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The algorithm for determining a global Poincaré section is applied to a previously studied

dynamical system on R
2
×S

1 and a one-parameter family of embeddings of the strange attractor

it generates into R
3. We find that the topological properties of the attractor are embedding-

dependent to a limited extent. These embeddings rigidly preserve mechanism, which is a simple

stretch and fold. The embeddings studied show three discrete topological degrees of freedom:

parity; global torsion; and braid type of the genus-one torus bounding the embedded attractor.

I. INTRODUCTION

Embeddings are the primary tool used by experimen-
talists to study scalar time series generated by chaotic
dynamical systems. A number of embedding theorems
guarantee that data generated by an n-dimensional dy-
namical system can be used to recreate the dynamics
of that system in a space of sufficiently high dimension
[1, 2]. However, these theorems are silent on a number
of points - in particular, on how the geometry of an at-
tractor depends on the embedding.

In order to address this question, Mindlin and Solari
studied a one-parameter family of mappings into R

3 [3].
In particular, they mapped chaotic scalar time series gen-
erated by a dynamical system that had been found to rep-
resent a fluid experiment fairly accurately [4, 5]. They
found two ranges of parameter values in which embed-
dings existed, separated by a range of parameter values at
which self-intersections occurred. They reached two con-
clusions that might create problems for the applications
of topological analyses to data. The first is that apply-
ing the traditional algorithm for choosing a Poincaré sec-
tion creates subtleties in constructing and understanding
braids in the attractor. This presents a problem because
chaotic data sets have been identified principally by the
braids (unstable periodic orbits and their links) that they
contain. The second is that the topological properties of
a strange attractor are not invariant under embeddings.
In particular, they found that the same orbit, in two dif-
ferent embeddings, appeared to have different topological
entropies. This presents a problem because topological
entropy is embedding-independent [6].

Recent advances in our understanding of the structure
of chaos in three dimensions [7, 8] enable us to return to
the problem and provide a more positive answer to the
embedding question. There is now an algorithm for prop-
erly constructing all the components of a Poincaré section
in any dissipative dynamical system with Lyapunov di-
mension dL < 3 [7, 8]. With such a choice, constructing
and interpreting braids is algorithmic. We also find, in
agreement with Mindlin and Solari, that the topological

structure is not embedding independent. However, we
find that there are only three degrees of freedom that are
available to change the topological structure of a strange
attractor with embedding: parity; global torsion; and
braid type of the torus bounding the embedded attrac-
tor.

This work is organized as follows. In Sect. II we intro-
duce the dynamical system used for this and the previous
study of embeddings. We show that chaos is generated by
a simple Smale horseshoe (stretch and fold) mechanism.
In Sect. III we describe the topological properties of this
attractor in the natural phase space, which is the solid
torus R

2×S
1. These properties are unchanged under the

preferred embedding of R
2×S

1 in R
3. The one-parameter

family of embeddings into R
3 that was studied in [3] is

introduced in Sect. IV. In Sect. V we apply the new al-
gorithm for choosing a global Poincaré section [7, 8] and
discuss how this is related to intersections of the embed-
ded attractor with the plane Ẋ = 0. Proper choice of
the global Poincaré section positively resolves the braid
problem. In Sect. VI we describe extrinsic embeddings
obtained with three different choices of the delay param-
eter. Between parameter values at which embeddings
occur are values at which self-intersections occur. An
algorithm for determining self-intersections is presented
in Sect. VII. In this section we also describe how the
extrinsic topology of the embedding changes on passing
through self-intersections. We summarize our findings in
the closing section. These findings are: (1) there is an
algorithm for constructing the components of a Poincaré
section for any embedding. When applied, construction
of braids is algorithmic. (2) The topological properties
of the strange attractor can vary from one embedding to
another. However, the only ways they can differ in the
class of embeddings studied are: the handedness of the
folding; the global torsion; the braid type of the period-
one orbit guiding the bounding torus.
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II. DYNAMICAL SYSTEM AND PHASE SPACE

The equations used in [3] as a vehicle to study the
properties of embeddings are

Ẋ = Y

Ẏ = µf(φ)X + νf(φ)Y − X3 + X2Y (1)

φ̇ = ω

where f(φ) = [1 + ε cos(φ)]. This set of equations de-
scribes a periodically forced Takens-Bogdanov scenario.
They have been used successfully to model the behavior
of a fluid heated from below [4]. As a result, we treat
the time series X(t), or X(i), the way we would treat
experimental data.

