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Branched manifolds that describe strange attractors in R® can be enclosed in, and are organized
by, canonical bounding tori. Tori of genus g are labeled by a symbol sequence, or “periodic
orbit”, of period g — 1. We show that the number of distinct canonical bounding tori grows
exponentially like N(g) ~ e 9~ with log(2) < A < log(3). We estimate A = 1.

I. INTRODUCTION

Low dimensional strange attractors — those with Lya-
punov dimension dj, < 3 — can be discretely classified.
A doubly discrete classification has been described in [1].
This classification depends ultimately on the existence
and rigid organization of an infinity of unstable periodic
orbits in a strange attractor [2, 3]. At the lowest level
this classifciation depends on a basis set of orbits. This
is a set of orbits with positive topological entropy whose
presence forces the existence of all the other unstable pe-
riodic orbits in the attractor [4-6]. The basis set of orbits
for any attractor is discrete, and up to any finite period
the basis set of orbits is finite.

At the second level of this organizational hierarchy for
strange attractors are branched manifolds [1, 2, 7, 8, 10].
These are obtained from the flow that generates a strange
attractor by projecting the flow down along the stable
direction. The unstable periodic orbits that exist in the
strange attractor exist in 1-1 correspondence with the
periodic orbits on the branched manifold, with possibly a
small number of exceptions. Information about branched
manifolds can be extracted from experimental data [11].

Recently a third level of discreteness in the description
and classification of low dimensional strange attractors
has been introduced [13, 14]. Branched manifolds can
be enclosed in bounding tori. These serve to organize
branced manifolds in the same way that branched mani-
folds organize the periodic orbits in a strange attractor.
A bounding torus provides a canonical form for any flow
in R® that generates a strange attractor. An algorithm
for transforming a flow to its canonical form is given in
[14]. The bounding tori that enclose every strange at-
tractor that has been studied in R® have been described
in [13, 14].

Bounding tori are described first by their genus g > 1.
However, genus alone does not uniquely identify a bound-
ing torus when g > 4, and in fact the number of distinct
bounding tori of genus g grows rapidly with g. It was pro-
posed in [14] that the growth might be exponential, so
that an entropy-like limit of the type lim,_, o log[N(g)]/g

might exist, in analogy with the limiting definition of
topological entropy for periodic robits in a strange at-
tractor.

The purpose of the present work is to show that this
limit exists, to present hard upper and lower bounds, and
to estimate that the “toral entropy” of three-dimensional
bounding tori is
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II. BACKGROUND

A bounding torus of genus g = 8 is shown in Fig. 1.
This represents a projection of a two dimensional surface
in R? down onto a plane. The projection consists of the
outer boundary of a disk and g interior disks. The interior
disks are of two types: circles and even-sided polygons.
The flow on the outer boundary is unidirectional; the flow
on the n, interior circles is also unidirectional, and in the
same direction as the flow on the exterior boundary. All
singularities of the flow lie on the n, interior polygons: a
polygon with 2n sides (n > 1) has 2n singularities, one
at each vertex. The genus of the bounding torus is the
total number of interior holes: g = n. 4+ n,. The total
number of singularities on the bounding torus (all at the
vertices of the interior polygons) is 2(g — 1).

For the bounding torus shown in Fig. 1 there are n, =
5 interior uniflow circles labeled A — E and three interior
polygons labeled a,b,c. The global Poincaré section of
any flow bounded by this torus has g—1 = 7 disconnected
components [13, 14]. These are shown as line segments
in Fig. 1 and labeled 1 — 7, sequentially in the direction
of the flow along the exterior boundary.

There are several ways that bounding tori can be
uniquely identified. The labeling algorithms are de-
scribed in Eq. (2).
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The first row lists the components of the global Poincaré
section in the order they are encountered traversing the
exterior boundary of the projection.

FIG. 1: A canonical bounding torus with genus 8. This
is partly described by Young partition (3,2,2).

Below each number ¢ 1is the capital letter
(A,B,C,D,E) that identifies the uniflow circle to
which the i*" component of the surface of section is at-
tached. In moving from component i to component 4 + 1
a hole with singularities is encountered. The sequence
(abbecaa) that is encountered is shown in the third row
of Eq. (2). There is a 1-1 correspondence between the
bounding torus and each of the two letter sequences
(ABCBDBE and abbccaa), up to the usual symmetries
(relabeling the holes, changing the starting point). In
fact, these two descriptions of a bounding torus are
dual to each other. Both sequence strings are in fact
infinite, but of finite period g — 1 = 7. The last string
of integers in Eq. (2) indicates that there is a period-3
orbit around hole B and period-1 orbits around the
holes A,C,D,E. A permutation group representation
of this bounding torus in terms of permutation group
generating cycles is (2,4,6)(1)(3)(5)(7) or more simply
(2,4,6). This representation in terms of generating cylces
can be used algorithmically to construct the transiton
matrix for this bounding torus [13, 14].

Part of the degeneracy associated with enumerating
bounding tori of genus g can be lifted by introducing
Young partitions A = (A1, Az, ,Ap,), A1 > Ap > -0 >
An, > 2 [13, 14]. Each internal polygon with 2); edges
and singularities is visited exactly A; times in a tour
around the exterior boundary. The partition associated
with the torus has n, rows, one for each interior polygon.
For the bounding torus shown in Fig. 1, A = (3,2,2).

