Distinguishing between folding and tearing mechanisms in strange attractors
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We establish conditions for distinguishing between two topologically identical strange attractors
that are enclosed by identical bounding tori, one of which is generated by a flow restricted to
that torus, the other of which is generated by a flow in a different bounding torus and either

imaged or lifted into the first bounding torus.

I. INTRODUCTION

The important properties of dynamical systems, and
the strange attractors they may generate, are invariant
under a smooth change of coordinates [1-3]. These in-
clude: the number and type of fixed points and their
stability; geometric properties, such as fractal dimen-
sion; dynamical properties, such as Lyapunov exponents;
and topological properties, such as topological entropy
and the stretching and squeezing mechanisms that gen-
erate strange attractors. These mechanisms are under-
stood in R?, where they are described by branched mani-
folds. Branched manifolds summarize the stretching and
squeezing mechanisms that act repetitively to build up
strange attractors and to organize all their unstable pe-
riodic orbits in a unique way [4, 5]. For this reason they
have been used to characterize low-dimensional strange
attractors: those with Lyapunov dimension dj, < 3 [6].

Local diffeomorphisms identify n points (n > 1) in one
phase space (R3(cover)) with a single point in another
phase space (R3(image)) of the same dimension. Under
a local diffeomorphism some of the properties of a strange
attractor are preserved and others are not. The number
of fixed points typically changes, while the stability of
their images (or covers) does not; geometric properties,
fractal properties, and topological entropy are preserved
but global topological properties are not [7, 8].

Local diffeomorphisms are often related to symmetries.
For example, if a dynamical system in R? is equivariant
(unchanged) under rotations by 7 radians about the z-
axis (R, (m)) the 2 — 1 local diffeomorphism
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identifies pairs of rotation-related points off the z-axis in
the covering phase space R3(z,y, z) with a single point in
the image phase space R3(u,v,w) [7, 8]. This transfor-
mation maps a strange attractor with R,(7) symmetry
to an image strange attractor without symmetry. The

two attractors are locally identical. By the inverse pro-
cess, an image attractor without symmetry (with vari-
ables (u,v,w)) can be “lifted” to a covering attractor
with symmetry (and coordinates (z,y, 2)).

In this work we investigate two related questions. (1)
Suppose a covering attractor (Lorenz) is mapped to an
image, so that it looks topologically like a Rossler at-
tractor. How is it possible to distinguish this image from
a Rossler attractor? (2) Suppose a Réssler attractor is
lifted to a covering attractor. How is it possible to dis-
tinguish the lift from an attractor generated by an equiv-
ariant set of equations?

We resolve both questions by investigating the return
maps of the attractors. These carry very clear signatures
of the stretching and squeezing mechanisms that generate
chaos. These are the stretching and folding mechanism
that occurs in Rossler-like attractors, and stretching and
tearing (and sometimes folding) mechanism, which oc-
curs when a symmetry is present.

In Sec. II we study return maps for strange attractors
generated by flows in a bounding torus of genus-1 [9, 10].
For highly dissipative dynamical systems these look like
smooth curves with differentiable local extrema. In Sec.
IIT we study return maps for strange attractors gener-
ated by flows with R, (7) symmetry. These flows exist in
a torus of genus three. The Poincaré section consists of
two generally disjoint components, and the return map
describes how initial conditions on each component are
mapped to these components [9, 10]. In Sec. IV we com-
pare image dynamics with dynamics in a genus-one flow.
The two differ in that for one the extrema in the return
map are differentiable, for the other they are not. In Sec.
V we compare covering dynamics with the dynamics of
a typical strange attractor that can be generated in a
genus-3 bounding torus. Return maps for both exhibit
discontinuities. They differ in that in one case the one-
sided derivatives at the discontinuity are equal, in the
other case they are not. We summarize our results in
Sec. VL.



II. ROSSLER-LIKE DYNAMICS

We begin our study by constructing a return map for
the Rossler attractor [11]. This is done in the usual way.
The Rossler equations
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are integrated for control parameter values (a,b,c) =
(0.432,2.0,4.0) to generate a strange attractor. Intersec-
tions y; with the y-z plane through z. (the = coordinate
of the unstable focus near the origin) with & > 0 are
recorded and used to create a first return map y;41 vs.
y;. This return map is shown in Fig. 1. The return
map looks like a smooth, differentiable curve. In fact,
it has such an appearance because the Rdssler attrac-
tor is highly dissipative. More generally, such a return
plot would exhibit some fuzziness since the attractor is
fractal. If the strange attractor is first projected onto a
branched manifold and the intersection of this branched
manifold were used to create a first return map, the re-
sult would rigorously be a smooth, differentiable curve.
Here and below we use the return map for an attractor
in place of a return map for the branched manifold since
there is almost no observable difference between the two
in the cases that we study.