The equations (1) were integrated with a standard
RK4 integrator with time step sizes δt = 10−3T and
T/2k, k = 10, where T is the period of the external forc-
ing, T = 2π/ω. The equations were studied at control
parameter values µ = 1.0434, ν = −1.0, ε = 0.45, ω =
0.399. For these values of the control parameters the sys-
tem (1) generates two disconnected strange attractors.
Only one of these is shown in the X-Y projection in
Fig. 1. The other strange attractor is obtained by in-
version: (X, Y ) → (−X,−Y ). For slightly larger value,
ν = −0.9 × µ, there is a symmetry-restoring bifurcation
leading to a strange attractor with inversion symmetry:
(X, Y ) → (−X,−Y ).
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FIG. 1: A strange attractor generated by Eq(1) is plotted

in the X, Ẋ plane. Another attractor is obtained from
a change in initial conditions: (X, Y ) → (−X,−Y ). Pa-
rameter values: µ = 1.0434, ν = −1.0, ε = 0.45, ω =
0.399.

The phase space for the dynamical system (1) is
R

2 × S
1. Any stroboscopic section φ = constant can be

chosen as a Poincaré section in this phase space. The in-
tersection of the strange attractor with the section φ = 0
is shown in Fig. 2. A first return map of this section
to itself was constructed and is shown in Fig. 3. The
coordinate used to construct this return map is the arc

length measured along an approximation to the intersec-
tion shown in Fig. 2. The return map shows that the
strange attractor is described by a branched manifold
with two branches [9–12]. Unstable orbits of periods 1,
2, 4, and 5 were located by the method of close returns
on the scalar time series X(t), and by the method of close
returns on the intersection shown in Fig. 2. These orbits
were used for topological analyses. The period one and
period two orbits are shown in Fig. 4. This figure shows
the X(t) value along these two orbits for two full driving
periods.
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FIG. 2: Intersection of the strange attractor with a stro-
boscopic section (Poincaré section) at φ = 0.0.
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FIG. 3: Return map for the stroboscopic section (Fig. 2)
onto itself. The parameter s is related to the arc length
along the intersection of the attractor with the plane φ =
0.

III. INTRINSIC STRUCTURE AND

PREFERRED EMBEDDINGS

The phase space for the dynamical system (1) is the
intrinsic solid torus R

2×S
1. The structure of the attrac-
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FIG. 4: Period-one and period-two orbits in the X-t
plane.

tor in this phase space was determined by computing
the relative rotation rates [13, 12] of the periods-one, -
two, and -four orbits extracted from the data. For the
period-one and period-two orbits this topological index
can be determined by counting crossings in Fig. 4. For
the embedding shown, with Y = Ẋ out of the plane, all
crossings are left-handed. There are 10 (negative) cross-
ings, so the linking number is −5 and the average number
of rotations per period is −5/2.

The computation is simpler if we project the difference
X2(t) − X1(t) onto either the X-t plane (Fig. 5) or the
X-Y plane (Fig. 6). In the first case it is sufficient to
count the number of zero crossings. In the second case we
count the number of times this difference rotates around
the origin.

The relative rotation rates for the first three orbits in
the period-doubling cascade are
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(2)

This shows that generation of chaos is due to a right-
handed Smale horseshoe mechanism together with a
global torsion of −3 [12, 13]. The right- and left-handed
Smale horseshoe templates are described by the template
and layering matrices [12]

Right − handed Left − handed

Template Matrix

[

0 0
0 1

] [

0 0
0 −1

]

Layering Matrix
[

0 −1
] [

0 1
]

These two branched manifolds are mirror images of each
other. Linking numbers (and relative rotation rates) of
all orbit pairs in the right handed Smale horseshoe with
zero global torsion are positive or zero. Linking numbers

of corresponding orbits in the left-handed Smale horse-
shoe are negatives of those in the right-handed Smale
horseshoe. The topological organization of all orbits in
the right-handed branched manifold is the mirror image
of those in the left-handed branched manifold. The orbit
forcing order [14], [15] in the horseshoe is independent of
the handedness and the global torsion.

