundary and on the interior hole is in the
same direction. A canonical form for a bounding torus
with genus g = 2 does not exist, since its Euler character-
istic must be —2 and that condition cannot be satisfied
by any combination of circles and polygons. Canonical
forms for bounding tori with genus g > 3 have m interior
circles and n interior polygons. The positive integers m
and n obey

m+n=g (3)
m>n>1 4)
where n = 1,2,...,nyp4x and g is the genus. If the

genus g is odd the maximum number of regular polygons
is nprax = m — 1. In the case of even genus g the upper
bound is nprax = m — 2. As is shown in Fig. 7 the
genus itself is not enough to specify the canonical form.
Even the combination (m,n) is not enough to specify

(a) (b)

(€ (d)

FIG. 6: Holes with (a) 0, (b) 2, (¢) 4, and (d) 6 singu-
larities. Only holes with 2 singularities can be removed
without changing the asymptotic structure of the flow.

uniquely the canonical form. For g sufficiently large (g >
7) degeneracies occur.

We should mention that most of the known strange
attractors in three-dimensional phase space are created
by the Smale horseshoe mechanism. As a result they all
can be embedded in a solid torus with one hole. For those
systems the canonical form is simply an annulus. For a
torus with genus one, the Euler characteristic x is zero
and the surface flow has no singularities.

In addition we want to mention a dynamical system
for which the boundary of the embedding manifold is
a union of two tori with genus 1 - this is the velocity-
driven Van der Pol system. The chaotic attractor shows
an annular Poincaré surface of section. The boundary of
the embedding manifold is a disjoint union of two tori of
genus one each. The canonical form for this system is
the union of two annuli.

One of the most important advantages in using canon-
ical forms is in the way Poincaré surfaces of section are
viewed. Next we provide some more insight in this direc-
tion.

V. POINCARE SURFACE OF SECTION

The most important characteristic of a Poincaré sur-
face of section is that the flow crosses it transversally
and always from the same side. This is in fact the most



FIG. 7: Canonical forms corresponding to genus 8 bound-
ing torus. They all have 5 circles, 2 squares and 1
hexagon. The three forms are inequivalent - they are
described by different periodic sequences: (a) abbacca;
(b) abeebaa; (c) abbcecaa.

troublesome point when it comes to construction of such
surfaces in practice. For a general flow it is not known
whether we can always construct a Poincaré surface of
section. The answer is positive for the particular kind
of systems we are interested in: dissipative dynamical
systems with dy < 3. We justify this assertion with the
following considerations.

The simplest case is when the strange attractor can
be embedded in a solid torus with no fixed points inside.
The boundary is a two-torus. There are two generators of
the fundamental group (the first homotopy group) 71 (7°2)
of the two-torus [16]. They represent two inequivalent
classes of simple closed curves that cannot be shrunk to
a point. The classes are inequivalent under smooth de-
formations. The simple closed curve that bounds a disk
in the solid torus is called a meridian. We will call the
other curve a longitude - it bounds a disk outside the
solid torus and it serves as a generator of the fundamen-
tal group of the solid torus m;(D? x S'). In fact the
notion of a longitude as applied usually to solid torus is
a bit less restrictive (see [17] for details) but we use it
provided no confusion will arise. The notions of longi-

tudes and meridians can be extended to handle-bodies
of higher genus. This is illustrated in Fig. 8. In the

FIG. 8: Longitudes L; and meridians M; for a handle-
body of genus g

solid torus case we can always find a disk that is crossed
transversally by the flow - namely a disk bounded by
a meridian. This disk serves as a Poincaré surface of
section. The image of this disk under Birman-Williams
projection and the branch line on the branched manifold
can be identified. The Poincaré map for these systems
is thus represented in the canonical form representation
by a mapping of intervals to intervals. There is another
possible case - when we have a mapping of the circle onto
itself. This occurs when the Poincaré surface of section
has the topology of an annulus. This is the case with
strange attractor of the velocity driven the Van der Pol
oscillator (Birkhoff-Shaw attractor [18]).

For bounding tori with genus g > 3 we group the 2g—2
singularities into g — 1 pairs of (j,s) singularities. All
branch lines must occur between a singularity of type j
and the following (in the sense of the flow) singularity
of type s. Branch lines between the same j and s type
singularities can be consolidated into a single branch line
by local moves [6]. This branch line can be moved to
a disk that is transverse to the flow and between these
two singularities. This disk is bounded by a meridian
and forms one component of the global Poincaré surface
of section. In this way we construct the global Poincaré
surface of section for any flow whose canonical bounding
torus has genus g. The Poincaré section is the union of
g — 1 disjoint disks, one disk between each (j, s) pair of
singularities. Each disk contains one branch line of any
branched manifold compatible with the canonical bound-
ing torus.