The return map shown in Fig. 1 has a quadratic max-
imum. This occurs because as the flow spirals outward
from the unstable focus near the origin, it must deceler-
ate before being reinjected towards the unstable focus. In
fact, this is a common property of all strange attractors
contained in a bounding torus of genus one that are gen-
erated by smooth flows [9, 10]. Each monotonic compo-
nent of the return map can be identified with a branch of
the characterizing branched manifold, and all monotonic
segments are separated by a local maximum or minimum
that is smooth, differentiable, and generically quadratic.
Deceleration is responsible for horizontal tangents at ex-
trema.

The mechanism responsible for creating chaos in the
Rossler dynamical system and all similar dynamical sys-
tems (smooth forcing terms, strange attractor contained
in a genus-1 torus) is stretching and folding. Differen-
tiability of the return map at its critical points is the
fingerprint characterizing folding.

III. LORENZ-LIKE DYNAMICS

The Lorenz equations [12]
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FIG. 1: First return map for the Rossler attractor. Pa-
rameter values: (a,b,c) = (0.432,2.0,4.0).

were integrated for several different parameter values.
Figs. 2(a) and 2(b) show projections of the Lorenz
attractor generated with parameter values (R,o,b) =
(28.0,10.0,8/3) onto the x-z and the x-y planes. This
attractor can be contained in a bounding torus of genus
three. The three (= genus) holes surround the two foci
and the saddle at the origin. The global Poincaré sec-
tion consists of two disconnected components. Both are
shown in these figures. Fig. 2(c) shows a return mapping
of the Poincaré section to itself. This return map shows
that some of the initial conditions along the component of
the Poincaré section near the focus on the left (L) return
to the neighborhood of L (panel L-L), while initial con-
ditions further away from this fixed point flow from L to
R (panel L-R). Similar remarks hold, by symmetry, for
flows originating on the component of the Poincaré sec-
tion near the right hand focus R. The discontinuity in
the flow from L (and R) is the fingerprint for the stretch-
ing and tearing mechanism. In this case, the flow from L
accelerates away from L, and as it nears the origin, it is
split into a part that returns to L and a part that flows to
a different component of the Poincaré section. The origin
serves as a splitting singularity. The branched manifold
for this attractor has four branches, one each describing
the flows from: L — L, L - R, R — L, R — R. Ac-
celeration is responsible for non-horizontal tangents at
extrema.

Fig. 3 is similar to Fig. 2, but for the Lorenz at-
tractor generated for control parameter values (R, o,b) =
(65.584,13.0,2.4167). The return map on the two com-
ponents of the Poincaré section is shown in Fig. 3(c). In
this case there is a discontinuity. It appears as the jump
from L to R and the jump from R to L. Folding also
occurs — it appears in the off-diagonal panels L-R and
R-L in the return map. This return map shows clearly
that the strange attractor, for these parameter values, is
generated by both tearing and folding mechanisms.

Fig. 4 shows z-z and z-y projections of the Lorenz at-
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FIG. 2: Projection of the Lorenz attractor onto (a) the
2-z plane and (b) the x-y plane. The two components of
the global Poincaré section are shown. (c¢) Return map
on the two components of the Poincaré section shows
the branched manifold has four branchs. Tearing occurs.
Parameter values: (R,o,b) = (28.0,10.0,8/3).

tractor generated for control parameter values (R, 0,b) =
(278.56,30.0,1.0). The first return map can be taken
in two ways. If we use two disjoint commponents for a
Poincaré section, as in the case shown in Fig. 2, the re-
turn map is as shown in Fig. 5(a). All initial conditions
originating on L flow to R, and vice versa. This is a clear
signature that one of the two components of the Poincaré
section is superfluous. This is the case since the strange
attractor can be enclosed in a bounding torus of genus-1.
This can clearly be seen in Fig. 4(b). A single compo-
nent (either L or R) suffices. The first return map on
this single component is shown in Fig. 5(b). All extrema
are differentiable, clearly indicating that this attractor is
generated by folding, not tearing.

As we vary the control parameter values in the Lorenz
attractor, we see that there is a transition in the mech-
anism that generates the strange attractor: from tearing
alone (Fig. 2), to tearing and folding (Fig. 3), to folding
alone (Fig. 4).

IV. IMAGE DYNAMICS

The transformation (1) can be used to map an attrac-
tor with rotation symmetry (R, (7)) to an image attrac-
tor without symmetry. The Lorenz attractors shown in
Figs. 2-4 were mapped to their 2 — 1 images using this
2 — 1 local diffeomorphism. The image attractors are
shown in Figs. 6(a) - 8(a). Each attractor is enclosed
in a genus-1 bounding torus, so that the global Poincaré
surface of section consists of a single connected compo-
nent. This component is shown explicitly in each of the
Figs. 6(a)-8(a). The first return map of this Poincaré
section onto itself is shown in Figs. 6(b) - 8(b). These
three return maps differ in significant ways.