The global torsion −3 is compatible with estimates
based on reasonable physical approximations. In driven
systems the global torsion is slightly detuned from
the ratio of the driving period to the intrinsic period:
Tdrive/Tintrinsic (cf. Figs. 7.37 and 7.45 in [12]). The
intrinsic period can be estimated by locating the non-
trivial instantaneous fixed points at (X, Y ) = (±

√
µf, 0)

and carrying out a stability analysis at these fixed points.
A simple calculation gives ωintrinsic '

√
2µf , so that

Tdrive/Tintrinsic '
√

2µ
0.399

∫ 2π

0

√

1 + ε cos(φ) dφ
2π

' 3.57.
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FIG. 5: Relative rotation rates for the period-one and
period-two orbits. The difference X2(t) − X1(t) is pro-
jected onto the X-t plane and the number of zero cross-
ings is counted. The relative rotation rate is half the
number of zero crossings divided by the period (2).

The intrinsic solid torus R
2 × S

1 was embedded in R
3

with a preferred framing [16]. This was done using

X1(t) = (a + X(t)) cos(ωt)

X2(t) = (a + X(t)) sin(ωt) (3)

X3(t) = Y (t)

In this embedding the real number a must be chosen
so that a + X(t) > 0 for all t. We chose a = 0.5 and
computed the linking numbers of the three orbits. The
linking numbers in this embedding were computed by
carrying out the Gauss linking number integral numeri-
cally. The results are:

Link 1 2 4
1 −5 −10
2 −5 −21
4 −10 −21

(4)
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FIG. 6: Projection of the difference X2(t) − X1(t) onto

the X-Ẋ plane in the intrinsic solid torus R
2 × S

1. This
difference rotates around the origin 5 times in the clock-
wise direction. The linking number is −5 and relative
rotation rate is − 5

2
.

These are identical to the results obtained in the intrinsic
embedding in R

2 × S
1. We note here that the choice

X3(t) = −Y (t) instead of +Y (t) simultaneously changes:
the parity, that is, the direction of folding from right-
handed to left-handed [12, 13]; the global torsion from −3
to +3; and the signs of all linking numbers and relative
rotation rates.

IV. A FAMILY OF MAPPINGS

A standard procedure for constructing geometry from
a scalar time series involves time delay coordinates [1,
2]. Other useful embedding procedures use differential
coordinates, Fourier-processed fractional derivatives and
integrals, and Hilbert transforms [12].

A three-dimensional time delay embedding can be ob-
tained from the mapping

X(i) → X(i) = [X(i), X(i− τ1), X(i − τ2)] (5)

It is customary to choose τi = iτ0, where τ0 is some fixed
time delay. If τ0 is very small the embedding is equiv-
alent, under an affine transformation, to a differential
embedding [11, 12].

For their study of embeddings, Mindlin and Solari
chose τ1 small and took the second coordinate to be
X2(i) = X(i) − X(i − k), with k small (k ' 5), so this
coordinate is a surrogate for the time derivative of X :
X2(t) ∼ dX/dt = Y (t). They allowed the second delay
τ2 = τ to vary over a wide range of values. The one-
parameter family of embeddings they chose to study was
the discretized version of

X(t) → X(t) =

[

X(t), Y (t) =
dX(t)

dt
, X(t − τ)

]

(6)

This one-parameter family of mappings was used to
map the strange attractor into R

3. For some values of
τ this mapping is not even 1-1 (e.g., τ = 0). For other
values the mapping is everywhere a local diffeomorphism
but self-intersections occur in the image of the strange
attractor. For yet other values of τ the mapping is a
global diffeomorphism. In these three cases we call the
mapping an:

injection → immersion → embedding
Not 1 − 1 Locally 1 − 1 Globally 1 − 1

The projection of the strange attractor generated by
(1) and mapped into R

3 under (6), onto the X-Y plane
is shown in Fig. 1. The projection is independent of the
single delay parameter τ . The flow is clockwise.
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FIG. 7: Period one and two orbits projected onto the
X-Y plane. They were obtained by finding surrogate
periodic orbits, smoothing in frequency space, and first
differencing in the time domain.