All allowed bounding tori that can be assocaited with
this partition are obtained by distributing the g — 1 =7
letters aaa, bb, and cc on the perimeter of a circle sub-
ject to the single condition that no interleaving occurs
(..a.b.b.a.. is allowed but ..a.b.a.b.. is not).

The number of bounding tori of genus g can be deter-
mined by

1. listing all allowed Young partitions;

2. counting the number of allowed letter distributions
(up to cyclic permutation) for each Young parti-
tion.

In view of the noninterleaving property, the polygon
encounter letter sequences of open and closed parentheses
can be represented by three-symbol sequences in which
( and ) stand for the first and last occurance, respec-
tively, of any given letter, intermediate occurances being
indicated by a *. The noninterleaving property implies
that each * belongs to the the innermost pair of paren-
theses between which it is imbedded. Thus aaa — (%),
aaabb — (x)(), aabba — (x()), and baaab — ((x)). This
construction guarantees that at each position of the se-
quence the cumulative number of opening paretheses is
not less than the cumulative number of closing parenthe-
ses, counting from the left.

The complete set of bounding tori of genus g is ob-
tained by constructing all three-symbol sequences that
satisy the requirements (a) that the total number of open-
ing paretheses be equal to that of closing paretheses, (b)
that the cumulative number of opening paretheses be al-
ways not less than that of closing parentheses, (c) that a
* can only appear if the number of opening parentheses
preceding it is larger than the number of closing paren-
theses. Finally, (d) sequences that are related by a cyclic
permutation are equivalent.

This algorithm is described more fully in Sect. V.

III. LOWER BOUND ON TORAL ENTROPY

The lower bound on toral entropy is log(2). For tori
of genus g = 2k + 1 the Young partition with the longest
column length is A\ = 2*. In computing N(g) we have
found that this class of partition consistently contributes
a larger number of bounding tori than partitions with
fewer rows. The number of tori associated with partition
2k provides lower bounds on N(g) when g = 2k + 1. For
k=1,2,3,4,5,6.--- N(2%¥)=1,1,2,3,6,34,---.

For partitions of type 2* the three-symbol sequences re-
duce into two-symbol sequences that consist of k opening
and k closing paretheses. Each matching pair of paren-
theses can be interpreted as a handshake between two
people within a cycle. The noninterleaving property im-
plies nonintersection of handshakes. The solution of the
handshake problem — how many different ways can 2k
people seated around a table shake hands without cross-
ing handshakes, up to rotations, is
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The last term contributes only if k — 1 is divisible by 2.
The sum is over those positive integers d that divide k,
indicated by the symbol d|k below the summation sign.
The function ®(n) counts the number of integers, j, 1 <
j < n for which j and n have no common divisors. The

sum over d is dominated by d = k. Keeping only this
term in the sum, and neglecting the last term, we find

o >8> (F) < (- 3ar) @

The logarithmic limit is easily taken using Stirling’s ap-
proximation, and we find

1o Log[N(24)

IV. UPPER BOUND ON TORAL ENTROPY

The upper bound on toral entropy is log(3). A crude
upper bound to N(g — 1) is obtained by noting that a
word of length g—1 can be formed with the three-symbol
alphabet (, *, ) in 39~! ways. This bound ignores the
requirements (a)-(d) specified above.

A more refined upper bound is constructed by requir-
ing that in any sequence the cumulative number of open
parentheses must not be less than the cumulative number
of closed parentheses. This is equivalent, under the as-
sociation (= Mg = +1,* - Mg =0,) =+ Mg = —1, to
counting the number of ways g — 1 particles of spin S =1
can be combined to total angular momentum Jr,; = 0:
N(g—1,S =1, J7r, = 0). For this counting problem it
is known that

log[N(g — 1,8 =1, Jrot = 0)]

lim
g—1
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=log(3) (3)

V. ESTIMATES FOR THE TORAL ENTROPY

The algorithm for building (and counting) the com-
plete set of inequivalent three-symbol sequences of length
g, that respect requirements (a)-(d), proceeds as follows:
An overcomplete list is generated from the complete set
of sequences for genus g — 1 by applying to each one of
them the following operations: (1) Inserting a * at each
legal position (i.e., lengthening a cycle). (2) Replacing
a * by the sequence () (i.e., imbedding a two-cycle). (3)
Replacing a * by the sequence )( (i.e, splitting a cycle

TABLE I: Number of canonical bounding tori as a func-
tion of genus, g.

g N(g) log[N(g)]/(g —1) g N(g) log[N(g)]/(g —1)

3 1 0.000000 12 145 0.452430
4 1 0.000000 13 368 0.492340
5 2 0.173287 14 870 0.520653
6 2 0.138629 15 2211 0.550086
7 5 0.268240 16 5549 0.574758
8 6 0.255966 17 14290 0.597957
9 15 0.338506 18 36824 0.618465
10 28 0.370245 19 96347 0.637540
11 67 0.420469 20 252927 0.654782

into two cycles). In fact, operation (3) is only capable of
generating sequences that have not already been gener-
ated by operations (1) and (2) if applied to a genus g — 1
sequence with a maximum (| 252 |) number of cycles.

The list thus created contains repetitions that have to
be eliminated. Furthermore, sequences on the list that
are equivalent by cyclic permutations to other sequences
need to be discarded.
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FIG. 2: The ratio log[N(g)]/(g — 1) appears to converge
at 1.0.

VI. CONCLUSION
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