The return map shown in Fig. 6(b) shows two branches
separated by a non-differentiable extremum. This is a
clear signature that tearing occurs in the cover. The
dynamical system in Fig. 6(a) is the image of a dynami-
cal system in which tearing is responsible for generating
chaotic behavior. The non differentiability of the return
map at the local minimum is due to the cover singularity
which has been mapped into the flow of the image.

The return map shown in Fig. 7(b) shows three
branches. The three are separated by a non-differentiable
maximum and a differentiable minimum. The maximum
shows that tearing occurs in the cover, while the differ-
entiable minimum shows that folding also occurs in the
cover.

Finally, the return map shown in Fig. 8(b) shows two
branches separated by a differentiable extremum. This
attractor is generated by folding alone. It is not possible,
in this case, to claim that this is the image of a covering
attractor, since there is no evidence of tearing in this
return map.

Bifurcation diagrams are simple to compute for sim-
ple systems and more complicated to compute for more
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FIG. 3: Projection of the Lorenz attractor onto (a) the
z-z plane and (b) the z-y plane. The two components
of the global Poincaré section are shown. (c¢) Return
map on the two components of the Poincaré section
shows the branched manifold has six branchs. Tear-
ing and folding occur. Parameter values: (R,0,b) =
(65.584,13.0,2.4167).
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(b) Onto one component

FIG. 5: First return maps for the Lorenz attractor shown
in Fig. 4. (a) The map onto the two components L and R
shows that one component suffices. (b) The return map
on a single component shows that stretching and folding
is the operative mechanism. Both maps show the flow
has four branches.

complex systems (genus > 1). We compute the bifur-
cation diagram for the Lorenz attractor as the control
parameters are changed according to

R = Ry + p(R1— Ry)
o = o9 + ploy —op) (4)
= bo + p(b1—bo)

where p is varied between 0 and 1.3. The parameter
triples are (R,0,b)o = (28.0,10.0,8/3) and (R,0,b); =
(278.56,30.0,1.0). The results are simply presented by
displaying the bifurcation diagram for the 2 — 1 images
of these equivariant systems. This is shown in Fig. 9.
This diagram indicates three distinct regimes of behavior.
Tearing occurs for p < 1 and folding occurs for 0.15 < p.
Both occur in the common range 0.15 < p < 1. The
image branched manifold exhibits 2, 3, and 2 branches in
these three regions, respectively. The covers have twice
as many branches.

The image of a symmetric attractor can sometimes be
created without explicitly constructing a local diffeomor-
phism. This occurs when a strange attractor is con-
structed by embedding a nongeneric observable of the
symmetric attractor. As a particular example, when the
z variable of the Lorenz system is used to construct a
strange attractor using any kind of embedding, the re-
sulting strange attractor is enclosed in a genus-1 bound-
ing torus and shows folding. However, its return map is
similar to that shown in Fig. 6(a), clearly indicating that
the fundamental mechanism generating chaos is tearing.

V. COVER DYNAMICS

Just as covering attractors can be projected to their
images using (1) (or an analog for other symmetry), im-
age attractors can be lifted to covers using the inverse
mapping. For example, using (1) backwards, the Rdssler
attractor can be lifted to a double cover. In fact, it can
be lifted to many topologically inequivalent double cov-
ers [8]. A sequence of three double covers of the Rossler
attractor is shown in Figs. 10(a) - 12(a). These covers
are all rotationally invariant under rotations R, (7) about
the z axis. They differ from each other in the location of
the rotation axis.

The cover shown in Fig. 10(a) is created from the
Rossler attractor by inserting the rotation axis in the
flow. Specifically, it is inserted in the “gap” between
branches 0 and 1 in the Rossler attractor. With this non-
generic position of the z axis, the return map shown in
Fig. 10(b) exhibits a jump at the point of horizontal tan-
gency. The R, (7) equivariant double cover shown in Fig.
11(a) is constructed by inserting the z axis somewhere in
the orientation preserving (0) branch of the Réssler at-
tractor. In this case the jump from component L to R
in the Poincaré section splits branch 0. The one-sided
derivatives at the discontinuity are equal. This is the



L e e e

ol b e b
0 200 400 600 800
\'

(a) v-w plane projection

900 T T

700 & E

600 Ei
— E |

Vn+

500 E
400 E

300 E

2002 e oo b oo Lo e
%00 300 400 500 600 700 800 900
\"

n

(b) First-return map

FIG. 6: (a) Projection of the 2 — 1 image of the Lorenz
attractor onto the v-w plane. The global Poincaré sec-
tion has only the one component shown. First-return
map on the Poincaré section shows the branched man-
ifold has two branches. The return map is not dif-
ferentiable everywhere, showing this is the image of a
strange attractor where tearing occurs. Parameter val-
ues: (R,0,b) = (28.0,10.0,8/3).
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(b) First-return map

