
All the Covers of the Horseshoe

Robert Gilmore†, Arunasri Nishtala †, and Tsvetelin D.

Tsankov‡

† Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA

‡ Physics Department, Bryn Mawr College, Bryn Mawr, PA 19010, USA

E-mail: robert.gilmore@drexel.edu

Submitted to: Nonlinearity

Abstract. The Lorenz attractor can be mapped to a Rössler-like strange attractor by
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1. Introduction

The properties of a strange attractor are unchanged under a nonsingular change of

variables (“global diffeomorphism”). These mappings simply produce a deformation

of the attractor. Local diffeomorphisms do produce changes in the properties of

strange attractors. For example, the 2 → 1 local diffeomorphism u = x2 − y2, v =

2xy, w = z maps the Lorenz attractor (variables (x, y, z)) into a strange attractor that

is topologically similar to the Rössler attractor (variables (u, v, w)). Running the local

diffeomorphism the “other way” ((u, v, w) → (x, y, z)) generates a 1 → 2 covering

attractor from an image attractor. Local diffeomorphisms act on dynamical systems in

much the same way that local isomorphisms relate the Lie groups SU(2) and SO(3) to

each other as covering and image Lie groups.

It has been pointed out that three subjects that play an important role in physics

share many similarities. These subjects are Lie group theory [1], singularity (or

catastrophe) theory [2], and dynamical systems theory [3]. As a consequence, results

valid for any of these theories could have important analogs in the others. The role

of local isomorphisms in Lie group theory is expressed in a very beautiful theorem due

to E. Cartan [1]. It has been suggested that this theorem ought to have an analog in

dynamical systems theory [3]. The purpose of the present work is to state what this

result is and to provide examples of its application. This is done for “low-dimensional”

strange attractors: those with Lyapunov dimension dL < 3 that can be described by

knot-holders [3, 4, 5, 6].

In Sec. II we review Cartan’s theorem: how it relates a Lie algebra to a unique

universal covering Lie group, and how all other Lie groups with the same Lie algebra

are obtained from the covering group by local isomorphisms. In Sec. III we review

what is known about image and covering dynamical systems that are related by local

diffeomorphisms. These results are provided concrete form in terms of simple examples,

given in Sec. IV. In Sec. V we describe all possible lifts of a particular image dynamical

system. This is the system which is seen most frequently in the topological analysis

of experimental data. This system generates chaos and strange attractors through the

Smale horseshoe stretch and fold mechanism. The mechanism is represented by a knot-

holder, or branched manifold. All its lifts are represented by covering knot-holders.

In Sec. VI we describe the spectrum of orbits in the covering dynamical system that

map to a particular orbit in the image dynamical system. We also describe how to lift

nonperiodic (chaotic) orbits into covers. In Sec. VII we introduce indices for image

and covering orbits. The index of an image orbit is a permutation group operation,

and can be described by a set of cycles. It has a multiplicity of interpretations. The

covering orbits satisfy several topological index results. We describe how to compute

linking numbers of lifted periodic orbits in Sec. VIII. In Sec. IX we describe the most

general lift of the image branched manifold into covering branched manifolds. In the final

Section we identify the structures in a Lie group (image and cover) with the structures

in a dynamical system (image and cover) that make this analogy work so well.
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2. Lie Groups and Local Isomorphisms

The study of Lie groups is simplified by linearizing the group in the neighborhood of

any of its group operations: in particular the identity. The group structure in this

linearization is preserved in the group’s Lie algebra. In particular, the group properties

are preserved in the structure constants of the Lie algebra [1].

A Lie group can be recovered from a Lie algebra by the exponential mapping.

However, there is not a 1:1 correspondence between Lie groups and Lie algebras.

Different Lie groups can have the same Lie algebra: the best known example is the

Lie group pair SO(3) and SU(2), which have isomorphic Lie algebras — the angular

momentum algebra. Lie groups with the same Lie algebra are locally isomorphic but

may not be globally isomorphic.

Cartan has provided a beautiful theorem relating Lie groups and their algebras. The

theorem states that there is a 1:1 correspondence between a Lie algebra and a particular

Lie group. This Lie group is simply connected — this is a topological property. All other

Lie groups with the same Lie algebra are constructed algorithmically from this simply

connected group. The construction proceeds by dividing (taking the quotient of) the

simply connected group by one of its discrete invariant subgroups. For this reason the

simply connected group is called the universal covering group, since in some sense it

covers all Lie groups with the same Lie algebra. The original simply connected group

and its quotients are locally isomorphic but not globally isomorphic.

Cartan’s theorem identifies all the operations in the covering group G (SU(2)) that

map to the identity group operation in some non-simply connected Lie group G (SO(3))

with the same Lie algebra. The standard way to identify different group operations (e.g.,

+I2 and −I2 in SU(2)) in a subgroup D is to “mod them out,” that is, to divide by them.

