Perestroikas of strange attractors

Tsvetelin Tsankov!, Christophe Letelliert, Greg Byrne® and Robert Gilmore$
t Physics Department, Bryn Mawr College, Bryn Mawr, PA 19010-2899, USA
tCORIA UMR 6614 - Université de Rouen, BP 12,

Av. de UUniversité, Saint-Etienne du Rouvray cedex, France
$ Physics Department, Drezel University, Philadelphia, Pennsylvania 19104, USA

(Dated: November 15, 2004, Physical Review E: To be submitted.)

Strange attractors can exhibit bifurcations just as periodic orbits in these attractors can exhibit
bifurcations. We describe two classes of large-scale bifurcations that strange attractors can
undergo. For each we provide a mechanism. These bifurcations are illustrated in a simple class

of three-dimensional dynamical systems.

I. INTRODUCTION

Strange attractors are generated by dynamical systems
that depend on parameters. These are deterministic sets
of first order nonlinear ordinary differential equations of
the form 4; = f;(x;c), where the state variables z; de-
fine the state of the system and the control parameters
¢ can be varied. State variables typically model phys-
ical variables (laser intensity, concentration of chemical
species) and control variables typically model experimen-
tal conditions (laser pumping rates, chemical flow rates).
As the control parameters ¢ are varied strange attractors
undergo changes. It is one of the goals of dynamical sys-
tems theory to understand and predict the spectrum of
changes that a nonlinear dynamical system can undergo
under parameter variations [1-5].

Some changes are simple and well-known. These in-
volve bifurcations of fixed points and of periodic orbits.
Fixed point bifurcations are described by the theory of
singularities [6-8]. The bifurcations that periodic orbits
can undergo when a single parameter is varied include
only period-doubling bifurcations and saddle-node bifur-
cations [1-5]. However, strange attractors themselves
can undergo bifurcations as control parameters change.
It is now possible to study the spectrum of bifurcations
that strange attractors can undergo because of the struc-
tures that have been introduced to describe and clas-
sify strange attractors in three dimensions. As these bi-
furcations go beyond the bifurcations allowed to fixed
points and periodic orbits, we call these new kinds of
bifurcations “perestroikas,” a term commonly used in
catastrophe theory and the theory of singularities [6-
9]. Perestroikas involve changes in the structures we use
to characterize strange attactors. These are knot hold-
ers [10, 11, 4, 5], which describe how the periodic orbits
in a strange attractor are organized, and bounding tori
[12, 13], which describe how the knot-holders themselves
are organized.

This paper is organized as follows. In Sec. II we review
some of the tools that are important for the description

of the global changes that strange attractors can undergo
under parameter variation. In Sec. III we describe a
known perestroika that occurs in the Rdssler equations.
We also introduce the ideas necessary to describe even
larger-scale perestroikas. In Sec. IV we introduce a re-
stricted class of familiar dynamical systems which ex-
hibits this larger type of perestroika. In the following
section we describe the mechanism that is involved in this
class of perestroikas, and show in detail how the mech-
anism occurs in the simple class of dynamical systems
introduced in Sec. IV. In Sec. VI we discuss another
related mechanism giving rise to large scale changes in
the structure of strange attractors. This example occurs
for the Lorenz attractor in a certain range of control pa-
rameter values.

II. BACKGROUND

The properties of strange attractors are largely deter-
mined by the spectrum of unstable periodic orbits in the
attractor and the topological organization of these or-
bits [1, 3-5]. The organization is completely summarized
by knot holders. They are called knot holders because
they hold all the (unstable) periodic orbits in the strange
attractor and describe the organization of these orbits
[10, 11, 4, 5]. Knot holders are also called branched mani-
folds. The knot holders themselves are highly constrained
in the bifurcations they can undergo by bounding tori
that enclose them. We briefly review the properties of
branched manifolds and bounding tori.

