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Summary. We have applied topological methods to analyze chaotic time series 
data from the Belousov-Zhabotinskii reaction. First, the periodic orbits shadowed 
by the data set were identified. Next, a three-dimensional embedding without self- 
intersections was constructed from the data set. The topological structure of that flow 
was visualized by constructing a branched manifold such that every periodic orbit 
in the flow could be held by the branched manifold. The branched manifold, or in- 
duced template, was computed using the three lowest-period orbits. The organization 
of the higher-period orbits predicted by this induced template was compared with the 
organization of the orbits reconstructed from the data set with excellent results. The 
consequences of the presence of certain knots found in the data are discussed. 
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1. Introduction 

It has recently become possible to classify strange attractors by integers [1]. This 
makes possible the identification of chaotic time series data in terms of the inte- 
ger invariants which classify the strange attractor in which the motion takes place. 
It is the purpose of the present work to illustrate how this procedure may be carried out 
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on experimental time series data. The data which are classified have been generated 
by the Texas group and described by Coffman et al. [2] and Richetti et al. [3]. 

At present, there are two distinct approaches to the analysis of chaotic time se- 
ries from low-dimensional strange attractors. These are the metric [4,5,6] and the 
topological approaches [1,7,8,9]. 

The metric approach is based on distances. Distances between points in appropriate 
embeddings of the data are used to compute a set of metric properties. These include 
fractal (or other) dimension [4], Lyapunov exponent [5], and the spectrum of singu- 
larities, f (a)  [10]. These quantities are averaged over the strange attractor. They are 
difficult to compute [11], require large data sets, and degrade rapidly with additive 
noise. The results of such computations are real numbers with error bars which are 
difficult to verify independently and, having been designed with different aims, are 
not extremely useful in providing insights on "how to model the dynamics" [8]. 

The topological approach is based on organization. Embedded within a hyperbolic 
strange attractor is a dense set of unstable periodic orbits [12]. In the case of three- 
dimensional flows, the periodic orbits are closed curves that can be characterized by 
the way in which they are knotted and linked with each other. Moreover, if a Poincar6 
section exists for the flow, any finite set of periodic orbits can be identified with an 
element in the Braid group (up to conjugation). What allows a systematic study of these 
features is that, in the case of hyperbolic flows, there is a one to one correspondence 
between the periodic orbits in it and the orbits carried by a branched manifold [13]. 
Moreover, the orbits in the real flow and the ones in the "knot holder" or template 
share the same topological properties. If the template that carries the periodic orbits is 
identified, the organization of the orbits is known even when parameters are changed 
and hyperbolicity is lost, as an orbit cannot change its knot type or linking numbers 
as parameters are changed. 

We say that a three-dimensional flow is compatible with an induced template when 
all the periodic orbits of the flow can be associated with periodic orbits of the induced 
template in such a way that the braid structure is preserved. This association is weaker 
than the one obtained through the Birman-Williams-Holmes procedure for hyperbolic 
sets, where there is a one to one correspondence between orbits in a flow and orbits 
in the template [13,14,15,16,17]. In practical terms, this weaker definition allows us 
to expect all the periodic orbits in a non-hyperbolic flow to be represented by orbits in 
the knot holder, in contrast with the original approach which would force us to restrict 
attention to subsets of the phase space having the appropriate hyperbolic structure; the 
price paid for this advantage is to have orbits in the knot holder without a counterpart 
in the flow. Consequently, flows differing in the spectra of orbits but sharing the same 
organization might not be distinguished in this classification. Our induced template 
provides us with a model for the qualitative dynamics of the flow. 

In this paper we analyze chaotic time series data from the Belousov-Zhabotinskii 
reaction. This chemical reaction has been modeled by a high-dimensional (n > 3) 
dynamical system [18]. It is therefore not obvious that the Birman-Williams theorem, 
valid for flows with one unstable direction in three manifolds, is even applicable. 
We find, however, that we can construct an embedding of the scalar time series data 
(logarithm of the bromine ion concentration) in •3 and construct an induced tern- 
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plate which is compatible with the flow. The flow itself is probably not hyperbolic. 
The point is that the topological properties (knot type, linking numbers) of the orbits 
which exist in the hyperbolic limit are properties of the knots themselves, and not of 
the induced template, which provides a convenient mechanism for computing these 
properties. Thus, they remain invariant for those knots which are embedded in the 
invariant set, even if it is not hyperbolic. 