Division of a group by a subgroup G/D creates a group G only when the subgroup D

is invariant in G. Further, division reduces the dimension of G by that of the subgroup

D. Since the Lie groups G and G must have the same dimension (their Lie algebras

are isomorphic), the subgroup D is not continuous. That is, it is a discrete invariant

subgroup of G.

3. Dynamical Systems and Local Diffeomorphisms

Two dynamical systems are equivalent if they are globally diffeomorphic. This means

that there is some differentiable coordinate transformation that maps one continuously

into the other. Diffeomorphic dynamical systems, and their strange attractors, are not

topologically distinguishable [3].

It is possible for two dynamical systems to be locally diffeomorphic everywhere but

not globally diffeomorphic. In this case they are not equivalent [7, 8, 9]. In general

it is possible to distinguish locally diffeomorphic dissipative dynamical systems by the

global connectivity properties of their attractors [10, 11]. In this way dynamical systems

theory and Lie group theory exhibit striking parallels.
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The question has been raised if there is some theorem that does for dynamical

systems what Cartan’s theorem does for Lie algebras and their Lie groups, including

the universal covering group [3]. For Lie groups there is a “largest” group (the universal

covering group) and all others with the same Lie algebra are locally isomorphic n → 1

images.

We investigate the possibility of a similar correspondence in the case of dynamical

systems. In this work we consider the class of dissipative dynamical systems that possess

strange attractors with Lyapunov dimension dL < 3. For such dynamical systems there

is some “smallest” attractor: all others that are locally diffeomorphic are 1 → n lifts, or

covers. So the question for attractors of dynamical systems that corresponds to Cartan’s

theorem for Lie groups is: How many covers does an image attractor possess, and how

can these covers be characterized?

We treat this question here in the context of an image attractor described by a

knot holder, or branched manifold, that describes the Smale horseshoe (“stretch and

fold”) mechanism [3, 4, 5, 6]. The objective of this work is to list all possible covers of

this dynamical system. These covers will be described by their branched manifolds. All

the covers of other image attractors can be constructed following the prescription given

here for the Smale horseshoe strange attractor.

4. An Example

Locally diffeomorphic systems have been studied in detail by Miranda and Stone [7] and

by Letellier and Gilmore [8, 9]. Typically a local diffeomorphism creates a 2 → 1, or

more generally an n → 1, relation between a covering attractor and its image attractor.

For example, the local diffeomorphism u = x2 − y2, v = 2xy, w = z is a 2 → 1 map of

the Lorenz attractor to an image attractor that is topologically equivalent to the Rössler

attractor. Conversely, the Rössler attractor can be “lifted” to a double cover (similar

to SO(3) ↑ SU(2)) using the inverse mapping.

An attractor can be lifted to a locally diffeomorphic cover in a number of different

ways. Figure 1(a) shows the right-handed Smale horseshoe branched manifold and figure

1(b) shows two different lifts of it. One of these covers has rotation symmetry, the other

has inversion symmetry [8]. The two differ in the direction of rotation of the branch

connecting the branch line on the right with the branch line on the left: one has a

right-handed twist (top), the other a left-handed twist (or “helicity”).

The return map of the branch line B back to itself for the Smale horseshoe branched

manifold is shown in figure 2(a). It is a simple unimodal map of the interval. The return

map for either of the double covers of figure 1(b) is shown in Figure 2(b) [12]. The two

branched manifolds in figure 1(b) each have two branch lines, labeled L and R. Initial

conditions on L can map either back to L, if they are near the unstable focus in the hole

near L, or map to R if they are further away along the branch line L. The map from

L to L or from L to R occurs in one “topological period.” Similarly, initial conditions

along the branch line R map to R or to L during one topological period, depending on



All the Covers of the Horseshoe 5

L

R

L

R

R

P

π

(a) (b)

0 0

1

1

1

0 0

1

0

1

Figure 1. (a) Right-handed Smale horseshoe branched manifold. (b) Two covers

of the horseshoe branched manifold, one with rotation symmetry, one with inversion

symmetry. Both are locally diffeomorphic with the Smale horseshoe branched manifold.

how close they are to the unstable focus near R. In the return map for these double

covers, we adopt the convention that the branch lines are measured from the inside

(near the focus) to the outside of the attractor, from left to right. Such a convention is

always applicable to the covers treated below [11].

The branches of the return maps for the double covers are labeled by symbols 0 and

1. Under the 2 → 1 local diffeomorphism, the two parts of the return map labeled 0 map

to the single branch labeled 0 of the Smale horseshoe return map, and similarly for the

parts of the return map labeled 1. In order to distinguish the two double covers, their

return maps must be “dressed” by additional information. This includes local torsion

information as well as information about the order in which the branches are joined at

the branch line [3, 6]. For example, for the double cover with R(π) symmetry (figure

1(b), top) the local torsions are 0 on the branches labeled 0 and +1 on the branches

labeled 1. For the double cover invariant under P (inversion), the branch labeled 1 over

R has local torsion −1 [8]. Local torsion is measured in units of π. Local torsion ±1 is

a half twist.