A Branched Manifolds

Birman and Williams showed that it is possible to
project a strange attractor that is contained in R® onto
a two-dimensional structure called a branched manifold
[10, 11]. This is done by projecting the flow down along



the stable direction onto a surface defined by the ex-
panding and the flow directions. This is made rigorous
by identifying all points in the flow with the same future:
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In this projection periodic orbits are neither created nor
destroyed. Further, their topological organization re-
mains unchanged since no self-intersections occur during
this projection. As a result, the branched manifold can
be used to identify the topological organization of all the
unstable periodic orbits in the strange attractor. Since
the unstable periodic orbits and their topological orga-
nization identify the strange attractor, this means that
branched manifolds can be used to identify and classify
strange attractors [14-16].

B Bounding Tori

Strange attractors and the branched manifolds that
classify them can in turn be classified by their connec-
tivity properties [12, 13]. The easiest way to do this is
to “blow up” or “inflate” the semiflow on the branched
manifold to a flow in a neighborhood of the branched
manifold that has the appropriate limiting properties.
This bounded open set (inertial manifold) in R?® has a
bounding surface. The surface is orientable: the inside
contains the attractor. It is trapping: any orbit that
passes through from outside to inside remains trapped
inside forever. The surface is also bounded and closed.
It is therefore a torus. All tori are identified by a sin-
gle nonnegative integer, the topological index called the
genus, g, which is the number of holes in the boundary.
The surface with g = 0 is called a sphere and that with
g = 1 is commonly called a torus. The blow-up of the
flow induces a flow on this boundary. Although the flow
on the branched manifold has no fixed points in the open
neighborhood of the branched manifold, when restricted
to the surface there are fixed point singularities. All are
saddles. As a result, the number of fixed points is related
to the genus, and this number is 2(g — 1) [13].

The flow, restricted to the bounding torus surface,
can be put into canonical form. For genus g =
0,1,2,3,4,5,6,7,8,... there are 0,1,0,1,1,2,2,5,6, ...
inequivalent canonical forms [13]. These forms can be
uniquely identified by a symbol sequence (“periodic or-
bit”) of period g — 1. The number of canonical forms
increases exponentially with an entropy of log(3) [17].
The canonical form for g = 3 is shown in Fig. 1.

C Global Poincaré Surface of Section

In three dimensions a Poincaré surface of section is a
minimal two-dimensional surface with the property that
all points in the attractor intersect this surface transver-
sally an infinite number of times under the flow. The
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FIG. 1: Canonical form for the genus-3 bounding torus
consists of an outer disk boundary and three interior
holes. The four singularities are confined to the central
interior hole. Locations of the two disks (L, R) compris-
ing the Poincaré surface of section are shown.



Poincaré surface of section need not be connected and in
fact is often not connected. The urge to define Poincaré
sections as connected surfaces has lead to many problems
in the past. The Poincaré section is generally the disjoint
union of nonoverlapping disks [12, 13, 18].

The Poincaré surface for a genus-one bounding torus
consists of a single disk that is transverse to the flow. The
Poincaré surface for a canonical genus-g bounding torus
consists of the union of g —1 disjoint disks. The locations
of these disks are determined algorithmically [13]. The
locations of the two disks for the genus-3 canonical form
is shown in Fig. 1. They are labeled L and R.

D Branch Lines

Many different branched manifolds can be described
by the same genus-g canonical form. Each branch line in
any of these branched manifolds can be moved so that it
is contained in one of the g — 1 components of the global
Poincaré surface of section. As a result, any branched
manifold enclosed by a genus-g bounding torus has ex-
actly g — 1 branch lines.

E Return Maps

Return maps for branched manifolds enclosed by a
genus-one bounding torus are well known. They are
equivalent to maps from the single branch line that exists
in the single component of the Poincaré section back to
itself. That is, in this case return maps are exactly maps
of the interval to itself. Simple continuity requirements
ensure that all critical points are differentiable.