In the canonical forms (see Fig. 7) we use g — 1 in-
tervals to show possible locations for the g — 1 disks
that are components of the Poincaré surface of section.
These intervals simultaneously represent branch lines of
any branched manifold enclosed by the bounding torus.
All such intervals have one of their ends on the outside
boundary and the other end on some circular internal
boundary. It is clear that in general there will be one or
more intervals connected to each circle. The exact loca-
tion is determined so that there are exactly g— 1 intervals
connected to m < g circles. There is no one-to-one map-
ping between the intervals, but rather one-to-two due to
the splitting points in the template.



VI. TRANSITION MATRICES

An additional virtue of the canonical form representa-
tion is the ease with which one can introduce symbolic
notation. This is done as follows. We choose an inter-
val representing a component of the Poincaré surface of
section. We put a numerical label 1 on it. Following the
outside boundary in the direction of its orientation we
number all the intervals in the order that they are en-
countered. Thus all intervals are labeled 1,2,3,...9 — 1.
Then we can construct a (g — 1) x (g — 1) matrix that
represents how the intervals are mapped under the flow.
We call this matrix a transition matrix. We provide an
example for the canonical form in Fig. 7(a). Since the
genus is 8 the transition matrix is 7 x 7.

N

Il
_H OOOO O
SO OO
(NN NN W
OO0 KO
OO M=OOOo
O HOOOO
OHEHOOOO

The transition matrix has only 0’s and 1’s as entries.
The presence of a 1 in location (i,j) means that ini-
tial conditions on the interval ¢ can flow to interval
j. Zero implies lack of such connection. There are
only two 1’s in each row (column). Note that elements
a12, 023, A34, 445, 56, 67, A71 are non-zero. This is due to
the way we numbered the branch lines - going around
the outer boundary and enumerating the intervals as we
encounter them. It is convenient to split the transition
matrix in two pieces - a cyclic part CL and a connec-
tivity part CC. The sum of the two gives the transition
matrix. All canonical forms with given genus g have the
same cyclic matrix under the numbering convention in-
troduced above. For example for the forms in Fig. 7 the
cyclic matrix has the 7 non-zero elements listed above
and is

CLg =

_— O OO oo
SO OO O
SO OODOoOOoO=O
SO OO OO
OO OOO
SO ODODOO
OHOOO OO

The remaining part of the transition matrix shows the
connectivity between the components of the Poincaré sur-
face of section (represented by intervals) as due to the
structure of the attractor. For example for the canonical

forms in Fig. 7 the connectivity matrices are respectively

1000000
0001000
0010000

CClsy=[0100000 [=(2,4(57)
0000001
0000010
0000100
1000000
0000010
0000100

CCLan=10001000|=(26)3,5 (5
0010000
0100000
0000001
1000000
0001000
0010000

CCls=10000010|=(24,6)
0000100
0100000
0000001

The lower index in the cyclic matrix name C'Lg shows
the genus of the canonical form. The notation for the
connectivity matrix name is of the form CC(imm) where
m is the number of circles, n is the number of regular
polygons (with even number of sides) and 4 is a degen-
eracy index. The connectivity matrices can be expressed
simply in terms of symmetric (permutation) group oper-
ations. They can be expressed as products of cycles [19].
These expressions are also given in Egs. (5) above.

VII. CODING THE CANONICAL FORMS

Canonical forms can be labeled uniquely. The basic
idea is that in a walk around the boundary in the di-
rection of the flow the regular holes, the singular holes,
and the branch lines are met in a systematic way. The
way is coded by a sequence of g — 1 symbols, repeated
infinitely. In other words, the symbolic encoding of a
canonical form is given by a “period g — 1 orbit.” The
symbols can describe: (1) the order in which the regu-
lar polygons are encountered between branch lines; (2)
the order in which the circles without singularities are
encountered at branch lines; (3) the number of branch
lines attached to each circle without singularities, as the
circles are encountered.

For example, for the canonical form shown in Fig. 7(a)
the branch lines are labeled 1-7 in the order encountered.
Starting from branch line 1, the polygons are encountered
a first, then b (then a again) and ¢. The circles are en-
countered A, B, C, (then B), D, E (and D again). The



first circle encountered (A) has one branch line attached,
B has two, C' has 1, B has 2, D has 2, E has one, and D
has 2. All these sequences repeat as one follows the flow
around again past branch line 1. The three encodings
are: abbacca, ABCBDED, and 1212212. Since these re-
sults are invariant under cyclic permutation (i.e., change
of starting point), it is useful to label each by some “low-
est” word. For the canonical forms in Fig. 7 we obtain
the following strings:

Sequence of Sequence of Number of

Polygons Circles Intervals
aabbacc ABCBDED 1212212
aaabccb ABCDCBE 1221221
aaabbcc ABCBDBE 1313131