The induced template serves two functions. First, it provides a qualitative model 
for the dynamics generating the observed time series data. Second, it can be used 
to screen models which attempt to describe these data. If time series generated by a 
model and an experiment, embedded in the same way in a three-dimensional manifold, 
induce the same template, the model is not incompatible with the data. If different 
templates are induced, the model cannot provide a valid description of the processes 
generating the experimental time series. 

The paper is organized as follows. The steps required to implement the topological 
analysis of chaotic time series data are reviewed in Sec. 2. These are then carried out in 
the subsequent sections. In Sec. 3 we illustrate how to extract information about unstable 
periodic orbits from the chaotic time series data using the method of close returns. In 
Sec. 4 we discuss the strengths and weaknesses of various embedding procedures. In 
Sec. 5 we construct a branched manifold compatible with the data from the low-period 
orbits reconstructed in Sec. 3 and the embedding of Sec. 4. In Sec. 6 we illustrate how the 
template identification is validated using the higher-period orbits reconstructed in Sec. 3. 
In Sec. 7 we discuss the qualitative dynamics which generate the Belousov-Zhabotinskii 
data in terms of the induced template. The methods presented in this work raise a large 
number of questions. These are presented and discussed in Sec. 8. We conclude with a 
summary of this method and results in Sec. 9. 

2. Outline of Procedure 

The topological approach is based on the organization of unstable periodic orbits 
embedded in the strange attractor [1,7,8,9]. The first step is therefore the extraction 
of periodic orbits from the chaotic time series data. This is accomplished by a search 
for close returns in the data. The procedure for extracting these orbits is described in 
Sec. 3. 

We will construct a three-dimensional flow from the data, even though the data may 
be generated by a high-dimensional (n > 3) dynamical system. This requires a three- 
dimensional embedding of the scalar data experimentally recorded. For our purposes, a 
good embedding will necessarily be one in which there are no self-intersections of the 
flow. We explore alternative embedding methods in Sec. 4. We adopt an embedding 
involving a differential and an integral filter. In what follows we restrict our attention 
to fully expanding templates, that is, those templates associated with full shifts, as in 
reference [1] (see Figure 1). 

A template can be constructed from the period 1 and period 2 orbits. When some 
of these are not presen~ in the data set studied, one has to resort to higher-period 
orbits. 
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Fig. 1. Two different templates are shown in this figure. In both cases, the periodic orbits 
that can be supported by them can be characterized by finite sequences of two symbols that 
indicate which branches (left or right) are visited, and in which order. For the template on 
the left, an arbitrary sequence of two symbols is the name of a periodic orbit. We call these 
templates fully expansive. For the template on the right, after visiting the left branch we 
visit the right one. Therefore, not every sequence of two symbols represents an orbit in this 
template. We call these templates not fully expansive. 

A template is classified by a square n • n matrix and an n • 1 array, where n 
is the number of  branches (components) in the branched manifold [1]. This is also 
the number of distinct period-one orbits embedded in the hyperbolic strange invariant 
set. The n x n matrix is symmetric and integer valued. The ith diagonal element 
is the local torsion around the ith period-one orbit. This is the angle through which 
the flow twists in one period in the neighborhood of the period 1 orbit, measured in 
units of  ~'. The (i, j ) t h  matrix element is twice the linking number of  the ith and j t h  
period-one orbits. The linking number of  two periodic orbits is the signed number 
of  times either passes through a surface bounded by the other. Diagonal elements of 
this matrix are integers, even or odd depending on whether the orbit is an orientation- 
preserving (regular) or orientation-reversing (flip) saddle. All  off-diagonal elements 
are even. The order in which the n branches of  the branched manifold are identified 
at the branch line is determined by the n • 1 array. This information is extracted from 
the organization of the (2) period 2 orbits with respect to the period 1 orbits. 