In the genus g > 3 case return maps can be constructed
algorithmically [19]. There are g — 1 branch lines. Initial
conditions on any branch line flow to exactly two other
branch lines. The return map is constructed as follows.
Each branch line is represented as an interval. These
are laid out along a horizontal axis (initial conditions).
Each branch line can be oriented, from the interior to the
exterior of the projection of the bounding torus onto a
plane (cf., Fig. 1). As in the genus-one case, the images
are arranged along the vertical axis. Over each point on
the horizontal axis (consisting of g — 1 disjoint oriented
segments) there is a unique image. Each branch line has
images in exactly two branch lines. Some return maps of
this type are shown in Fig. 2(b) and Fig. 3(b).

F Folding and Tearing

Return maps of a branch line onto itself in a genus-
one bounding torus exhibit differentiable maxima and
minima, that reflect the folding that takes place between
adjacent branches. In bounding tori with g > 3 initial
conditions on any branch line flow to exactly two other

branch lines. There is some point p along each branch
line with the property that initial conditions on one side
evolve to one branch line and initial conditions just to the
other side evolve to a different branch line. This point
is called a “tearing point” and is an initial condition for
the flow into a saddle type singularity. At this point
the return map exhibits a jump discontinuity and often
a slope discontinuity as well. These discontinuities show
that tearing takes place in the flow. Tearing occurs in the
neighborhood of saddle points or other singularities that
deflect the flow in a small neighborhood into divergent
directions [19]. Folding and tearing are exhibited in the
return map shown in Fig. 2(b).

G Unfoldings of Dynamical Systems

Most of the nonlinear dynamical systems that have
been studied depend on only a small number of control
parameters. The Rossler and Lorenz systems depend on
three control parameters. The systems presented in Sec.
IV depend on one, two, or three control parameters ex-
cept for the sixth system in Table 1, which depends on
five. In the face of such a paucity of control parame-
ters the full range of possible behaviors of these dynam-
ical systems cannot be exhibited simply by varying the
control parameters that are built into the model. This
differs from the situation that exists in the study of catas-
trophes and singularities [6-9]. In these studies there is
a procedure for constructing a “universal unfolding” of
the singularity by adding perturbations that encapsulate
all possible behaviors in a neighborhood of the singular-
ity. There is no such theory for dynamical systems at
the present time (except in the neighborhood of fixed
points). Lacking such a theory, we are forced to the next
best approach, which is topological in nature. In effect,
we replace the (unknown) infinite dimensional universal
perturbation of a dynamical system with a topological
description of the system [4, 5].

III. A KNOWN PERESTROIKA

Some perestroikas are familiar and others are less so.
As control parameters are changed, in the Rossler equa-
tions [20], for example, there is an alternation between
chaotic and periodic behavior. The periodic behavior is
seen in the form of periodic windows. In particular, as a
control parameter changes a saddle node bifurcation can
create a pair of periodic orbits, one of which is unstable
and the other is initially stable. The stable periodic or-
bit “eats a hole” (window) in the bifurcation diagram,
undergoes period-doubling, and eventually becomes un-
stable, closing the periodic window and restoring chaotic
behavior. For strange attractors generated by the Smale
horseshoe mechanism, the partial order in which peri-
odic orbits can be created on the way from laminar to



chaotic behavior is constrained by topological considera-
tions. Forcing diagrams for the simple Smale horseshoe
exist to exhibit these constraints [5, 21-24].

In the perestroika just described, all the orbits can be
identified by just two symbols: 0 and 1 (a,b,c) = (7,7,7).
A new class of perestroikas occurs when new orbits are
created that require more than two symbols for their de-
scription using symbolic dynamics. For example, the
symbol set (0,1) must be extended to (0,1,2) to de-
scribe new orbits in the Rossler attractor in a certain
range of parameter values ? < a <?. There is an
entire sequence of perestroikas in which new symbols
are added (e.g., (0,1,2) — (0,1,2,3)) or removed (e.g.,
(0,1,2,3) = (1,2,3)) as control parameters are varied.
These come about as the branched manifold that de-
scribes the strange attractor undergoes stretching and
scrolling (see Figs. 7.36 and 7.45 in [5], [25]).

Sometimes even more profound changes occur as con-
trol parameters are varied. These involve changes in the
global topological structure of the attractor. Such pere-
stroikas need not involve changes in the number of sym-
bols required to identify each periodic orbit in the at-
tractor. In fact, what changes is the connectivity prop-
erties of the strange attractor. To be more precise, what
changes is the connectivity of the branched manifold that
describes the strange attractor.