The X-Y projections of the period-one and period-
two orbits are shown in Fig. 7. These orbits intersect
the Poincaré section φ = constant in the phase space
R

2 × S
1 once and twice, respectively. In projection, they

can be interpreted either as period-1 and period-2 orbits
or as period-3 and period-6 orbits. In fact, they were
interpreted as period-3 and period-6 orbits in Ref. [3].
A proper understanding of these orbits is intrinsically
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tied to a precise description of the Poincaré section for
this dynamical system. The principal difference between
the present work and that of Ref. [3] is in the choice
of Poincaré section, leading to the interpretation of these
orbits as period-1 and period-2 orbits, consistent with the
dynamical interpretation of these orbits and the number
of intersections of these orbits with the stroboscopic sec-
tion.

V. CHOICE OF POINCARÉ SECTION

We turn now to the proper choice of a Poincaré sec-
tion for this dynamical system. We first look at intersec-
tions of the strange attractor with the X-Z plane. These
intersections occur at Y = Ẋ = 0 and depend on the
embedding chosen — that is, on the value of the delay
parameter τ . We show intersections with this plane for
three different values of τ in Fig. 8. For all values of
τ there are six intersections. They occur in the order
A1 → A2 → B1 → B2 → C1 → C2 → A1 · · · . At the
three intersections A1, B1, C1 to the left of X [i] = 1
the flow is into the plane, while at A2, B2, C2 to the
right of X [i] = 1 it is out of the plane. We have chosen
X, Y, Z to be a right-handed coordinate system.

Following standard algorithms of the time, Mindlin
and Solari chose the half-plane Y = 0, X > 1 as a
Poincaré section. The two orbits above intersect this
half-plane three and six times, leading to their interpre-
tation as period-3 and period-6 orbits. With this choice,
the Poincaré section in R

3 and the stroboscopic section
in the original phase space R

2 × S
1 are inequivalent. Re-

cently a more precise algorithm has been developed for
constructing the Poincaré section for chaotic flows in R

3

[7, 8]. Since the developments are so recent, and this
point is so important, we briefly review the arguments
here.

Strange attractors in R
3 are described and classified by

branched manifolds. Branched manifolds in turn can be
embedded in three-dimensional manifolds whose bound-
ing surfaces are two-dimensional, closed, bounded, and
orientable. Such surfaces have been classified: they are
tori of genus g: g = 0, 1, 2, · · · . In fact, branched man-
ifolds can be bounded by tori of genus g = 1 or g ≥ 3
[7, 8]. The torus with genus g = 1 is a donut. Its ho-
motopy group has two generators: one longitude and one
meridian [16]. The meridian can be chosen to bound a
disk that lies entirely inside the region bounded by the
surface, and which is at all points transverse to the flow.
This disk is a Poincaré section for the flow.

In the case g ≥ 3 there are g longitudes and g merid-
ians. Each meridian bounds a disk that lies completely
inside the bounding torus and that is transverse to the
flow. Of these g disks, g − 1 provide information about
the structure of the flow. They can be taken as g − 1
components of the Poincaré section. The Poincaré sec-
tion is the disjoint union of g− 1 disks, each bounded by

a meridian in the homotopy group of the genus-g torus
[7, 8]. For any branched manifold contained in a bound-
ing torus, at least two branches leave each disk and at
least two branches arrive at each disk (g = 1, g ≥ 3).
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FIG. 8: Intersections of the strange attractor generated
by Eq. (1) with the plane Ẋ = 0 under the embedding
(6). The intersections occur in the order A1 → A2 →
B1 → B2 → C1 → C2 → A1. The flow at A1, B1, and
C1 is into the plane while the flow at A2, B2, and C2
is out of the plane. (a) τ = 225

1024
T , (b) τ = 425

1024
T , (c)

τ = − 225

1024
T .

As with branched manifolds, the flow between the com-
ponents of the Poincaré section is summarized by a tran-
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sition matrix. This is a (g − 1)× (g − 1) matrix (g ≥ 3).
The structure of bounding tori places severe constraints
on the transition matrix. Initial conditions on any com-
ponent can flow to only two other components. In other
words, the outset from any component flows to exactly
two other components. Similarly, the inset to any com-
ponents arrives from exactly two other components [7, 8].
As a result, for g ≥ 3 the transition matrix for flows be-
tween components of the Poincaré section has two entries
+1 in each row and in each column.

