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There is at present a doubly-discrete classification for strange attractors of low dimension,
dL < 3. A branched manifold describes the stretching and squeezing processes that generate
the strange attractor, and a basis set of orbits describes the complete set of unstable periodic
orbits in the attractor. To this we add a third discrete classification level. Strange attractors are
organized by the boundary of an open set surrounding their branched manifold. The boundary
is a torus with g holes that is dressed by a surface flow with 2(g−1) singular points. All known
strange attractors in R3 are classified by genus, g, and flow type.

Chaotic dynamics is generated by two elementary pro-
cesses: stretching and squeezing. These processes are
repeated over and over again in phase space. In dissipa-
tive dynamical systems this repetition builds up a strange
attractor. At a topological level, strange attractors have
three well-separated scales of structure. At the finest
level is the fractal structure. At an intermediate level is
the set of periodic orbits that provide the skeleton for
the attractor. At the largest level is the global topolog-
ical structure of the attractor. Roughly but accurately
speaking, this is determined by the number and type of
fixed points in the flow that generates the attractor. In
this work we classify the global topological structure of
strange attractors by certain well-defined bounding sur-
faces. We wish to do this because this topological clas-
sification places constraints on the global unfoldings of
dynamical systems — information that is not available
by local (e.g., Taylor series) methods. This new classifi-
cation is important and has not previously been done.

In three dimensions there is a doubly discrete classi-
fication for strange attractors with Lyapunov exponents
λ1 > 0, λ2 = 0, λ3 < 0 and dL = 2 + λ1/|λ3| < 3 [1, 2].
At a grosser level, strange attractors are classified by
the branched manifolds to which they project under the
Birman-Williams projection [3]. The identification

x ∼ y if |x(t) − y(t)|
t→∞

−→ 0 (1)

projects the flow down along the stable manifold to a
semiflow on a two dimensional surface defined by the flow
and the unstable directions. The branched manifold (also
known as a template or a knot-holder) describes the topo-
logical organization of all the unstable periodic orbits
that exist in the strange attractor. Branched manifolds
are built from two structures: splitting charts and joining
charts [1–3] which describe the stretching and squeezing
processes. These charts have zero- and one- dimensional
singularities that prevent the branched manifold from be-
ing a manifold everywhere. Splitting and joining charts
are connected in such a way that there are no free ends.
Their connected union forms a compact two-dimensional

structure with boundary. Branched manifolds formed in
this way can be enclosed in a surface which is a torus
with g holes.

Every branched manifold describes, in principle, some
low dimensional strange attractor [4]. Branched man-
ifolds have been determined for the strange attractors
describing many experimental data sets [1, 2].

At a finer level a strange attractor is also classified by
a basis set of orbits. These are orbits that force the exis-
tence of all the unstable periodic orbits in a chaotic flow.
As control parameters are varied, many orbits supported
by a branched manifold are pruned away, but those that
remain are organized among themselves exactly as in the
hyperbolic limit [5]. Branched manifolds are orbit orga-
nizers; basis sets of orbits provide refined descriptions of
nonhyperbolic strange attractors.

Many low-dimensional strange attractors (dL < 3)
have been studied. All these attractors are generated
by one of two types of stretch and squeeze process. One
involves only folding, the other involves tearing (and pos-
sibly folding) [1, 2].

The stretch-fold-squeeze mechanism generates the
Rössler attractor and many experimental attractors that
exhibit stretching and folding according to the Smale
horseshoe mechanism. These are described by a Smale
horseshoe branched manifold. The Shilnikov attractor
[6] is described by a subtemplate of the Smale horse-
shoe branched manifold. A strange attractor generated
by a Nd doped fiber laser follows a reverse horseshoe
mechanism. Some lasers, and sensory neurons exhibiting
subthreshold oscillations, exhibit a “stretch and roll” or
“gateau roulé” mechanism. The attractor for the Duffing
oscillator is generated by an iterated gateau-roulé mech-
anism [7].

The stretch-tear-squeeze mechanism generates the
Lorenz, Shimizu-Morioka, and Rikitake attractors at
standard parameter values. These all share the same
type of branched manifold, organized by a pair of unsta-
ble foci. More complicated attractors generated by this
mechanism include dynamical systems that are n-fold
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FIG. 1: Branched manifolds describing different stretch-
tear-squeeze mechanisms. (a) 3-fold cover of the Rossler
system with C3 symmetry. (b) 2-fold cover and (c) 4-
fold cover of the Lorenz system with rotation symmetry
about an axis through a focus.

covers of the Rössler attractor with rotational symmetry.
Some of these are organized by n symmetrically placed
unstable foci, and are generalizations of the 3-fold cover
whose branched manifold is shown in Fig. 1(a) [8, 9].
Another class of strange attractor is obtained from the
Lorenz equations by constructing the double cover with
2-fold symmetry with respect to rotations about one of
the foci, as shown in Fig. 1(b). The cover of the Lorenz
attractor with two-fold rotation symmetry about an axis
passing through the saddle is topologically similar to a
cover of the Rössler attractor with four-fold symmetry
about a rotation axis. The branched manifold for a four-
fold cover of the Lorenz system with rotation axis passing
through one of the foci is shown in Fig. 1(c) [9].