IV. CLASS OF SYSTEMS STUDIED

In order to exhibit these perestroikas, it is useful to
study dynamical systems that create strange attractors

that can be enclosed in genus-three bounding tori. A
useful collection of such strange attractors is generated by
autonomous dynamical systems with a rotation (Rz(m))
symmetry in R?® and with forcing terms of degree not
exceeding two [26]. The most general form for flows with
Rz(m) symmetry is [27]

d X Fxx Fxy 0 X
T Y | =|Fx Fry 0 Y (1)
tl z 0 0 Fz|]|1

The five functions in the equation above are invariant un-
der the actions of the group, so depend on the invariants
X2% XY, Y2, Z. The most general dynamical system
with Rz(m) symmetry and forcing terms of degree no
higher than two is

ar X +aY +a3XZ+aYZ
WX +b0Y +b03XZ+b4YZ
co+c1Z +coX?+ 3 XY +caY? + 522

2)

X
Y
Z
The values of the coefficients (a, b, ¢) for all the dynamical
systems with these properties that have been studied are
provided in Table 1.

TABLE I: Coefficients of several quadratic systems with Rz (7) symmetry.

System X Y XZYZ X Y XZ YZ - Z X>XY Y? Z® Ref
a; a2 as a4 b1 b2 b3 b4 Chp C1 C2 C3 C4 Cs

1. Lorenz —oc+oc 0 0 R -1 -1 0 0 -6 0 +1 0 0 [29]
2. Chen & Ueta —o040 0 0 R—0 R -1 0 0 —-b 0 +1 0 0 [30]
3. Wang, Singer & Bau —o +0 0 0 0 -1 -1 0 Ra-1 0 41 0 0 [31]
4. Shimizu & Morioka 0 +1 0 0 1 —p -1 0 0 —a+41 0 0 0 [32]
5. Rucklidge 0O 41 0 0 —-X 4k -1 0 0 -14+41 0 0 0 [33
6. Lusseyran & Brancher —a af o a «a —-ay —a —aC 0 —v -1 -1 0 0 [34]
7. Burke & Shaw -S+5 0 0 0 -1 - 0 vV 0 0 +S5 0 0 [35]
8. Sprott B 0 0 0 41 a —-a 0 0 b 0 -1 0 0 0 [36]
9. Sprott C —a +a 0 O 0 0 +1 0 b 0 0 -1 0 0 [36]
10. Rikitake - 0 0 41 —a —p 41 0 +1 0 0 -1 0 0O [37]

The large scale structure of a strange attractor is
largely determined by the number, location, and stability
of the coexisting fixed points.

The number of fixed points is governed by Bezout’s
theorem [28]. This theorem states that the number of

fixed points of a set of polynomial equations is bounded
above by the product of the degrees of these equations. In
the present case, this is d, xd, xd., where d, is the degree
of the forcing terms in the equation X = f(X,Y, Z), etc.
Since we are restricting ourselves to quadratic equations



this product cannot exceed eight. In fact, for all except
the sets of equations 6 and 10, this product is four.

The fixed points are of two types. They occur in
symmetry-related pairs off the Z axis, and as two-fold
degenerate fixed points on the Z axis. Bezout’s theo-
rem counts the number of fixed points, including their
degeneracy. For all of the systems in the table above,
we choose control parameter values so that there are
only two off-axis fixed points that are related by the
symmetry, and they are unstable foci. The remaining
fixed point, if it exists, must be on the Z axis. This
fixed point exists at (0,0, Z), where Z is determined by
7 = co+c1Z +c5Z? = 0. Since ¢5 = 0 for all the sys-
tems listed in the table above, the fixed point occurs at
Z = —cp/cy. For the sytems 7 - 10 the fixed point is “at
infinity” since ¢; = 0. That is, there is no fixed point. In
the remaining cases (except 3) it is at 0 since ¢p = 0. In
case 3 it occurs at Z = Ra.

