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Abstract
The double-scroll attractor that can be produced by a wide class of nonlinear
electronic circuits is known to contain periodic orbits of all types under certain
operating conditions. We identify the branched manifold that describes the
double-scroll attractor under these operating conditions. We then show that
Ghrist’s universal template is embedded as a subtemplate in the double-scroll
template.

PACS number: 05.45.−
(Some figures may appear in colour only in the online journal)

1. Introduction

In 1983 Birman and Williams proved a theorem [1] that provides a strong connection between
an important class of chaotic dynamical systems ẋ = f(x; c), (where x ∈ R

3 is the state vector
and c the set of parameter values) and some relatively simple topological structures called
branched manifolds (also known as knot-holders or templates). Using this theorem they were
able to classify all the knots that appear in the geometric Lorenz attractor [2], and which exist
as periodic orbits satisfying the Lorenz equations [3] for certain parameter values [4]. Birman
and Williams observed [2] that only a restricted class of knots are supported in the branched
manifold that described the Lorenz attractor. They conjectured that no flow f (x; c) could be
found that supported every knot type [1].

In 1997, Ghrist [5] identified a relatively simple branched manifold with inversion
symmetry that supported all knot and link types. Ghrist and Holmes [5, 6] also identified
a flow that supported all knot and link types. This flow had been known for many years: it had
been introduced by Chua et al [7] to describe an electronic circuit. This is one of a class of
double-scroll attractors proposed earlier by Rössler [8] and found in various circuits [9–11]
(see [12] for a review). The proof that the Chua equations support all knot and link types
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for certain control parameter values was not directly related to Ghrist’s universal template.
Rather, it depended on the properties of flows in the neighborhood of a Shil’nikov connection
[13, 14]. As a consequence, no direct relation was proposed between a template describing
the topology of the double-scroll attractor and the universal template proposed by Ghrist and
Holmes. Our objective is therefore to propose a template for the double-scroll attractor and
then to establish how the universal template is related to that template. The subsequent part
of this paper is organized as follows. Section 2 is devoted to the extraction of a template for
the double-scroll attractor discussed by Ghrist and Holmes. How Ghrist’s universal template
is related to the template of the double-scroll attractor is explained in section 3. Section 4
provides a discussion and some conclusions.

2. The double-scroll attractor and its template

The Chua circuit is described by the flow [7]⎧⎪⎨
⎪⎩

ẋ = α (y − φ(x))

ẏ = x − y + z

ż = −βy,

(1)

where

φ(x) = m1x − 1
2 (m0 − m1) (|x + 1| − |x − 1|) = −φ(−x) (2)

and m0 = 5
7 and m1 = 2

7 . These equations have a fixed point at the origin and a symmetric
pair of fixed points at ±(x0, 0,−x0), where x0 = (m0/m1) − 1 when m0 > 2m1 > 0.

Ghrist and Holmes have shown that when α = 7 these equations have solutions supporting
every knot and link type for 6.5 � β � 10.5. Their proof depends on four properties that are
satisfied by these equations for the parameter range given.

(1) The equations are equivariant under inversion symmetry.
(2) The fixed point at the origin is a focus with eigenvalues {λs ± iω, λu}, with

λu > −λs > 0. (3)

(3) There is a homoclinic connection at the origin.
(4) The homoclinic cycle is unknotted.

A template was proposed for a double-scroll attractor solution to the Chua circuit (1), but
for different parameter values (m0 = − 8

7 , m1 = − 7
9 , α = 9 and β = 100

7 ) [15]. The template
of another double-scroll attractor produced by an electronic circuit rather similar to the Chua
circuit was proposed in [16]. These parameter values do not correspond to the values for which
the four previous conditions were proved. We therefore constructed the branched manifold
that describes the double-scroll attractor obtained with the parameter values used by Ghrist
and Holmes [6], that is, by those used by Chua et al [7] by integrating equations (1). The
chaotic solution to these equations for α = 7, β = 9 is shown in figure 1.