We seek to construct a mechanism for organizing
branched manifolds, in analogy with the way branched
manifolds organize periodic orbits in a strange attrac-
tor. The organizing structures are the surfaces of tori
with g holes. These genus-g surfaces bound regions of
phase space in which a flow surrounds the semiflow on
the branched manifold [1, 2]. We argue below that such
surfaces, dressed with a canonical, compatible flow, clas-
sify branched manifolds and describe their possible per-
estroikas in the same way that branched manifolds orga-
nize periodic orbits in a strange attractor and describe
their possible unfoldings.

The key to the classification that is described below
is the robust presence of “holes.” It is necessary to get
rid of structurally unstable holes in the attractor or its

branched manifold. Such holes can be created by three
mechanisms:

1. Holes are normally placed between branches in a
branched manifold that is created by a folding
mechanism (c.f., [1]). This is done to emphasize
that they represent a hyperbolic limit. This limit
is never seen either in experimental data nor in flow
simulations.

2. Holes are created when the flow is restricted to a
subtemplate of a larger, fully expanding template.
This is seen in the Shilnikov [6] attractor and in
the Shimizu-Morioka attractor [1, 10] as parameter
values are varied. We exclude these holes by assum-
ing the allowed grammar has no forbidden symbol
sequences [11].

3. Holes can be generated by embedding short exper-
imental data sets, particularly when one or more of
the branches describes very unstable orbit segments
(c.f., [2]).

Once structurally unstable holes have been removed,
we proceed as follows. The flow in the strange attractor
is projected down to a semiflow on the branched mani-
fold using (1). There are no fixed points on the branched
manifold. The branched manifold is “fattened up” to
a 3-dimensional manifold by means of short intervals of
length ε passing transversely through each point of the
branched manifold. The flow in this thin three dimen-
sional space limits to the semiflow on the branched man-
ifold and has Lyapunov exponents λ1 > 0, λ2 = 0, and
λ3 < 0 with dL = 2 + λ1/|λ3| < 3.

The boundary of this three-dimensional space is a trap-
ping surface. Once the flow passes through the boundary
it relaxes exponentially to the branched manifold. The
boundary is a closed orientable two dimensional mani-
fold. All such surfaces have been classified by their genus,
g ≥ 0. For g = 0 the surface is the sphere S2. For g = 1
the surface is the simple torus. For g ≥ 2 the surface
is the torus with g holes, also known as a sphere with g
handles [2, 12].

On the surface the flow has a normal component and a
tangential component. The tangential component of the
flow may have singularities. Singularities occur where the
flow is perpendicular to the boundary. At such points the
singularity is of saddle type, since there is one unstable
direction (the λ1 direction) and one stable direction (λ3).
The index of each singularity is (−1)nu = −1, where nu =
1 is the number of unstable directions at the singular
point.

The Euler characteristic χ(S) relates the topology of a
surface S with the properties of any vector field defined
on that surface. For a genus-g surface, the Euler charac-
teristic is χ(genus-g)= 2 − 2g. Since all singularities of
the projected flow have index −1, there are exactly 2g−2
singularities of the flow restricted to the genus-g surface.

As a final step, we dress the genus-g surface surround-
ing a branched manifold with a flow in canonical form.
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FIG. 2: Canonical dressed tori with genus g ≤ 6. For
each canonical form we provide a name and the index
pair (g, n).

This canonical form is easy to describe. The torus with
g holes is projected onto a 2-dimensional planar surface
in such a way that the projection is a disk with g interior
holes. All singularities are on the boundaries of the holes.
The outer boundary of the disk has no singularities, and
on this boundary the flow is in a single direction. Some
(n) of the interior holes have no singularities: on these
holes the flow is in the same direction as on the outer
boundary. All 2g − 2 singularities occur on the remain-
ing interior holes: all such holes have an even number
of singularities, starting with a minimum number of four
singularities.

In Fig. 2 we show canonical forms for flows with genus
g ≤ 6. We identify each by name and index pair (g, n).
Strange attractors generated by a stretch-fold-squeeze
mechanism can all be embedded in a solid torus with
one hole. The van der Pol attractor can also be embed-
ded in a torus with one hole. However, a cross section of
the attractor exhibits an annular structure, so that this
attractor has both an exterior and an interior boundary:
a torus within a torus. The Lorenz, Shimizu-Morioka,
and Rikitake attractors can be enclosed in surfaces with
genus 3.

There are two simple series of canonically dressed sur-
faces of genus g. There are chains An (n ≥ 1) with
n interior holes on which the flow is unidirectional and
n − 1 separating holes with four singularities each. The
genus is g = 2n − 1. A1, A2 and A3 are shown in Fig.
2. There are cycles Cn (n ≥ 2) having n holes on which

the flow is unidirectional, and one interior hole with 2n
singularities. The genus is g = n + 1. C2, C3 and C4 are
shown in Fig. 2. For these series A2 = C2 but An 6= Cn.
All other canonically dressed forms can be obtained from
these two simple series by a simple process (#f ) based on
forming the connected sum (#) [2, 12] of two tori. The
tori are connected using the process # and this larger
torus is dressed with a flow having canonical form. The
torus C3#fA1 is shown in Fig. 2.