We now apply this algorithm to choose a Poincaré sec-
tion for the flow studied in [3]. In any embedding the flow
can be embedded in a bounding torus. The intersection
of this bounding torus with the half-plane Y = 0, X > 1
(Fig. 8) consists of three disks surrounding A2, B2, C2.
The transition matrix for these disks, under the flow, is a
cyclic 3×3 matrix, with one entry 1 in each row and each
column. As a result, the bounding torus has genus g = 1.
As a result, the Poincaré section consists of a single disk
transverse to the flow. The disk surrounding A2 or B2 or
C2 can be taken as the Poincaré section. Since a global
Poincaré section exists there is no problem about con-
structing braids. In fact, every choice of Poincaré section
(i.e, a disk surrounding any one of the six intersections
shown in Fig. 8) leads to the same set of braids for any
fixed value of τ that provides an embedding.

The set of unstable periodic orbits in a strange attrac-
tor is independent of the embedding. This point was
forcefully made in [11, 12], where it was pointed out that
such orbits can be identified by a close returns analysis
on scalar time series before an embedding is made. As
a result, the strange attractor embedded in the natural
phase space R

2 × S
1, in the preferred framing of R

2 × S
1

in R
3, and the attractors obtained from the map (6) with

values of τ that provide embeddings, all have the same
spectrum of unstable periodic orbits. For each embed-
ding the spectrum can be described by a finite braid by
restricting to a basis set of orbits up to some finite period.

How are the braids in the phase space R
2 × S

1, the
preferred framing in R

3, and embeddings in R
3 under

the one-parameter family (6), related to each other?

VI. EXTRINSIC EMBEDDINGS

Mindlin and Solari found two ranges of τ values at
which embeddings existed. They were separated by a
range of τ values at which self-intersections occurred.
The self-intersections reduced the image of the attractor
in R

3 to an immersion (at best) or possibly an injection.
This transition from one range of τ values that pro-

vide an embedding to a second range that provide a dif-
ferent embedding can be inferred from Fig. 8(a) and
8(b). In each case the intersections of the image with
the Y = 0 plane are well-separated. This does not mean
that the corresponding τ values provide an embedding -
only that they might. As τ changes continuously from

225

1024
T (Fig 8(a)) to 425

1024
T (Fig. 8(b)) the intersections

B2 and C2 pass through each other. For some interme-
diate range of τ values the image attractor must undergo
self-intersections. For this range of τ values the mapping
is at best an immersion.

The topological structure of the embedded strange at-
tractors for τ = 225

1024
T (Fig. 8(a)) and τ = 425

1024
T (Fig.

8(b)) were determined by computing linking numbers of
some low-period orbits. We found that for τ = 225

1024
T

the embedded attractor was generated by a right-handed
Smale horseshoe mechanism with global torsion −1. For
τ = 425

1024
T the embedded attractor was generated by a

left-handed Smale horseshoe mechanism with global tor-
sion +1. The table of linking numbers for one embedding
was the negative of the table, for the same orbits, in the
other embedding.

We also studied the one-parameter family of mappings
for τ < 0: that is, we studied time advance embeddings,
with similar results. For τ = − 525

1024
T the intersection was

qualitatively the same as shown in Fig. 8(b). The inter-
section for τ = − 225

1024
T is shown in Fig. 8(c). In passing

from − 525

1024
T to − 225

1024
T the intersections labeled A1 and

B1 exchange places. For an intermediate range of τ val-
ues the time advance mapping exhibits self-intersections
and cannot be an embedding.