Once the induced template has been identified, it can be used to predict the topo- 
logical properties of all remaining orbits embedded in the strange attractor. These 
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properties include the following: 

1. The linking numbers of all pairs of periodic orbits [19]. 

2. The relative rotation rates of all pairs of periodic orbits [20]. 
3. The self-linking number of each periodic orbit. 

4. The relative rotation rates for each periodic orbit. 
5. The local torsion around each periodic orbit [19,20]. 

6. The knot polynomials (Conway, Jones, Alexander, . . .  ) for each periodic orbit 
[21]. 

These predictions are fixed by the induced template matrix and array. The properties 
of orbits remain unchanged while the orbits exist, even when control parameters or 
experimental conditions are changed so that the invariant set is no longer hyperbolic. 

On the other hand, these properties can also be computed directly from the periodic 
orbits reconstructed from the time series data. Comparison of the predictions with 
the directly measured values can be used to invalidate or increase confidence in the 
template identification. This procedure is carried out in Sec. 6. 

The flow over the branched manifold provides a qualitative description of the 
mechanism responsible for generating the original time series data [16]. In general, 
only a subset of all periodic orbits in the induced template exists in this flow. A 
systematic study of which periodic orbits are embedded in a chaotic attractor is not 
a solved problem. There are, however, some partial results. One of these is that the 
presence of "badly ordered" orbits [22] implies that the topological entropy of the flow 
is greater than zero. We have extracted one of these orbits (of period seven, knotted 
as a (7 ,3 , -2 )  pretzel). As a result, it is unnecessary to resort to dimension or entropy 
calculations to show that the data set is chaotic. 

3. Search for Close Returns 

Periodic orbits have previously been extracted from this data set [23]. The extraction 
procedure used depended on a three-dimensional delay embedding. 

The reconstruction of periodic orbits is independent of embedding and can be 
carried out by searching for close returns directly in the original time series data 
x ( i ) ,  i = 1, 2 . . . . .  N .  One very colorful method involves color coding the difference 

I x ( i )  - x ( j )  I (1) 

and plotting (1) as a function of the indices i and j .  The difference vanishes along 
the diagonal i = j .  Close returns reveal themselves as segments parallel to and offset 
from the diagonal. 

A better procedure involves color coding the difference 

I x ( i )  - x ( i  + P)I (2) 
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Fig. 2. Close returns plot for part of the Belousov-Zhabotinskii data. The point (i, p) is 
colored black if the distance (Ix(i) - x(i +P)I) is less than some (e), typically about 1% of 
the maximal distance (MAXlx(i) -x ( j ) l  ). Nearly horizontal line segments reveal part of the 
time series in the neighborhood of an unstable periodic orbit. The Belousov-Zhabotinskii 
data set has length 64 K. The portion shown in this plot has range 1 -< i --< I000 and 
0 -< p --< 960. One of the data segments near the unstable period 3 orbit (011) appears as 
a horizontal line segment from i = 240 to i = 430 with p = 370. Other orbits used to 
construct and verify the induced template are observed in other close returns plots (different 
ranges of i). 

and plotting (2) as a function of  i (horizontal) and p (vertical). Such a plot is shown 
in Figure 2 for a segment of the Belousov-Zhabotinskii time series. In such a plot, 
periodic data will generate a series of  equally spaced horizontal lines, stochastic data 
will generate a random pattern, and chaotic data will  generate a series of  almost 
horizontal line segments�9 Adding noise to the chaotic data sets will simply decrease 
the resolution of  the lines representing close returns. The vertical offset indicates 
the period, p (measured in units of  the sampling time),  of  the periodic orbit which 
the chaotic time series data are shadowing. The beginning and endpoints, ii, if, 
indicate the location in the data set (i; t o  if  + p) of the segment which closely 
fol lows this periodic orbit�9 This segment can be extracted and used either directly as 
a representation of  this periodic orbit or else combined with other similar segments 
to construct a weighted average of  this unstable periodic orbit�9 

Many unstable periodic orbits have been extracted from the Belousov-Zhabotinskii 
data using this procedure. These orbits, and some of  their properties, ~e listed in 
Table 1. 
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Table 1. Periodic orbits reconstructed from chaotic time series data 
from the Belousov-Zhabotinskii reaction. 