The coding in the last column easily translates into the
transition matrix for the canonical form. This is done as
follows. A digit 1 in a particular position implies the
existence of a period 1 orbit (a one cycle). A digit 2
occurs in pairs and it stands for a period 2 orbit. It
forms a doublet. A digit 3 occurs in three places and
denotes a three cycle. It forms a triplet. Multiplets do
not interleave. For example there are two pairs of 2’s in
each of the first two rows of the third column. They stand
for different period two orbits. We decipher the numerical
string into the connectivity part (CC) of the transition
matrix as follows. First we write the string along the
diagonal of a (g—1) x (g—1) matrix with all other entries
equal to zero. We keep the digits 1 in place. Digitsn > 1
representing n-cycles are shifted to the proper locations
on the row and written there as 1. For example in the first
string we have a two-cycle represented by digit 2 in the
second and the fourth position. This means that in the
connectivity matrix elements (2,4) and (4,2) will be 1.
The procedure is illustrated below for the first numerical
string:

1000000 1000000
0200000 0001000
0010000 0010000
0002000 =-10100000
0000200 0000001
0000010 0000010
000000 2 0000100

Using this symbolic notation we can proceed to enumer-
ate all canonical forms up to genus 9. This is done next.

VIII. ENUMERATION OF CANONICAL

FORMS

To provide a complete classification of canonical forms
we need to find a way to deal with degeneracy (cf., Fig.
7). This becomes important as the genus increases above
6. For that reason we propose a method that is reminis-
cent of the use of Young partitions to classify represen-
tations of permutation groups and Lie groups. The idea

can be roughly described as follows. A genus g =m +n
canonical form will have 2g9—2 singularities located at the
vertices of n even-sided regular polygons that are part of
the internal boundary. In fact these singularities occur
in pairs - sources and sinks (splitting and joining points).
The problem reduces to finding a way to partition g — 1
pairs into different sets of positive integers > 2. Each set
has p; > 2 members. Two pairs represent a square in the
canonical form (a regular saddle), three pairs stand for a
hexagon (three-fold degenerate saddle) etc. We list the
number of pairs in non-increasing order and present them
in the form (p1,p2,ps,---,Pn), where the constraint is

E?:1pi =g-—1

Such partitions are not sufficient in some cases (as il-
lustrated in Fig. 7). The degeneracy is lifted by using
numerical strings: e.g., 1212212. The digit in each po-
sition of the numerical string represents the number of
intervals connected to a circular hole encountered in a
trip along the oriented disk’s outer boundary. Examples
of such numerical strings were shown in the previous sec-
tion. They also encode all the information about the
transition matrix of the canonical form.

In Table I we enumerate canonical forms up to genus
9. We list the genus g, the number m of circular holes,
the partition of the singularities and the numerical string
from which the connectivity matrix can be recovered.
The numerical strings are unique up to a cyclic permu-
tation.

The number of inequivalent canonical forms N(g) in-
creases with g as follows

P1L>P2 2 P3---Pn > 2
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We speculate that this number increases exponentially
with g: N(g) ~ €. If true, it is possible to associate
an “entropy” with canonical forms using the standard
limiting definition:

h = lim log N(9)

g—0o0 g

IX. ANALYSIS OF EXPERIMENTAL DATA

Once the branched manifold for a strange attractor has
been determined it is relatively straightforward to find
the corresponding canonical form. One drawback is that
the topological analysis associated with the branched
manifold determination is rather involved. For that mat-
ter it would be preferable if we can go directly from the



TABLE I: Enumeration of canonical forms up to genus 9
gm (plapQ, .- pn) ninz ... Ng—1

11 (0) 1
32 2) 11
43 3) 111

5 4 @) 1111
53 (2,2) 1212
6 5 (5) 11111
6 4 (3,2) 12112
76 (6) 111111
75 (4,2) 112121
75 (3,3) 112112
74 (222) 122122
74 (222) 131313
8 7 ) 1111111
8 6 (5,2) 1211112
8 6 (4,3) 1211121
85 (3272 1212212
85 (3272 1221221
85 (3272 1313131
98 ®) 11111111
9 7 (6,2) 11111212
9 7 (5,3) 11112112
97 (4,4) 11121112
96 (4,272 11122122
96 (4272 11131313
96 (4272 11212212
96 (4,22 12121212
96 (3372 11212122
96 (332 11221122
96 (3372 11221212
96 (3372 11311313
95 (2222 12221222
95 (2222) 12313132
95 (2222) 14141414
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experimental data to the canonical form. This can be
done easily in lower genus cases. We provide a simple
example.

In Fig. 9 we show a chaotic data set coming from a
three-dimensional dynamical system. This is a numeri-
cally generated data set. It is also a generic data set.