The change in global torsion, from −1 to +1, can be
understood as shown in Fig. 9. In one case the flow
spirals up (B2 → C1 → C2 in Fig. 8(a)), while in the
other case the flow spirals down (B2 → C1 → C2 in
Fig. 8(b)). As the torus that cycles three times around
is unwound to a torus that cycles only once, a global
torsion of ±1 is introduced, depending on the direction
of the spiral. This is equivalent to the exchange of writhe
for twist in ribbons.

FIG. 9: When the ribbon with writhe but no twist is
stretched, twist is induced. The direction of the twist
depends on the coil of the ribbon.

The change from right-handed to left-handed folding
to generate a horseshoe occurs as the immersion degen-
erates to an injection. On either side of this degener-
acy folding occurs in a different direction. That the
parity can change in a one-parameter family of map-
pings is easily seen from the embeddings given by x(t) →
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(x(t), x(t) + αẋ(t), ẍ(t)). For α = 0 the map is an injec-
tion, while embeddings of opposite parity are obtained
for α large and positive and negative.

VII. THE SELF-INTERSECTION PROBLEM

It is not an easy problem to identify parameter values
at which self-intersections of the immersed attractor oc-
cur. This problem was carefully treated by Mindlin and
Solari [3]. It is possible to provide a less complete answer
to this question by studying a simplified problem. The
idea is to embed the strange attractor in a torus and look
for self-intersections of the torus. If the torus has no self-
intersections the attractor it contains certainly has no
self-intersections. However, the converse is not true: the
torus my have self-intersections while the strange attrac-
tor has none.

The problem can be simplified even further by using
the period-one orbit in the attractor as a guiding curve
for the torus. It is then a simple matter to search for self-
intersections of this curve. Generically, a closed curve
mapped into R

3 has no self-intersections. However, we
are looking for self-intersections in a one-parameter fam-
ily of circles mapped into R

3, and these generically oc-
cur in zero dimensional sets (isolated points). When the
guiding curve has self-intersections, the torus surround-
ing it has self-intersections and the strange attractor in
which this curve is embedded also has self-intersections.
Values of τ at which self intersections occur are sur-
rounded by open sets in which the map (6) is not an
embedding. Once again this simple search does not com-
pletely answer the self-intersection question: we cannot
show that if self intersections of the guiding period one
orbit occur at τ1 and at τ3 (τ1 < τ3) there is some inter-
mediate value τ2, τ1 < τ2 < τ3, that provides an embed-
ding for the strange attractor.

To locate self-intersections of the period-one orbit in
the strange attractor, we show its X-Y projection in Fig.
10. In this projection there are four self-intersections,
labeled a, b, c, d in the order in which they are encoun-
tered following the trajectory starting at the arrow. At
each intersection we show the tangent vectors to the two
segments that cross. The usual convention is adopted:
the crossing is positive if the upper tangent (larger Z
value) can be rotated into the lower tangent vector using
the right hand. At each of the four points a, b, c, d we
computed the height difference (∆Z) in such a way that if
the difference is positive the crossing is right-handed, and
therefore positive. This was done for all values of the de-
lay τ . Since the guiding curve is a period-one orbit, only
delays up to one forcing period need be considered. Since
FFT processing was used, a delay of 1024 = 210 corre-
sponds to T . The results are shown for the four points
a, b, c, d in Fig. 11. This figure shows, for example, that
at a delay τ = 1

2
T the crossings at a, b and d are positive

while that at c is negative. In addition to the four zero

crossings that can occur for the injection at τ = 0 there
are 12 isolated zero crossings for nonzero values of the
delay.

FIG. 10: Tangent vectors are drawn to the segments at
each of the four crossing points, reached in the order
a, b, c, d starting from the arrow.