The global properties of the strange attractor are gov-
erned by the stability properties of the flow in the direc-
tion transverse to the Z axis. The stability matrix on
the Z axis is

a1 +as3”Z as + asZ 0
b1 +b3Z by +bsZ 0 (3)
0 0 1+ 2¢5Z

From this it is clear that the eigenvectors are along and
orthogonal to the symmtry axis, and the eigenvalue in
the Z direction is ¢; + 2c5Z. For systems 7 - 10 the Z
axis is invariant with constant nonzero flow Z = ¢ along
this axis.

The two other eigenvectors of the stability matrix are
orthogonal to the Z axis. Their eigenvalues are deter-
mined by the 2 x 2 submatrix in (3). These eigenvalues
determine to a large extent the global topology of the
strange attractors (their genus) and the perestroikas they
undergo.



TABLE II: Control parameter values for which the symmetric dynamical systems generate strange attractors that

exist in genus-one and genus-three bounding tori.

System Parameters Genus — three  Genus — one

1. Lorenz (R,0,b) (28.0,10.0,8/3) (278.56,30.0,1.0)
2. Chen & Ueta (R,0,b) (22.05,35.0,5.0) (35.0,25.264,1.0)
3. Wang, Singer & Bau

4. Shimizu & Morioka (o, ) (0.375,0.810) (0.191457,0.810)
5. Rucklidge

6. Lusseyran & Brancher

7. Burke & Shaw (S,V) (0.85,0.80) (10.0,4.271)

8. Sprott B

9. Sprott C
10. Rikitake

V. PERESTROIKAS OF BOUNDING TORI

A bounding torus of genus three is shown in Fig. 1
[12, 13]. This figure actually shows the projection of the
two dimensional surface of the genus-3 torus onto a two-
dimensional plane. This projection consists of an outer
boundary and three interior holes. The flow directions
along all components of this surface are indicated by the
arrows. The flows along the outer disk boundary and the
two interior holes (shown round) on the left and right are
in the same direction. The direction of the flow in the
middle interior hole (shown square) changes direction at
the four singularities. The direction of the flow at any
interior point can be determined by continuity consid-
erations. Since the genus is three, the global Poincaré
surface of section is the union of two disjoint disks that
are transverse to the flow. The locations of these disks
are shown as heavy lines extending between the interior
round holes and the exterior boundary in Fig. 1.

Many distinct branched manifolds can exist within the
surface of this bounding torus. For any such branched
manifold, each branch line can be moved to a disk in the
global Poincaré surface of section. All branched mani-
folds compatible with this bounding torus therefore have
two branch lines. One such branched manifold is shown
in Fig. 2(a). This branched manifold has six branches,
two branch lines, and a two-fold rotation symmetry. The
return map for this branched manifold is shown in Fig.
2(b). The two branch lines are labeled L and R. Initial
conditions on L are shown along the horizontal segment
L and their images under the flow are shown above the
initial condition. Initial conditions near the “inside” (see
Fig. 2(a)) return to L and those nearer the outside flow
to R. The branch labeled 0 connecting L to L has no
torsion. The two branches labeled 1 and 2 that connect
L to R have torsions of # and 0 radians. This return

map shows that tearing occurs between branches 0 and
1, while folding occurs between branches 1 and 2. Initial
conditions from branch line R are described in the same
fashion [19].

As control parameters change the strange attractor
also changes. Small changes include creation and/or an-
nihilation of periodic orbits. Larger changes include in-
clusion of additional branches or removal of branches al-
ready present. For example, the branches 2 (L — R and
R — L) may shrink until the flow no longer goes through
them, or these branches may grow until they reach an ex-
tremum and turn around, creating new branches (“3”).
In all these cases the two branch lines remain present and
serve to feed more or fewer branches and the branched
manifold remains bounded by a genus-3 bounding torus.

The bounding tori can themselves experience pere-
stroikas. We sketch the general arguments as they ap-
ply to a genus-three bounding torus. For simplicity, we
assume the flow satisfies a rotation symmetry (Rz(w)).
However, none of the results described below depends
on symmetry. As control parameters change the flow
through some of the flow tubes in a bounding torus can
be restricted and finally annihilated.