The two double covers of the Smale horseshoe branched manifold (figure 1(b)) are

composed of two types of units. These are illustrated in figure 3. One unit (figure

3(a)) describes the squeezing and stretching mechanisms that act to build up strange

attractors. This unit includes one branch line, B. Flowing into B are two branches

from different parts of the attractor — or the branched manifold that represents the

attractor. Flowing out of B are two branches that carry the flow off to two different

parts of the attractor. The inflow to B describes squeezing, the outflow from B describes

stretching. The other components of the double covers, and all other covers that we

describe below, are simple “flow tubes” or branches, illustrated in figure 3(b) and (c).

Flow tubes carry the outflow from a unit of the type shown in figure 3(a) to the input of
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Figure 2. (a) Return map of the Smale horseshoe branched manifold. (b) Return

map for the two double covers shown in Figure 1. The two branched manifolds are

distinguished by dressing the branches 0, 1 over L and R with local torsion information.

another (possibly the same) unit of this type. One flow tube is shown between the two

vertical dashed lines at the bottom of figure 1(b). The flow tubes shown in figure 3(b)

are orientation-preserving and have even local torsion (0,±2,±4, . . .). Those shown in

figure 3(c) have are orientation-reversing and have odd local torsion (±1,±3, . . .). In lifts

of the horseshoe branched manifold in figure 1(a), branches that cover the orientation-

preserving branch of the horseshoe labeled 0 must have even local torsion. Flow tubes

that cover the orientation-reversing branch of the horseshoe labeled 1 must have odd

local torsion.

5. General Lifts

A locally diffeomorphic lift (cover) of the horseshoe strange attractor can be represented

by its knot-holder (branched manifold). The knot-holder for an n-fold cover is composed

of n units of the type shown in figure 3(a) [3, 4, 5, 6, 8, 12]. These are connected to each

other by 2n flow tubes. For tearing [12] that occurs at the maximum of the return map

(cf. figure 2(b)) n branches are orientation-preserving, of the type shown in figure 3(b),

and n are orientation-reversing, of the type shown in figure 3(c). In this work we will

consider only connected covers, where each branch line is accessible from every other

branch line.

Every strange attractor in R3 can be classified by a branched manifold. A

remarkable recent result guarantees that branched manifolds can themselves be classified

by topological surfaces called bounding tori [10, 11]. These are two-dimensional closed
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Figure 3. (a) In locally diffeomorphic lifts all building blocks containing a branch

line are equivalent. The parts of the branched manifolds between two branch lines can

have (b) zero local torsion or local torsion different by integer multiples of 2π (L → L

or R → R); or (c) odd local torsion (L → R or R → L).

surfaces with non-zero genus that are dressed with a flow. The flow is obtained after

“inflating” the semi-flow on the branched manifold back to a three-dimensional flow

defined inside a two-dimensional surface that encloses the branched manifold. The

inflation is done so that the three-dimensional flow has the same limiting properties as

the semi-flow on the branched manifold. The surface flow is defined on a closed two-

dimensional surface (with non-zero genus) and so it is structurally stable [13]. The fixed

points for this boundary surface flow will be saddles due to the fact that the Lyapunov

dimension of the considered strange attractors is dL < 3. Thus in a plane transverse

to the chaotic flow, upon linearization we obtain one stable and one unstable direction.

These bounding tori together with their associated surface flow can be conveniently

represented in terms of canonical forms [11].

One such canonical form is shown in figure 4. This is one of two canonical forms

that can arise in experiments that generate data with one more level of complexity than

the Lorenz attractor [14]. In that case the time series x(t) oscillates around two unstable

foci. When a dynamical system generates data x(t) that oscillate around three unstable

foci (A, B, C), the time trace can enter the neighborhood of these fixed points cyclically,
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A → B → C → A etc., or can oscillate A ↔ B ↔ C. These two behaviors are described

by two canonical forms, and are the only behaviors that can occur with three unstable

foci.

The canonical form shown in figure 4 is a projection of a torus of genus five (there

are five holes) onto a plane. This canonical form is useful for describing the case of

three unstable foci exhibiting dynamics A ↔ B ↔ C. Under this projection we obtain

a planar surface - a punctured two-disk with the same genus as the genus of the original

bounding surface. All the singularities in the boundary surface flow occur around two of

the holes (four singularities per hole). The two holes in figure 4 that have singularities

are shown as squares, dressed appropriately with one-dimensional flow (pictured as

arrows). The remaining three holes are shown round: they correspond to unstable foci

of the actual chaotic flow. In general, the structure of the canonical form is determined

by the fact that the coexisting unstable fixed points determine the large scale structure

of a strange attractor. In that context the two squares correspond to regular saddles of

the three-dimensional flow.

The exterior boundary of the canonical form is provided with an orientation [10, 11].