Only one knot has four crossings in projection: this
is the figure 8 knot. Therefore any of the embeddings
of the period-one orbit into R

3 is either unknotted or
equivalent to the figure 8 knot. Of 24 possible embed-
dings suggested by Fig. 10, 12 are unknotted and four
are knotted. The embeddings knotted like the figure 8
knot have crossings at (a, b, c, d) given by (+, +, +, +),
(−,−,−,−), (+,−,−, +), and (−, +, +,−). The succes-
sion of crossings, starting at the arrow, are uuoouuoo,
oouuoouu, uouououo, and ouououou (resp.), where o is
an overcrossing and u is an undercrossing. From Fig.
11 we can see that there is no value of τ for which the
embedding of the period-one orbit in R

3 is knotted.
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FIG. 11: Vertical distance between the orbit segments at
the four points a, b, c, d. These are points of apparent
self-intersection when projected to the X, Ẋ plane. Real
self-intersections occur in R

3 when the vertical offset is
zero.
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We conclude from Figs. 9-11 that several different val-
ues of τ provide embeddings of the strange attractor in
R

2 × S
1 into R

3. These values are separated by values of
τ for which the immersed attractor has self-intersections.
When an embedding exists, the period-one orbit in the
flow is unknotted. The solid torus for which it is the
guiding knot is also unknotted. However, the solid torus
is three dimensional while the period-one orbit is one-
dimensional. Although different embeddings of an un-
knot in R

3 can be isotoped to each other, the same is
not true of the three-dimensional tori surrounding these
unknots, as can be seen in Fig. 9 (left-hand side).

The embedding strange attractors that we have stud-
ied all describe a Smale horseshoe mechanism for gener-
ating chaos. The embeddings differ from each other in
handedness (parity) and global torsion. There is also the
possibility, not realized in the class of embeddings stud-
ied here and in [3], that the knot type of the bounding
torus containing the strange attractor can change as the
parameter values change. The topological properties of a
strange attractor are in part embedding-dependent. We
believe that the only ways embeddings can differ from
each other, and from the underlying dynamics are: the
handedness of the folding; the global torsion; and the
knot type of the period-one orbit. We believe embeddings
preserve mechanism - that is, the template matrices and
layering information, up to sign and global torsion.

VIII. SUMMARY AND CONCLUSIONS

The purpose of [3] was to raise a red flag on the black-
box-like application of topological tools to analyze data.
In particular, the usual standard choice for a Poincaré
section - a half-plane - lead to subtleties in the construc-
tion and interpretation of braids. Mindlin and Solari
traced these difficulties to non-overlapping intersections
of the embedded strange attractor with the half-plane
chosen as the Poincaré section. They also pointed out
that the topological structure of a chaotic flow is embed-
ding dependent. With their choice of Poincaré section
they identified an orbit of period three that had zero
topological entropy in one embedding and positive topo-
logical entropy in another. This violates a basic theorem:
topological entropy is embedding independent [6].

The purpose of the present work is to show that the
topological analysis of strange attractors is robust against
changes in the embedding. Key to this robustness is
the proper choice of a global Poincaré section. This is
possible due to recent advances in our understanding of
the structure of chaos in low dimensions [7, 8]. Specifi-
cally, we applied the algorithm for constructing a global
Poincaré section to the embeddings described above. We
find that the orbit identified in [3] as a period three or-
bit is actually the period-one node of the standard Smale
horseshoe. There is no difference between the Poincaré
section we construct for embeddings in R

3 and the con-

stant phase plane φ =const. in the original phase space
R

2 × S
1. With this proper choice of Poincaré section, all

braids are well-defined and similar from one embedding
to another. They differ from each other in a limited num-
ber of ways. Specifically, their organization is identical
up to mirror image (handedness, or parity), global tor-
sion, and knot type of the embedding in R

3, although all
embeddings studied in this work turn out to be unknot-
ted. We believe that embeddings of strange attractors in
R

3 can differ from each other in only these three ways.
We believe our findings in the present work are gen-

eral: the topological structure of a chaotic flow is embed-
ding dependent (by parity, global torsion, knot or braid
type), but the mechanism that generates chaotic behav-
ior (horseshoe in the present case) is the same in every
embedding: it is an embedding invariant. Work to verify
this assertion is currently under way.

We wish to thank M. Lefranc for verifying the branched
manifold for the driven system (1) using 30 periodic or-
bits. We wish to thank G. B. Mindlin, H. G. Solari, M.
Lefranc, and C. Letellier for their interest in this work
and for useful comments. This work is partially sup-
ported by NSF Grant PHY 9987468.
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