In Fig. 3(a) we show one perestroika that can occur
for the genus-3 bounding torus. In this case the flow is
restricted in the two interior flow tubes, marked with an
x. Flow in these tubes returns from L to L or from R
to R. As the flow is restricted, the return map becomes
increasingly “offdiagonal,” and finally completely offdi-
agonal, as shown in Fig. 3(b) [19]. In this case all initial
conditions on L flow to R and those on R flow to L. This
determinism means that one of the two components of the
global Poincaré surface of section is redundant. This is
consistent with the flow being contained in a genus-one
bounding torus. In this case the strange attractor with
4 = 2 x 2 branches and 2 branch lines in the genus-3
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FIG. 2: (a) Branched manifold compatible with the
bounding torus shown in Fig. 1. There are two branch
lines and six branches. (b) Return map for this branched
manifold. Diagonal parts describe the L -+ Land R — R
flows and offdiagonal parts describe the L — R and
R — L flows.

bounding torus is deformed and is now embedded in a
genus-one bounding torus. The branched manifold has a
single branch line and 4 = 22 branches. It is shown in
Fig. 3(c). The return map on the single branch line (R)
is shown in Fig. 3(d).

In Fig. 4(a) we show what happens when the flow
through the two exterior flow tubes marked with an x,
that carry the flow from one component of the Poincaré
section to the other, is restricted. The return map be-
comes “more diagonal,” and finally diagonal (Fig. 4(b))
when the flow through these two flow tubes is completely
cut off. The flow returns from branch line L to branch
line L, or from R back to R. The strange attractor
is “severed” into two components, each described by a
branched manifold with one branch line. Each of these
two branched manifolds is enclosed in a genus-one bound-
ing torus. This perestroika generates two genus-1 bound-
ing tori from one genus-3 bounding torus. These are
shown in Fig. 4(c). The branched manifolds with each
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FIG. 3: (a) Flow through the interior flow tubes is re-
stricted. (b) The return map becomes increasingly off-
diagonal, finally offdiagonal in the limit that the flow
through these two flow tubes is completely restricted.
(c) The original strange attractor is deformed into a sin-
gle strange attractor, with one branch line and 4 = 22
branches, contained within a genus-one bounding torus.
(d) The return map on the single branch line has four
branches.

are shown in Fig. 4(d). In this perestroika, a connected
genus-3 attractor is transformed to two disjoint genus-
1 attractors. The two bounding tori, and any strange
attractors in them, are disjoint and unlinked.

VI. MECHANISM CAUSING PERESTROIKAS

Figures 5 and 6 show that the Lorenz attractor under-
goes a perestroika as the control parameters change from
(R,o0,b) = (28.0,10.0,8/3) to (278.56,30.0,1.0). The
perestroika is described by a transition from a genus-3
bounding torus to a genus-one bounding torus. During
this change of control parameter values there is no change
in the stability properties of the three fixed points but the
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FIG. 4: (a) Flow through the exterior flow tubes is re-
stricted. (b) The return map becomes increasingly diag-
onal, finally diagonal in the limit that the flow through
these two flow tubes is completely restricted. (c) The
original strange attractor is deformed into two disjoint
strange attractors (d), each in a genus-one bounding
torus (c), each with a single branch line.

locations of the two foci change.

The change occurs because changing the control pa-
rameter values forces to the flow to visit different neigh-
borhoods of the Z axis. For (R,o,b) = (28.0,10.0,8/3)
the flow passes near the Z axis for small values of Z
(0 < Z < 30). In this range of Z values the Z axis has
the transverse stability of a saddle. The saddle struc-
true of the Z axis splits the flow and is responsible for
the tearing that is evident in the first return map, shown
in Fig. 5(c). For (R,0,b) = (278.56,30.0,1.0) the flow
passes around the Z axis for much larger values of Z
(275 < Z < 325). In this range of Z values the trans-
verse stability is that of a focus. The transverse stability
of this axis is shown clearly in Fig. 6(a). The projection
of the strange attractor onto the X-Y plane (Fig. 6(b))
shows clearly that its bounding torus has genus one, and
the first return map [Fig. 6(c)] shows that no tearing

occurs.