In this projection the orientation is clockwise and it describes the direction of the semi-

flow on any enclosed branched manifold. The round holes are labeled with one type of

symbol (A, B, C) and the holes with singularities are labeled with a different type of

symbol (a, b). The order in which these holes are encountered in a round trip around the

exterior boundary uniquely labels the canonical form [10, 11] (up to cyclic permutation).

For the genus-5 canonical form shown, the label can be chosen as the four-symbol string

ABCB or dually as the four-symbol string abba. A strange attractor that can be enclosed

in a genus-g torus has a Poincaré section that consists of g − 1 disjoint disks. The four

disks are represented as short line segments labeled 1 through 4 in figure 4. They are

numbered in the order in which they are encountered in a round trip along the exterior

boundary. For any branched manifold contained in the corresponding genus-5 bounding

torus, all branch lines can be moved to one of the four components of the Poincaré

section. The transition from one component to an adjacent component (in the sense of

the flow) is called a topological period.

The connectivity properties of a branched manifold enclosed by a bounding torus are

described by a transition matrix. The transition matrix describes the two components

of the global Poincaré surface of section that can be reached in one topological period

from each of the components. That is, Tij = 1 if an initial condition on component i can

reach component j in one topological period. Since initial conditions on each component

flow to exactly two other components, the transition matrix can be written as the sum

of two permutation matrices T = Tstr + Tcyc. The two matrices for the canonical form

shown in figure 4 are

Tstr =











1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0











Tcyc =











0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0











(1)
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Figure 4. A canonical form with genus 5. The global Poincaré surface of section has

4 = g − 1 components, each connected to a round hole free of singularities (A, B, C).

These summarize motion around unstable foci. The two “square” holes (a, b) have four

singularities each, and describe motion in the neighborhood of regular saddles.

The cyclic matrix Tcyc describes the flow around the exterior boundary. The other

matrix, Tstr, defines the structure of the bounding torus [10, 11, 15].

A 1 → 4 cover of the horseshoe branched manifold is contained in a bounding

torus whose genus g is determined from 4 = g − 1. In figure 5 we show one possible

four-fold cover of the horseshoe branched manifold that is contained in the bounding

torus of figure 4. This is one possible double cover of the Lorenz attractor, or four-fold

cover of the Rössler attractor, without any symmetry. The 4-fold cover of the horseshoe

has four branch lines, each of which covers the (one) branch line in the image. Each

branch line can be placed in one of the components of the global Poincaré surface of

section. In fact, each branch line in the cover is part of a squeeze-and-stretch unit (figure

3(a)). These units are all identical (locally homeomorphic) with each other and with

the corresponding unit in the image.

This particular lift has one (and therefore all) exterior branches covering the

orientation-reversing branch 1 of the horseshoe branched manifold. We have chosen

the torsion of each of these branches to be +1, except for the branch joining branch line

2 to branch line 3, with torsion −1. This branched manifold corresponds to a covering

strange attractor which cannot be obtained from the image attractor by applying a local

diffeomorphism that obeys a discrete symmetry [8, 9]. The structure of the covering

branched manifold can be specified by a matrix Tor, obtained by dressing the transition

matrix T [equation (1)] with helicity information:

T =











1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0











−→ Tor =











0 +1 ∗ ∗

∗ ∗ −1 0

∗ ∗ 0 +1

+1 0 ∗ ∗











1

2

3

4

(2)

In this matrix the nonzero matrix elements of the transition matrix T = Tstr + Tcyc are

replaced by integers that specify the local torsion of the branch connecting branch line

i to branch line j. For example, the branch carrying the flow from branch line 2 to

branch line 3 is left handed with helicity −1, so that (Tor)23 = −1.
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The return map on this branched manifold is presented in figure 6. This return

map shows that initial conditions along the outer half of each branch line (i) flow to the

next branch line (i+1). Initial conditions on the inner half, closer to the unstable focus

inside each round hole, flow to a branch line determined by Tstr. For example, f(i) is

defined from figure 4 and Tstr to be

i 1 2 3 4

f(i) 1 4 3 2

The return map must be further dressed by helicity information over each branch i.

1 4

2 3

B CaA b

Figure 5. One four-fold cover of the horseshoe branched manifold that can be enclosed

by the bounding torus shown in figure 4.

6. Lifts of Orbits

Every orbit in the image attractor lifts to one or more orbits in the covering attractor.

This is true for periodic orbits as well as non-periodic (chaotic) orbits. The symbol

sequence for a lift depends on the symbolic name of the image orbit and the initial

condition in the cover. We consider in the following two subsections lifts of periodic

orbits and non-periodic (chaotic) orbits.

6.1. Periodic Orbits

For local diffeomorphisms generated by a discrete group G, an orbit of period p in the

image lifts to |c| orbits of period |h|× p in the cover, where |c|× |h| = |G| and |G| is the

order of (number of group operations in) G. The |c| orbits are mapped into each other

by the group operations in G [8, 9].