For convenience the attractor is shown in the (z, ż) projection of a differential coordinate
system (z, ż, z̈) related to the original coordinate system (x, y, z) by a constant nonsingular
transformation with determinant −β2. It is convenient to choose as a Poincaré section the
union of two disks. These are shown as dark lines extending outward from the unstable foci at
(± 3

2 , 0, 0) (figure 1). These two disks are defined according to

P ≡ {
(zn, żn) ∈ R

3|żn = 0, z̈n > 0, zn < − 3
2

} ∪ {
(zn, żn) ∈ R

3|żn = 0, z̈n < 0, zn > + 3
2

}
. (4)

In order to compute an adequate first-return map, distances along the branch line in each
component have to be measured from inside to outside [17]. Then, distances are normalized to
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Figure 1. Chaotic attractor solution to the Chua equations (1). Parameter values: α = 7, β = 9.
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Figure 2. First-return map to a two-component Poincaré section of the chaotic attractor solution
to the Chua equations (1). Parameter values: α = 7 and β = 9.

the unit interval to optimize the picture. The left component is shifted by −1 to distinguish it
from the right component. The first-return map thus obtained is shown in figure 2. Increasing
(decreasing) branches are associated with order preserving (reversing) branches, that is, with
an even (odd) number of π -twists. Four branches are obtained in each component. There are
some branches which are not very often visited between branch 1 (1) and branch 3 (3): they
will be neglected in this study.
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Figure 3. Branched manifold that describes the double-scroll attractor shown in figure 1.
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Figure 4. Two unstable periodic orbits extracted from the chaotic attractor solution to the Chua
equations (1)). Their orbital sequences are (3040) and (40300). The linking number between these
two periodic orbits is null. Parameter values: α = 7 and β = 9.

After many visual inspections in a three-dimensional representation of the attractor, we
found that this chaotic attractor can be described by the branched manifold shown in figure 3.
This branched manifold has two branch lines. The number of π -twists is null for branches 0,
4, 0 and 4, and odd for branches 1, 3, 1 and 3. Branches 1 and 3 carry negative twist (using
the right hand convention) and branches 1 and 3 carry positive twist.

We checked that the linking numbers predicted by this template are in agreement
with those computed from the unstable periodic orbits extracted from the chaotic attractors
using a close return method. An example is shown in figure 4 with the knot made of the
period-4 orbit (3040) and of the period-5 orbit (40300). The corresponding linking number
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Figure 5. Branched manifold that describes the double-scroll attractor shown in figure 1.

Figure 6. Sketch of the holes associated with the bounding torus of the double-scroll attractor.

lk(3040, 40300) = 1
2 (+3 − 3) = 0 as obtained in a template construction (figure 5). Our

template thus describes the relative organization of most of the periodic orbits embedded
within the attractor for α = 7 and β = 9 (we did not consider orbits having periodic points in
the branches between branch 1 (1) and branch 3 (3)).

It is possible to determine the genus of the torus bounding the attractor as follows. A
bounding torus is a semi-permeable closed surface surrounding the attractor. This surface has
some holes whose number defines the genus [18]. In the present case, there are three fixed
points, one saddle point located at the origin of the phase space and two symmetry-related
foci; they are represented in figure 3 by a square and two small circles, respectively. In the case
of the double-scroll, there is one additional hole which is defined by the axis around which
the trajectory spirals in the middle of the attractor and which is sketched as the gray band in
figure 3. From the bounding torus point of view, this hole crosses the hole associated with the
saddle point, leading to the bounding torus sketched in figure 6.

Using a decomposition of the bounding torus in plaquets as performed in [19] (see
appendix therein) and using the Euler–Poincaré index

V − E + F = 2 − 2g, (5)

where (E,V, F) are the numbers of vertices, edges and faces, it was found that the genus of
the bounding torus is equal to five. An alternative way of seeing this was presented in [19].
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(a)

A
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Figure 7. (a) Universal template as drawn by Ghrist [5, 6]. If the lower branch line is moved
around from the 7 o’clock position to the 5 o’clock position the inversion symmetry of this
template becomes apparent (b).