This mechanism operates to cause a genus-3 to genus-
1 perestroika in the other dynamical systems presented
in Table 1. The strange attractors of genus-3 type and
genus-1 type are shown for the Burke and Shaw dynam-
ical system [35] in Fig. 7, the Chen and Ueta dynamical
system [30] in Fig. 8, and the Shimizu-Morioka dynami-
cal system [32] in Fig. 9.

Figure 10 provides a schematic representation of this
mechanism. When the control parameter values cause
the flow to pass the Z axis in a neighborhood where it
has the transverse stability of a focus, only folding occurs
and the attractor can be enclosed in a genus-one torus.
When the flow passes the Z axis in a neighborhood where
it has the transverse stability of a saddle, tearing occurs
and the attractor can be enclosed in a genus-3 torus. In
the transition region both folding and tearing occur, as
illustrated in the middle of Fig. 10. As long as tearing
occurs, the attractor is enclosed in a genus-3 surface. We
point out that the perestroika is not driven by change of
stability of the fixed point on the Z axis (when there is
one), or even the existence of a fixed point on the Z axis
(cf. Table 1, systems 7-10), only by the transverse sta-
bility properties of the Z axis where the flow approaches
it. The mechanism shown in Fig. 10 is responsible for
creating the genus-3 to genus-1 perestroikas of the type
shown in Fig. 3, where flow through the two interior flow
tubes is restricted and finally annihilated.

VII. OTHER MECHANISMS

Mechanisms for creating perestroikas of the type shown
in Fig. 4 have also been observed. In these mechanisms
flow through the exterior flow tubes is restricted and
finally annihilated. The result is a pair of symmetry-
related strange attractors, each of genus-one type. Fig.
11 shows this transition for the Lorenz system. In effect,
changing the control parameter values reduces and finally
annihilates the flow past the Z axis. The two strange at-
tractors that result are unlinked.

Another mechanism can create a pair of symmetry-
related strange attractors that are linked. The mecha-
nism that generates this perestroika can be considered
in two steps. First, the control parameters are changed
from (R,o0,b) = (28.0,10.0,8/3) to values for which a
genus-one strange attractor exists. The attractor at
(R,0,b) = (142.5,10.0,8/3) is shown in Fig. 12(a). Its
return map on a global Poincaré surface of section is
shown in Fig. 12(b). The attractor has ? branches and
a global torsion of ?. The global torsion is determined
by the self relative rotation rates of the unstable periodic
orbits in the attractor. It can also be identified by car-
rying out the isotopic deformation shown in Fig. 12(c).
This smooth transformation converts writhe to twist, or
torsion.

A mechanism leading to a new perestroika is illustrated
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FIG. 5: Projection of the Lorenz attractor onto (a) the
X-Z plane and (b) the X-Y plane. The two components
of the global Poincaré section are shown. (c) Return
map on the two branch lines shows that tearing occurs.
Parameter values: (R,o,b) = (28.0,10.0,8/3).
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FIG. 6: Projection of the Lorenz attractor onto (a)
the X-Z plane and (b) the X-Y plane. (c) First-
return map to a single component Poincaré section shows
that only folding occurs. Parameter values: (R,o,b) =
(278.56,30.0, 1.0).
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FIG. 7: Chaotic attractors for the Burke and Shaw sys-
tem. (a) Attractor with a tearing mechanism occurs
around the upper part of the Z-axis which has the trans-
verse stability of saddles. (b) Attractor with a folding
mechanism occurs around the lower part of the Z-axis
which has the transverse stability of foci.
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FIG. 8: Chaotic attractors for the Chen and Ueta sys-
tem. (a) Attractor with a tearing mechanism contained
in a bounding torus of genus-three and (b) attractor with
a folding mechanism contained in a bounding torus of
genus one.
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FIG. 10: As control parameters vary the attractor flows
past the Z axis in different regions. Folding occurs when
the transverse stability is that of a focus and tearing oc-
curs when the trasnverse stability is that of a saddle.
Both occur in the transition region.