A richer spectrum of possibilities exists for n → 1 local diffeomorphisms. In this

case an image orbit of period p lifts to one or more orbits. The lifts generally have

different periods. The total number of symbols in all the covering orbits is n × p, and

each symbol 1, 2, . . . , n occurs exactly p times. The distinct lifts are described by an

index. The index is an operation in the permutation group Sn n = g − 1. Every

permutation group operation can be expressed as a product of cycles.
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i+1

f(i) 0

+_1

i

Figure 6. Return map for a cover of the Smale horseshoe branched manifold contained

in a bounding torus of any genus g, g ≥ 3. The numbering of the branch lines is

canonical, and the function defined by i → f(i) is determined from the permutation

matrix Tstr.

These statements will be illustrated by lifting the period-3 orbit 011 in the

image attractor (its branched manifold) into the four-fold cover shown in figure 5

(p = 3, n = 4, g = 5). The period three orbit in the image is shown in figure 7.

The three intersections of this orbit with the branch line B are labeled α, β, γ, in the

order of occurrence. Under the local diffeomorphism, four units of the type shown in

figure 3(a) are identical to each other and to the single unit of this type in the image

attractor. As a result, all four branch lines in the four-fold cover exhibit intersections

α, β, γ that are identical to those in the image branched manifold.

A lift of 011 with initial conditions on branch line 1 at α will propagate, in one

period, back to point β on branch line 1. During the next topological period the

transition β → γ will occur (over the image). Further, the flow will propagate to

branch line 2. During the third topological period γ → α and 2 → 3. Proceeding

further, after six topological periods we find (1α → 1β → 2γ → 3α → 3β → 4γ → 1α).

Thus we obtain a lift of 011 with topological period 6 and symbolic name 112334. The

situation is illustrated in figure 8. In a similar way we can lift the orbit 011 to different

periodic orbits by starting at different initial conditions. For example starting at 1γ

leads to a periodic lift 124 and starting at 2β we obtain 234. The sum of the periods is
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6 + 3 + 3 = 4 × 3 so that these are all possible lifts of the horseshoe period three orbit

011 using the four-fold cover branched manifold from figure 5.

The procedure for obtaining the periodic lifts can be represented in terms of the following

permutation matrix

T(011) =











0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1











(1)123

(2)412

(3)341

(4)234

(3)

The row labeled (1)123 tells us that an initial condition on branch line 1 (labeled

(1)) over α in the image flows back to branch line 1 in the cover, since Tstr tells us that

1 → 1. It also flows to the point β on this branch line, since α flows to β in the image.

During the next topological period the flow in the lift over β in the image is from β on

branch line 1 to γ on branch line 2 (according to Tcyc), and during the third topological

period 2γ → 3α. Therefore the matrix element (T(011))13 = 1 informs us that in the

cover we visit (1)123, where (1) means that we start on branch line 1 over α. The

other nonzero matrix elements in the permutation matrix T(011) are interpreted in the

same way. The rows (and columns) of the matrix T(011) are labeled on the right by the

sequence of components of the Poincaré section visited, starting from component (i). If

initial conditions occur over β (or γ) we obtain the permutation matrix T110 (or T101).

The permutation matrix T011 can be constructed simply by assigning a matrix to

each symbol in the image orbit. In the present case the assignment is 0 → Tstr and

1 → Tcyc, so that T011 = TstrTcycTcyc. This assignment rule is true in general for lifts of

all orbits from the image to every possible cover in any embedding torus. The reason

for this assignment is that the lift of the orbits going through the orientation reversing

branch of the horseshoe (1) is governed by the structure of the cyclic transition matrix

Tcyc of the cover. Similarly the orbits going through the orientation preserving branch

(0), when lifted to the cover, evolve under the structural transition matrix Tstr.

The product of the three matrices for the image orbit 011 is an operation in the

permutation group, since it is the product of permutation matrices. This matrix is

easily represented as a product of cycles in the standard fashion for permutation group

operations: (13)(2)(4). This cyclic decomposition of the permutation matrix tells us

that the period 3 orbit in the image lifts to three orbits of periods 2×3, 1×3, and 1×3

in the cover, since the component cycles have length 2, 1, and 1 and p = 3. The symbol

sequence for these three orbits can be read from the row labels of the permutation

matrix. For example, we decipher 13 as (1α)1β 2γ 3α (3α)3β 4γ 1α or more simply as

123 341. The symbol sequences for all the lifts of 011 are

cycle substitution sequence symbol sequence

13 (1)123 (3)341 112 334

2 (2)412 124

4 (4)234 234

(4)
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α β γ

(a)

β

from βαfrom
from γ

to γto to α

βα γ

(b)

Figure 7. (a) Period three orbit 011 in the image attractor intersects branch line B

in the order α → β → γ → α, etc. (b) Each squeeze and stretch unit in the cover is

locally diffeomorphic to the unit in the image, including the orbit segments that pass

through each unit.