C1 C2

Figure 8. This 2 ↓ 1 image of the universal template is obtained by modding out [17] the inversion
symmetry. The Lorenz template is itself invariant under rotations about the vertical axis.

Briefly, enlarge the hole at the intersection of the cylindrical and square cylinders, place your
thumbs in one of the round holes in the surface, and turn the structure inside out, and project
onto a plane. The hole with the thumbs in it will turn into a projection of the outer boundary
of a torus pierced by five holes, three round holes separated by two square holes (cf figure 11
below).

3. Ghrist’s universal template

A simple universal template as drawn by Ghrist has the form shown in figure 7. Crossings in
the two ‘ears’ have opposite signs. Interchanging the two ears is equivalent to a π phase shift
around the interior region labeled A. As shown in figure 8, the 2 ↓ 1 image of the universal
template obtained by modding out [17] the inversion symmetry is the Lorenz template.

We now show that the Ghrist universal template shown in figure 7 occurs as a subtemplate
of the double-scroll template shown in figure 3. The steps are shown in figure 9. First we
construct a subtemplate by removing the four twisted branches and retaining only the four
untwisted branches. Then we rotate the upper branch line from the 11 o’clock position to the
1 o’clock position. The result is shown in figure 9(a). Next we move the return flow AB from
the left to the right. The resulting subtemplate, shown in figure 9(b), is the universal template,
shown in figure 7.
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Figure 9. A subtemplate is constructed from the double-scroll template by removing the four
branches with a twist (a). The upper branch line is identified with the upper splitting chart and the
bottom splitting chart is identified with the bottom branch line (b). Branch 4 is moved from the left
to the right (c), yielding a subtemplate equivalent to the universal template shown in figure 7.

...

Figure 10. Class of templates obtained by renormalization of the Ghrist universal template.

The class of templates introduced in [5, 6] and shown in figure 10 (called Wq in [5, 6]) can
be obtained in a similar way. If the template is modified to a circular form and the 2q ‘ears’ are
equally spaced around the circle, it is clear that Wq is a q-fold cover of the universal template
with Cq symmetry. Equivalently, it is a 2q-fold cover with S2q symmetry [17] of a Lorenz
template. The image Lorenz template has rotation symmetry and the axis around which the
cover is constructed passes through either of the foci of the Lorenz template.

4. Discussion

We have constructed a branched manifold that describes the double-scroll attractor obtained
for parameter values for which the Ghrist and Holmes theorem was proved. We then showed
that the universal template of Ghrist is a subtemplate of the double-scroll template obtained
by retaining only the untwisted branches in figure 3. This construction provides an alternative
way of seeing that the double-scroll attractor contains knots and links of all types. Ghrist’s
universal template thus describes the relative organization of a subset of the unstable periodic
orbits embedded within the double-scroll attractor.
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Figure 11. Representation of the universal template as embedded in a bounding torus of genus
five. The two holes surrounding the saddle points are represented by two squares. The three other
holes surround the foci Ci (i = 1, 2, 3).

Ghrist’s universal template possesses an inversion symmetry and an order-2 rotation
symmetry, as do the double-scroll equations (1). Modding out the inversion symmetry leads
to a Lorenz branched manifold. This branched manifold has rotation symmetry. Modding
out this symmetry leads to a branched manifold [20] of the type that supports the flow on
the well-known Rössler attractor [21]. Working backward, we can construct the universal
template in two steps from well-known templates. First, lift the Rössler template to a two-fold
cover with rotation symmetry around an axis between the two branches of the template. See
figure 5 b in [22]. Second, lift the resulting Lorenz attractor to a two-fold cover with inversion
symmetry through either of the two foci. See figure 6.35c in [17]. An alternative representation
of the universal template is provided in figure 11. In this standard representation it is clear that
the universal template is of genus-five type [18], three holes surrounding foci and two holes
surrounding saddle points.
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