FIG. 11: Lorenz perestroika shows a genus-3 to 2 x
genus-1 transition. (a) genus-3 (b) unlinked symmetry-
related genus-one strange attractors.
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FIG. 12: (a) Lorenz attractor after the saddle fails to split
the flow, deflecting it to a single region in the state space.
The attractor can be bounded by a genus-one torus, so
only one branch line is necessary. (b) Return map on the
branch line. (¢) The local torsion can be determined by
an isotopy that exchanges writhe for twist. Parameter
values: (R,o0,b) = (142.5,10,8/3).
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FIG. 13: Return maps for (a) connected strange attrac-
tor and (b) two disconnected strange attractors that are
linked with linking number n.
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FIG. 14: (a) Two linked genus-one strange attractor gen-
erated by the Lorenz equations and (b) their return map.
Parameter values (R,0,b) = (7,7,7).

in Fig. 13 in terms of return maps. Fig. 13(a) shows a re-
turn map for a strange attractor that can be enclosed in a
genus-one bounding torus. In this return map the inter-
nal branch with positive slope has an even local torsion,
2n. The two outer branches with negative slope have
local torsion 2n + 1. If the control parameters are var-
ied to generate the return map shown in Fig. 13(b), the
attractor becomes disconnected. The two disconnected
pieces have linking number n and are unlinked if n = 0.
Two linked attractors satisfying the Lorenz equations are
shown in Fig. 14(a). The return maps in an appropriate
half-plane are shown in Fig. 14(b).

VIII. SUMMARY AND CONCLUSIONS

As experimental conditions or control parameters
change, strange attractors also change. The changes can
be described by a hierarchy with three levels of struc-
ture. At the first level is the set of unstable periodic
orbits in the attractor. At the next level of structure are
the branched manifolds that describe the unstable peri-
odic orbits in the strange attractor. Branched manifolds
can metamorphize by the addition of new branches or
the deletion of old branches as control parameters vary.
At the grossest level in this heirarchy, the bounding tori
that enclose the branched manifolds can change. In this
work we have described some changes that can occur and
exhibited mechanisms responsible for bounding tori per-
estroikas in a large class of simple dynamical systems.
This special class exhibits a rotation symmetry [Rz(7)],
but the mechanism operates when the symmetry is bro-
ken or absent.

In general, the mechanism involves restricting the flow
through either interior (Fig. 3) or exterior (Fig. 4)
flow tubes of a bounding torus, with the following conse-
quences:



Restriction Initial Final

Interior flow tube genus-3 — genus-1

Exterior flow tube genus-3 — 2 x genus-1
The two genus-one bounding tori, and the strange attrac-
tors enclosed by them, are not linked.

We exhibited another mechanism in which a strange
attractor enclosed in a genus-one bounding torus bifur-
cates to a pair of strange attractors. Each is enclosed in
a genus-one bounding torus, and the two tori are linked
with nonzero linking number n. The Lorenz equations
exhibit a perestroika of this type. It can be summarized
as

genus-3 — genus-1 — 2 x genus-1 (linked)

It may seem that such a bifurcation cannot occur di-
rectly from a genus-3 strange attractor, and that it must
proceed through the genus-one stage. This is not neces-
sarily so. If the genus-3 bounding torus, for which the in-
trinsic (as seen from “inside”) representation is as shown
in Fig. 1, is actually embedded in R® as shown in Fig.
15, then restricting the flow in the external flow tubes
can produce the perestroika

genus-3 — 2 x genus-1 (linked)
in a single step.

QLo

(b)

(©

FIG. 15: (a) Canonical form for a genus-three bound-
ing torus describes only intrinsic properties (how it looks
from the inside). The extrinsic properties are governed
by how the torus is embedded in R®. Extrinsic embed-
ding that is (b) unknotted and (c) knotted so that when
the flow through the external flow tubes is restricted two
linked genus one attractors are formed.
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