1 4

2 3

α β γ

A a B b C

Figure 8. All three lifts of the horseshoe orbit 011 in the covering branched manifold

of figure 5 are shown. By inspection the sum of the rotation indices for the lifts of 011

is
∑

(nA, nB , nC , na, nb) = (3, 3, 3, 2, 2).
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Table 1. Orbits to period three in the image, a horseshoe branched manifold, are

lifted into the covering strange attractor shown in figure 5. The cyclic structure of the

permutation matrix and the full symbolic representation (symbolic dynamics) of the

covering orbits are given.

Image Cyclic Structure Symbol Representation

Orbit Permutation Matrix Torb Cover Orbit

0 1 1

24 24

3 3

1 1234 1234

01 12 11 24

34 23 34

001 1234 112 423 334 241

011 13 112 334

2 124

4 234

The spectrum of the lifts of all orbits in the image is determined in precisely the

same way. The lifts of the orbits to period three are summarized in Table 1.

6.2. Non-periodic Orbits

Every chaotic orbit in the image lifts to g − 1 chaotic orbits in the cover. The symbolic

name of each lift is determined as follows. Associate the matrix Tstr or Tcyc to each

symbol of the image orbit: for example 01101 . . . → TstrTcycTcycTstrTcyc . . . . An initial

condition in the cover is represented by an array, for example an initial condition in the

branch line 2 in the cover is identified by the array A2 = (0, 1, 0, 0). After one topological

period the initial condition has moved to branch line j, defined by (A2)i(Tstr)ij = 1. The

location after the next topological period is determined similarly — by multiplying the

array on the right by Tcyc. This encoding proceeds as far as desired. In this way

chaotic symbol sequences with arbitrary length can easily be encoded. By changing the

complexity of the cover we can obtain sequences containing as many different symbols

as desired. It is clear that each lift has a distinct trajectory. For the chaotic trajectory

starting 01101... and initial condition on branch line 2, the itinerary in the cover is

(2)41241.... Initial conditions on other branch lines generate other encodings of the

non-periodic string 01101... .

7. Index of Covering Orbits

An orbit in the image attractor is assigned an index that depends both on the orbit and

the cover to which it is lifted. The index has three interpretations.
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Table 2. The orbits described in Table 1 circle each of the g holes in the bounding

torus an integer number of times. For each orbit the set of integers provides its rotation

index. Rotation indices do not uniquely identify orbits.

Period Image Cover A B C a b

1 0 1 1 0 0 0 0

24 0 1 0 0 0

3 0 0 1 0 0

1 1 1234 1 1 1 1 1

2 01 11 24 2 1 0 1 0

23 34 0 1 2 0 1

3 001 112 423 334 241 3 3 3 1 1

3 011 112 334 2 1 2 1 1

124 1 1 0 1 0

234 0 1 1 0 1

Group theoretic: The permutation matrix for the orbit is a product of the matrices

Tstr and Tcyc in a particular order determined by the symbolic dynamics of the

image orbit. The two matrices Tstr and Tcyc generate a subgroup of Sg−1.

Dynamical: The permutation matrix that is assigned to each orbit in the image

describes the allowed transitions in the lifts of that orbit into the cover. This

summarizes the dynamics, at least for the orbit under study. The cyclic structure

of the permutation matrix determines the periods of the covering orbits. Some

examples are presented in Table 1.

Topological: The periodic orbits that cover the image orbit rotate around the holes in

the bounding tori. The rotation index is a topological index that can be computed

for each lifted orbit. Some examples are presented in Table 2.

We give examples of the topological rotation index for lifts of the periodic orbits 0,

1, 01, 001, and 011 from the image Smale horseshoe branched manifold to the covering

orbits in the genus-5 bounding torus in Table 2. This table identifies the lifts of the

orbits and shows how often each of these lifts rotates around each of the three singularity

free holes (A, B, C) and the two singular holes (a, b). This 5-tuplet is a topological index,

the rotation index, for each of the lifted orbits.

The components of the rotation index for the periodic orbits given in Table 2 can be

read directly from the symbol name of the orbits. The number of times an orbit encircles

a singularity free hole (e.g., B) is the number of times a particular symbol (either 2 or 4)

appears in the orbit name. The symbol describes any one of the branch lines attached to

that hole. The number of times an orbit encircles a hole with singularities (e.g., b) is the

number of times a particular symbol pair (either 23 or 34) appears in the orbit name.

This pair describes either of the two ways the flow passes the hole with singularities.
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The integers in this table are in fact a homotopy index. Any single lift can circle

any of the holes (A, B, C) an integer number of (or zero) times. However, the set of all

the lifts of an image orbit of period p must circle each of the holes (A, B, C) a total of p

times. This comes about because each of these holes is the lift of the hole in the middle of

the horseshoe branched manifold (the torus that contains it). An image orbit of period p

circles this hole p times in the image. In the cover, each lift of the single hole in the image

(holes A, B, etc) is circled p times by the set of lifts. That is,
∑

nA(orb) = p, where

the sum extends over all the orbits that cover the image orbit. The same holds true for

the sums of the indices of all singularity-free holes:
∑

nB(orb) =
∑

nC(orb) = p. This

result is general for lifts to branched manifolds enclosed in any bounding torus. The

corresponding relation for the holes with singularities is
∑

na(orb) =
∑

nb(orb) = p1,

where the symbolic representation of the image orbit has p0 symbols 0 and p1 symbols

1. More generally (cf. Sec. 9) p1 is the number of times the matrix Tcyc appears in the

product for the index. The invariant indices can be verified by inspection of Table 2.