In Table I we classify all known strange attractors that
have been studied in R3 according to their genus and
type. All attractors generated by the stretch-fold-squeeze
mechanism are enclosed by boundaries of type A1. The
van der Pol attractor has both an interior and an inte-
rior boundary: it is contained in A1 ∪ A1. The Lorenz,
Shimizu-Morioka, and Rikitake attactors are enclosed by
A2 = C2. There is a class of covers of the Rössler dynam-
ical system that is invariant under the rotation group Cn

generated by rotations about the z axis through 2π/n ra-
dians [8, 9]. These attractors are enclosed by Cn. Several
different types of attractors can be generated by covers
of the Lorenz system with n-fold rotation symmetry, de-
pending on where the rotation axis is placed [9]. If it
passes through the saddle, the cover is enclosed by a sur-
face of type C2n. If the axis passes through a focus, the
cover is contained in a “pinwheel” Pn+1 (P5 is shown
in Fig. 1(c)). Multispiral attractors with n spirals are
contained in An [13].

TABLE I: All known strange attractors of dimension
dL < 3 are bounded by one of the standard dressed tori.

Strange Attractor Dressed Torus

Rossler, Duffing, Burke and Shaw A1

Various Lasers, Gateau Roule A1

Neuron with Subthreshold Oscillations A1

Shaw-van der Pol A1 ∪ A1

Lorenz, Shimizu-Morioka, Rikitake A2

Multispiral attractors An

Cn Covers of Rossler Cn

C2 Cover of Lorenz(a) C4

C2 Cover of Lorenz(b) A3

Cn Cover of Lorenz(a) C2n

Cn Cover of Lorenz(b) Pn+1

2 → 1 Image of Fig. 8 Branched Manifold A3

Fig. 8 Branched Manifold P5
(a) Rotation axis through origin.
(b) Rotation axis through one focus.

Poincaré sections exist for all these canonical forms.
For A1 it is a disk. This is represented by a single line
connecting the interior circle with the boundary circle for
A1 in Fig. 2. For the genus-g case (g > 1) the Poincaré
section is the union of g − 1 disks. These all connect
one of the n interior circles without singularities to the
exterior boundary. The Poincaré sections for the flows
in A2, A3, C3, C4, C3#fA1 are unions of 2, 4, 3, 4, 5 disks,
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respectively. The locations of these components are indi-
cated in Fig. 2. Transition matrices for the branches of
branched manifolds bounded by a genus-g surface must
be compatible with transition matrices for the compo-
nents of its Poincaré section. For example, the branched
manifold of the Rössler attractor has two branches la-
beled 0, 1 and its three-fold cover, enclosed by C3, has
branch lines A, B, C. The branched manifold has six
branches A0, A1, B0, B1, C0, C1. The transition matri-
ces for the components of the Poincaré section and the
branched manifold are

A
B
C





1 1 0
0 1 1
1 0 1





A0
A1
B0
B1
C0
C1















1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
1 1 0 0 0 0















(a)

(b) (c)

FIG. 3: Constraints on global perestroikas. (a) Two
branches through different parts of a genus-g torus merge
near a branch line. As control parameters vary, one of
the branches may fold. (b) Some folding configurations
are allowed, (c) while others violate causality.

Bounding tori provide constraints on the perestroikas
that can take place as control parameters are varied.
Fig. 3 provides an illustration. Fig. 3(a) shows two
branches approaching a branch line. The two branches
come through distinct flow tubes in the genus-g torus.
As control parameters or experimental conditions change,
the branches may grow and fold. Some folding directions
are compatible with the geometry (Fig. 3(b)), while oth-
ers are not (Fig. 3(c)). The flow in Fig. 3(c) violates
causality. In this way the geometry of the genus-g bound-
ary and the existence and uniqueness theorem for flows
place constraints on the global perestroikas for dynami-
cal systems. In this sense genus-g surfaces are branched
manifold organizers in much the same way that knot
holders are periodic orbit organizers.

Most of the attractors studied so far do not have the
complexity of An or Cn, n > 2. The reason is as follows.
Attractors generated by complicated tearing mechanisms
possess many fixed points. They are generated by flows
around more than two unstable fixed points of focus type.
However, almost all attractors that have been studied are
obtained by polynomial truncation of the forcing terms in
the equations dxi/dt = fi(x1, x2, x3). Polynomial trun-
cations tend to be low order: most are of the second or
third degree. There is a theorem from algebraic topol-
ogy (Bezout’s theorem) that relates the number of fixed
points to the polynomial structure of the forcing terms.
In essence, low order truncations are not compatible with
the large number of fixed points in flows that generate
strange attracctors with genus g, g > 3. To be precise,
covers of the Rössler and Lorenz systems that provide
attractors of type An or Cn, n > 2, do not have poly-
nomial forcing terms and therefore fall outside the scope
of most modeling efforts. Exceptions involve piecewise
linear functions [13].
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