FIG. 7: (a) Projection of the 2 — 1 image of the Lorenz
attractor onto the v-w plane. The global Poincaré section
has only the one component shown. First-return map on
the Poincaré section shows the branched manifold has
three branches. The return map is not differentiable ev-
erywhere, showing this is the image of a strange attractor
where tearing occurs. The differentiable minimun shows
that folding also occurs in the covering attractor. Pa-
rameter values: (R,o,b) = (65.584,13,2.4167).
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(b) First-return map

FIG. 8: (a) Projection of the 2 — 1 image of the Lorenz
attractor onto the v-w plane. The global Poincaré section
has only the one component shown. First-return map on
the Poincaré section shows the branched manifold has
two branches. The return map is differentiable every-
where, showing this is a strange attractor where folding
occurs. Parameter values: (R, o,b) = (278.56,30.0,1.0).
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FIG. 9: Bifurcation diagram for the image of the Lorenz
attractor, with |z| plotted as a function of p.

signature that the cover is the lift of a strange attractor.
The two one-sided derivatives at the jump shown in the
return map of Fig. 10(b) are also equal, both equal to
zero in that case. The two covers, shown in Figs. 10(a)
and 11(a), are both enclosed by genus-3 bounding tori.

The double cover shown in Fig. 12(a) is created by in-
serting the symmetry axis inside the “hole” in the Rossler
attractor. This cover has topological index (ng,ni) =
(1,1) [8]. It can be enclosed in a genus-1 bounding torus.
The global Poincaré section has a single connected com-
ponent. This is shown in Fig. 12(a). The return map on
this component is shown in Fig. 12(b). This shows four
branches separated by three quadratic extrema. This
strange attractor is created by the stretching and squeez-
ing mechanism. From this return map, it is not possible
to infer that this strange attractor is the lift of an image
attractor, as no discontinuities are present.

VI. SUMMARY

We have described the fingerprints that can be used
to identify the origin of low dimensisonal strange attrac-
tors when they are mapped among themselves by local
diffeomorphisms. These fingerprints were explained in
terms of examples using the Rossler and the Lorenz at-
tractors and simple symmetry groups, but the results are
independent of the particular dynamical system and the
symmetry group used to create the local diffeomorphism.
It is assumed that the source terms for the dynamical
systems are smooth.

We can distinguish between the image of an attractor
enclosed in a genus-g bounding torus (¢ > 3) and an
attractor generated by smooth forcing terms in a genus-
one attractor by the degree of smoothness of the first
return map. If the map is not differentiable at some
extremum, it is an image.
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FIG. 10: (a) This double cover of the Rossler attractor
can be enclosed in a genus-three bounding torus. The
Poincaré section has a two components. (b) First-return
map on the Poincaré section has four panels. The discon-
tinuity in the return map shows that this strange attrac-
tor is generated by stretching and tearing. The equality
of the slopes at the discontinuity shows that it is the
lift of a strange attractor generated in a bounding torus
of genus one. This strange attractor is described by a
branched manifold with four branches. Parameter val-
ues: (a,b,c) = (0.432,2.0,4.0).
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FIG. 11: (a) Another double cover of the Rossler attrac-
tor. This can also be enclosed in a genus-three bounding
torus. (b) The discontinuity in the return map shows
that this strange attractor is generated by stretching and
tearing. The differentiable maxima show that folding also
takes place. The equality of the slopes at the discontinu-
ity shows that it is the lift of a strange attractor generated
in a bounding torus of genus one. This strange attractor
is described by a branched manifold with six branches.
Parameter values: (a,b,c) = (0.432,2.0,4.0).
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FIG. 12: (a) One double cover of the Réssler attractor
that can be enclosed in a genus-one bounding torus. The
Poincaré section has a single component. (b) First-return
map on the Poincaré section. This strange attractor is
generated by stretching and folding, and is described by a
branched manifold with four branches. Parameter values:
(a,b,c) =(0.432,2.0,4.0).

Covers that can be enclosed in a genus-g bounding
torus are described by their return maps on a global

Poincaré section. The section has exactly g — 1 com-
ponents, usually disjoint [9, 10]. Discontinuities show
where tearing takes place. Tearing is due to the presence
of saddle splitting points. Differentiable maxima show
that folding also takes place. Equality of the two one-
sided derivatives at a discontinuity shows that the cover
is the lift of a strange attractor whose return map is dif-
ferentiable — that is, a strange attractor generated by
smooth forcing functions in a genus-one bounding torus.
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