Orbit Period Symbolics Local Torsion Self-Linking 

1 1 (1) 1 0 
2 2 (01) 1 1 
3 3 (011) 2 2 
4 4 (0111) 3 5 
5 5 (01011) 3 8 
6 6 (0110M1)* 3 9 
7 7 (0101011) 4 16 
8a 8 (01011011) 5 21 
8b 8 (01010111) 5 23 
9 9 (01)3(011) 5 28 

10a 10 (01)2(011) 2 6 33 
10b 10 0111(011) 2 7 33 
11 11 (01)(011) 3 7 40 
13a 13 (01)2011010111 8 62 
13b 13 (01)30110111 8 60 
13c 13 (011)30101 8 56 
13d 13 (011)30111 9 56 
13e 13 (01)2011011111 9 62 
14 14 (01)(011) 4 9 65 
15 15 (01)(011)20111011 10 78 
16a 16 (01)3(011)20111 10 89 
16b 16 (011)40101 10 85 
16c 16 (011)40111 11 85 
16d 16 (01)2(011)2011111 11 91 
17a 17 (01)301101(011) 2 10 102 
17b 17 (01)(011) 5 11 96 
17c 17 (01)201101(0111) 2 11 108 

* M transits the cut separating the orientation-preserving and orientation-reversing com- 
ponents of the template. 

153 

We emphasize again that the reconstruction of periodic orbits does not require any 
embedding I and can be carried out directly on scalar time series data. Further, lack 

of close returns is a strong indication that the data are not generated by motion on a 
low-dimensional strange attractor. Sensitivity of the search for close returns to additive 

noise is discussed in Sec. 8. 

1 We assume, as usual, that a sufficiently long segment of the time series contains enough 
information to determine the dynamics. In symbols, we assume that there is a sufficiently 
large integer no such that if the time series X = ( . . . .  x i ,  Xi+l . . . . .  X i + n  . . . .  ) and Y = 

( . . . .  Yi ,  Yi+l . . . . .  Y i + n  . . . .  ) have an identical segment of length n --> no , then X = Y; 
which is to say that the time series can always be represented in an n-dimensional time-delay 
embedding for some sufficiently large n. 
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4. Embedding 

Although periodic orbits can be extracted from data without an embedding, the topo- 
logical properties in which we are interested (cf. Sec. 2, 1-6) cannot be described 
unless a three-dimensional embedding can be found. 

Embeddings have been described in the mathematics literature. Whitney [24] has 
shown that an n-dimensional manifold M n can be embedded in N~ if k ---> 2n. If  
k --> 2n + 1, the embedding can be made analytic. Takens has shown that when the 
motion occurs in M n , the time-delay coordinates x( i )  --+ y(i),  

y(i) = (x(i), x ( i  + ~') . . . . .  x( i  + 2n~-)), (3) 

can be used as an embedding of M n into N2n+l [25]. He has even suggested that 
there is an embedding in terms of  successive derivatives of  y in which the dynamical 
system assumes the canonical form 

dyl  
dt  - Y2, 

dy2 
dt  - y3, 

dy2n 
- Y2n+l, 

dt  

(4) 

dy2n+l 

dt  
-- f ( Y l ,  Y2 . . . . .  Y2n, Y2n+l). 

We made a number of  attempts to construct a three-dimensional embedding of  the 
Belousov-Zhabotinskii data looking especially for embeddings of  the form of Eq. 4. 

The reason for our preference for embeddings of the form (4), which we call 
differential phase space embeddings, is as follows: First, they reflect a dynamics 
which can generate the time series data. Second, the topological organization can be 
seen by inspection. For example, if two orbits cross in a phase space plot as shown 
in Figure 3, then since the slope at the crossing point is 

dv d v / d t  x "  

dx  d x / d t  x '  
(5) 

with 

v = x ' ,  (6) 

it is a simple matter to determine which orbit crosses over which by inspection. Third, 
if such an embedding exists, the attractor always has a "hole" in the middle (cf. Sec. 
8). This guarantees the existence of  a cross section and the possibility of constructing 
a first return map. 