These results generalize for lifts into arbitrary bounding tori.

1 4

2 3

A B Ca b

Figure 9. The lifts of the horseshoe orbits 01 and 011. If the intersections with the

branch line(s) are labeled (i) → (v) from inside to outside, the period two orbit 01

visits (ii) → (iv) → (ii) etc., and the period-three orbit 011 visits (i) → (iii) → (v).

8. Links of Lifts

The topological organization of the periodic orbits on a knot holder is specified in terms

of their linking numbers. For example we consider the pair of orbits with symbolic

names 01 and 011 on the image branched manifold (the Smale horseshoe). Their linking

number can be computed algorithmically once their symbolic name and the structure

of the branched manifold are known. The period two orbit 01 exhibits one positive

crossing with itself, the period three orbit 011 exhibits two, and the two orbits 01 and

011 exhibit four ([3], figure 5.18, p. 197). This information is summarized as

01 011

01 +1 +4

011 +2 +2
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Table 3. Signed crossing information for lifts of horseshoe orbits 01 and 011 into the

branched manifold of figure 5. The lifts are shown in figure 9. On and above diagonal:

number of crossings of the lifted orbits, including signs. On diagonal: self-linking

number of lifted orbits and below diagonal linking number (half the sum of signed

crossings) of lifted orbits.

01 011

1124 2334 112334 124 234

01 1124 +1 +2 +4 +2 +2

2334 +1 −1 +1 − 3 +2 +1 − 1

112334 +2 −1 +1 − 1 +2 +1 − 1

011 124 +1 +1 +1 0 +2

234 +1 0 0 +1 0

This crossing information is exhibited on and above the major diagonal. There is a

total of 1 + 2 + 4 = 7 crossings. The self-linking number of an orbit with itself is the

signed number or crossings of that orbit with itself, and the linking number of two

different orbits (a topological invariant) is half their signed number of crossings. The

self-linking numbers and linking numbers are exhibited on and below the major diagonal

of the matrix above. We obtain directly from this matrix SL(01) = +1, SL(011) = +2,

L(01, 011) = 1
2
(+4) = +2.

When the orbits are lifted to a covering branched manifold, each orbit can lift to a

set of orbits. The covering orbits do not necessarily have the same topological period.

For example, the period-three orbit 011 lifts to orbits 124, 234, and 112334 (figure 8)

in the cover. A linking number can be computed for each pair of lifted orbits. In the

covering branched manifold the total number of crossings is 4 × (1 + 2 + 4) = 28. Of

these 28 crossings, all seven approaching branch line 3 are negative, while all crossings

of orbit segments entering the other three branch lines are positive. As a result the

total number of signed crossings in all covering orbits is +21 − 7 = +14. Thus, the

sum over all covering orbits of the self-linking numbers + twice the sum of the linking

numbers of all orbit pairs is +14. The signed crossing information of the covering orbits

is summarized in Table 3.

Inspection of the table reveals that the invariants of the lifts are preserved. For

example, there are 4 = 4 × 1 crossings of lifts of the period-two orbit with lifts of the

period-two orbit, three positive, one negative. For lifts of the period-three orbit with

lifts of the period-three orbit, there are 8 = 4×2 crossings, two negative. And for lifts of

the period-two orbit with lifts of the period-three orbit, there are 16 = 4 × 4 crossings,

one quarter of which are negative.

The table of linking numbers of orbit pairs depends on the symbol name of the image

orbits and the branched manifold into which they are lifted. On the other hand, the

rotation index depends only on the symbol name of the image orbits and the bounding
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torus into which these orbits are lifted (and not the particular branched manifold to

which they are lifted).

9. Generic Covers

The covers of the horseshoe described above have not been generic. This is because

the “tear point” for the covers has been located at the maximum in the return map of

the image [12]. This is indicated in figure 10(a). In this figure T1 indicates where the

tear point has been located for the class of covers considered in Sec. V. More generally

(“generically”), the tear point can be taken anywhere along the branch line of the image,

for example at the point T2 shown in figure 10(a). When this is the case, the lifts of the

squeeze-and-stretch unit into the cover have the form shown in figure 10(b). When the

tear point T2 occurs between the points β and γ where the period-three orbit 011 meets

the branch line in the image, the segments of covering orbits over the flow with point

β = 110 as initial condition proceeds through flow tube determined by the part Tstr of

the transition matrix. In this case the index for the period-three orbit is determined

from the identification

011 → TstrTstrTcyc ' (1234)

Similar results hold for lifts of all orbits from the image attractor to covering attractors.