T T T

X (arb. units)

C . 1 . 1 . ]
0 1.0 2.0 3.0
time (timesteps x10%)

FIG. 9: Chaotic data set.

Next we carry out a differential embedding of this data
set in R%. In the reconstructed phase space with coor-
dinates (z(t), z(t), Z(t)) we look at the projection in the
(x(t),4(t)) plane. This is shown in Fig. 10. One ad-

dx/dt Of-aff

FIG. 10: Differential embedding of the data set shown
in Fig. 8. The axes are (z(t),4(t)). The fixed points
are along the abscissa. The locations of suitably chosen
components of the Poincaré surface of section are shown
and numbered from 1 to 3, the first being the left-most
one.

vantage of such a projection is that all the fixed points
are located along the abscissa. Points in the upper half-
plane move to the right and points in the lower half-plane
move to the left. We see three fixed points around which
the flow rotates one way. Thus we need at least three



components for the Poincaré surface of section. Three
components of the Poincaré surface of section are eas-
ily identified by inspection. They occur beyond points
where flows from different circles join.

Next we look at how the sections are connected by the
flow. With a little effort we see that the flow crossing
section 1 is mapped either back to 1 or it goes to section
2. The flow crossing section 2 is mapped back to 2 or it
is redirected to section 3. At section 3 a similar situation
occurs - the flow either crosses again 3 or it is mapped
to section 1 going along the band at the bottom of the
projection. The transition matrix is:

T =

o
O ==
=)

From this matrix we extract the following connectivity
matrix:

100
cC=1010
001

This means that we have a cyclic configuration and the
best candidate for a canonical form is the one correspond-
ing to genus 4 in Table I. The only other possible choice
(since m = 3, n =1 or n = 2 only) is the form that
has genus 5 and 3 circles (three focal points and two sad-
dles). However, this requires another component for the
Poincaré surface of section to be associated with one of
the holes in the attractor. Upon careful examination we
see that there is no location where we can put another
such component and not have a one-to-one mapping by
the flow. Thus the right choice is the genus 4 canonical
form. This form is presented graphically in Fig. 5(c).
We would like to emphasize that from our analysis we
can not conclude that the branched manifold associated
with our system is the one in Fig. 5(a) or (b). We do
not know at this stage the number of branches or the
way they are connected to the branch lines. This follows
from the fact that the canonical form does not uniquely
determine the branched manifold. It rather serves as
an organizer indicating the number of singular sets and
places constraints on the connectivity between branches.
An additional constraint is put on the way branches fold
when parameter values are changed - branches connect-
ing to the same branch line but coming from different
“tubes” in the embedding manifold must fold so that
they do not intersect each other (see [1]).

In fact the data set for our example actually came from
a three-fold cover of the Rossler system. A numerically
computed solution approaching a strange attractor is pre-
sented in Fig. 11. We plot only a projection on the XY
plane since the cover was constructed by applying rota-
tion about the z-axis. The generic data set in Fig. 9is a
linear combination

—2(t) sin(¢) + y(t) cos(9),
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where the angle ¢ was chosen so that there is a large
separation between the unstable foci. If we take the z(¢)
variable (¢ = 37/2), two of the fixed points will be nearly
degenerate in the differential embedding.

FIG. 11: A projection on the X-Y plane of the strange
attractor of the three-fold cover of the Rossler system.

X. DISCUSSION

We believe that the classification scheme in terms of
canonical forms presented in this paper is an important
advance in our understanding of low-dimensional chaos.
The interplay between topology and dynamics leads to
the appearance of a rich variety of possible structures for
chaotic attractors. So far very little of this variety has
been seen in practice - most strange attractors in R? live
inside a solid torus. Such lack of variety is due probably
to the way nature works at this level - simple structures
are abundant, complicated ones are rare. It could also
be due to the fact higher genus attractors are difficult
to model with analytic flows. Multispiral attractors have
been modeled by non-analytic, piecewise linear forcing
functions [20].

Apart from the obvious use for classification purposes,
our approach can be extended in at least in two other
different directions. First, the possible changes in the
structure of a strange attractor as parameter values are
varied can be explored. Apart from the constraint on
the way branches fold, previously mentioned, many more
interesting observations can be made. Second, starting
from the transition matrix of the canonical form we can
construct a set of coupled one-dimensional maps of the
interval representing the mapping between components
of the Poincaré surface of section after Birman-Williams
projection has been applied [15]. The study of such maps
will shed some light on orbit forcing in strange attractors
with more complicated structure.



In addition we would like to mention that we did not
consider any complications due to non-trivial (extrinsic)
embedding of the handle-bodies in R®. Such situations
occur, for example, if some of the handles are linked. The
question of whether it is possible for a strange attractor
to live inside such handle-body, and what impact this will
have on its structure, requires further investigation.
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