The x - x '  projection of  a phase space embedding of  the Belousov-Zhabotinskii 
data in terms of the variables x,  x ~, and x"  is shown in Figure 4. Since all crossings 
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Fig. 3. When two orbits cross in the (x' - x) projection of a differential 
phase space plot, information about which orbit crosses over (under) the other 
is easily determined by inspection. (cf., Eq. (7)). The flow is clockwise in this 
projection. 

occur in the thin section, which could not be further resolved, the topological organi- 
zation of  the strange attractor could not be resolved in this embedding. We therefore 
considered a larger class of  embeddings. 

All the embeddings which we considered consisted of time-delay coordinates for 
different delays, r ,  as well as a variety of  differential and integral filters. The different 
embeddings were compared using the minimum redundancy criteria introduced by 
Fraser [26]. Using these criteria, the best embedding resulted from the use of two 
integral filters and the measured variable itself 

i i 

y~(i) = x( i ) ,  Y2 = ~ ' x ( i ) e  (j-i?/gl, y3(i) = Z x ( i ) e ( J - i ) / ~ 2 .  (7) 
j = l  j = l  

This class of  embeddings exhibited self-intersecting attractors violating the necessary 
condition stated in Sec. 2. The self-intersection was simple to recognize beyond 
any possible doubt in three-dimensional plots, (x, y, color), of the attractor. Such 
a possibility was already considered in [26]. 

The second-best embedding, according to Fraser's test, consisted of  the variable 
itself, an exponential filter and the first difference of  the variable. These variables can 
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u 

x 

Fig. 4. Phase space embeddings x'  vs. x for data from the Belousov- 
Zhabotinskii reaction. Interpretation of the topological organization of the 
strange attractor is difficult because all crossings occur in the thin section. 
The flow is clockwise around the hole. 

be considered as representative of a flow of the form 

where 

dy l  
- ( 1 / r ) y ~  + x ,  

d t  

Y2 = x ,  

t 
y 3 = x ,  

yl ( i )  = ~ ' ~ ( x ( j ) e - ( i - J ) / ~ ) ,  
j = l  

Y2(i) = x ( i ) ,  

Y3(i) = x ( i )  - x ( i  - 1). 

(8) 

(9) 

This was the embedding finally adopted. The projection of the embedded Belousov- 
Zhabotinskii data onto the Yl - Y2 plane is shown in Figure 5. In this projection all 
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Fig. 5. Embeddings of the data for the Belousov-Zhabotinskii re- 
action determined from the filter defined by Eq. (8). The flow is 
counterclockwise around the hole in the middle. 

over- and under-crossings are clearly resolved. Projection onto the Y2 - Y3 or x - -  x '  
plane has previously been shown in Figure 4. 

We emphasize that the process of filtering was introduced to generate a new variable 
rather than to eliminate noise. A discussion related to the effects of noise reduction 
and data filtering on the metric characterization of attractors can be found in [27]. 

With respect to other possible embeddings considered, we can say that, in general, 
they presented resolution problems when trying to evaluate the braid structure of the 
periodic orbits. Differential embeddings decrease the signal to noise ratio making it 
impossible for us to resolve the under- and over-crossings. Time-delay embeddings 
of the form (3), optimized by changing ~-, also presented regions of the flow where it 
was not possible to resolve the braid structure. 

The embedding adopted, Eq. (8), allows us to find a Poincar~ section. Two 
"Poincar6 cuts" are shown in Figure 6, as well as the return maps (x(i + 1) vs x(i)) 
on these Poincar6 sections. The existence of a good one-dimensional return map al- 
lows the development of a symbolic dynamics: 0 for the orientation-preserving branch 
and 1 for the orientation-reversing branch. The symbolic dynamics for each of the 
reconstructed orbits is shown in Table 1. 

Although the existence of a reasonably good one-dimensional map associated with 
the flow facilitates the assignment of symbolic names to  the periodic orbits, such a 



�9
 ~(
+ +

 t)
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~

-
.