10. Conclusions

It has been remarked that the studies of Lie group theory, singularity theory, and

dynamical systems theory have many similarities. As a result many useful analogies

among these three branches of mathematics ought to exist [3].

One intriguing possibility is that Cartan’s covering theorem for Lie algebra - Lie

groups ought to have a parallel for dynamical systems. Determining this analogy

should be especially useful, now that systematic image and covering relations have been

developed for strange attractors.

In this work we have described this analogy. In Lie group theory there is a universal

covering group, defined for each Lie algebra. All Lie groups with the same Lie algebra

are topologically distinct: they are identified by their homotopy group, related to a

particular discrete invariant subgroup of order |D|. The universal covering group is

simply connected. The maximal discrete invariant subgroup maps the universal covering

group down to a “least simply connected” |D| → 1 image Lie group. In this group

the neighborhood of the identity is covered by |D| group operations, each of which is

topologically like the identity except in its multiplication properties.

The situation for low dimensional dynamical systems (dL < 3) is similar. There

is some smallest, least multiply connected image dynamical system. We have chosen

this to describe the mechanism most commonly encountered in physical systems so far.

This is the Smale horseshoe mechanism, described by a simple branched manifold with
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T1 T2

α

α β γ

β

β γα

β

γ
α

α γ

(a) (b)

Figure 10. (a) Return map on the branch line of the horseshoe branched manifold.

The period-three orbit 011 intersects the branch line successively at α, β, γ. The tear

point for the lift shown in figure 5 occurs at the location of the maximum T1, which

is non-generic. A generic tear point at T2 produces a different set of covering orbits.

(b) Structure of the squeeze-stretch units for the generic tear point T2. The orbit

segments transit flow tubes with labels 0, 0, and 1. The transition matrix for this lift

is 011 → TstrTstrTcyc.

two branches. The branch line, together with the two inflow branches that describe

squeezing, and the two outflow branches that describe stretching, are analogous to the

neighborhood of the identity in the “least simply connected” Lie group, with the branch

line playing the role of the identity group operation. It has many covers.

A 1 → (g−1) local diffeomorphism lifts the image into a bounding torus with genus

g. The branched manifold enclosed by this torus has g − 1 branch lines. Each branch

line is analogous to a point in the universal covering group that maps into the identity

of the “least simply connected” image Lie group. The flow tubes (inflows and outflows)

connected to each branch line are analogous to the neighborhoods of operations in the

universal covering group that are lifts of the identity in the “least simply connected”

image Lie group.

As for Lie groups, so for strange attractors. In the image the outflow from the

branch line flows back, in one topological period, to the branch line. In the image

group, the product of two operations in the neighborhood of the identity remains in the

neighborhood of the identity. In the covers this is no longer true. Part of the outflow

from one branch line in connected covers always flows to another branch line. In the

universal covering group, the product of two group operations, each in the neighborhood



All the Covers of the Horseshoe 20

of a point that maps to the identity, typically lies in a different neighborhood.

All the covers of the horseshoe have been classified. The lifts are distinguished first

by a bounding torus of genus g (g ≥ 3). These tori are characterized by a transition

matrix T = Tstr + Tcyc (equation (1)) that is the sum of two permutation matrices in

Sg−1. The bounding tori are labeled by words of period g − 1 (e.g., ABCB, abba). The

number of canonical forms of genus g grows exponentially with g with an entropy of

log(3) [15]. Once a canonical form has been chosen, all covering branched manifolds

compatible with that canonical form can be introduced. They consist of g − 1 squeeze-

and-stretch units of the type shown in figure 3(a). The covering branched manifolds are

differentiated by the helicity of the transition branches, or flow tubes. This is shown

by “dressing” the transition matrix, T = Tstr + Tcyc → Tor, as indicate in equation (2).

Different Torsion matrices describe different branched manifolds. Periodic and chaotic

orbits in the image attractor can be lifted into periodic and chaotic orbits in the covering

dynamical system. This is most simply done by assigning an index to the image orbit,

as in equation (3). For a periodic orbit the index is a permutation group operation (“set

of cycles”). It has a group theoretic interpretation, a dynamical interpretation, and a

topological interpretation. The index of an orbit can be used to determine the symbolic

names of all the lifts of that orbit. Each lift possesses a rotation index that depends on

the bounding torus but is independent of the enclosed branched manifold. On the other

hand, the topological organization of the lifted orbits (their linking numbers) depends

on the particular branched manifold that is chosen within the bounding torus. The

methods introduced here and illustrated for the particular case used as a vehicle for our

discussion (p = 2, 3; n = 4; g = 5) are valid for lifts:

(1) of any periodic orbit characterized by a symbol string 01... of length p or any

chaotic trajectory in the image [c.f., equation (3)];

(2) into any branched manifold characterized by a torsion matrix Tor [c.f., equation

(2)];

(3) enclosed by any bounding torus of genus g ≥ 3 characterized by a transition matrix

T = Tstr + Tcyc [c.f., equation (1)].
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