 
, 

o 
~ 

1
6

5
0

0
 

~
o

~
 

o 

16
00

0 
o 

o o o 
o 

o 
@

 
e 

~ 
15

50
0 

~ 
o 

:~
 

o 
. 

o 

15
00

0 :
g 

o 

Q
 

1
4
5
0
0
 

~
1
7
6
 o
 

1
4

5
0

0
 

1
5

0
0

0
 

1
5

5
0

0
 

1
6

0
0

0
 

1
6

5
0

0
 

+.
(i

 +
 i)

 

19
80

0 

19
60

0 

19
40

0 

19
20

0 

19
00

0 

~
 

o 

~ 
o 

o 

0o
 

Q
t~

 o 
o 

o %
 

o 

o oo
 oe

 00
 

8 
e 

o
 

8d
 ~ 

..
..

..
. 

l 

~o
 

~
 

a 
o~

 

o 8 
o 8o

o 

~
o

~
 

o~
 

o 
o 

o
 

o 

~ 
o 

19
20

0 
19

40
0 

19
60

0 
19

80
0 

20
00

0 

.~.
.C,

r) 
~.

(i)
 

H
g.

 
6.

 
R

et
ur

n 
m

ap
 x

(i
 +

 1
) 

vs
. 

x(
i)

 o
n 

th
e 

cu
ts

 x
' 

= 
0 

of
 t

he
 B

el
ou

so
v-

Z
h

ab
ot

in
sk

ii
 

st
ra

ng
e 

at
tr

ac
to

r.
 

(a
) 

R
et

ur
n 

m
ap

 o
n 

th
e 

pl
an

e 
x'

 
= 

0,
 x

"
 

< 
0 

an
d 

(b
) 

re
tu

rn
 m

ap
 o

n 
th

e 
pl

an
e 

x'
 

= 
0,

 x
"

 >
 

0.
 I

ns
et

: 
cu

ts
 i

n 
th

e 
st

ra
ng

e 
at

tr
ac

to
r 

on
 w

h
ic

h
 t

he
 

re
tu

rn
 m

ap
s 

ar
e 

co
ns

tr
uc

te
d.

 

Z:
 

o > $ O
 

,I
. 

�9
 



Topological Analysis of Chaotic Time Series Data 159 

f 
/ 

Ol 011 

/ 
/ 
x 

> 
/ 

0111 01011 

Fig. 7. Orbits of period 2, 3, 4, and 5 reconstructed from time series data from the 
Belousov-Zhabotinskii reaction and projected onto the Yl, Yz plane of the embedding given 
in Eq. (9). The over- and under-crossings are clearly shown. The flow is counterclock- 
wise. 

map is not necessary. Symbolic names are given to the periodic orbits such that they 
have the same name as the associated orbits in the induced template, once the template 
has been determined. Both procedures give consistent results in the present study. 

Once the embedding has been established, the topological properties of the periodic 
orbits reconstructed from the data are determined. These segments have been extracted 
from the data using the method of  close returns discussed in Sec. 3. A number of  
periodic orbits are shown in Figure 7 projected onto the (y l, yz) plane of  the embedding 
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defined by Eq. (9). Each is identified by its symbolic dynamics, and the over- and 
under-crossings are shown for each. Since all orbits are plotted to the same scale, 
linking properties of a pair can be determined by superposing the two orbits and 
counting the signed number of crossings (cf. Sec. 6). 

5. Construction of the Induced Template 

The general procedure for constructing templates, summarized earlier, will now be 
described in more detail and applied in the case of the Belousov-Zhabotinskii strange 
attractor. First, the complete set of period 1 orbits is constructed. All segments rep- 
resenting the ith period-1 orbit are compared pairwise. The signed number of times 
each pair crosses is typically invariant over all pairs representing the same orbit. This 
integer, l(i), is the local torsion of the ith period 1 orbit. 

Then the linking number of each segment representing the ith period 1 orbit is 
computed with each segment representing the j th  period 1 orbit. These integers should 
also be invariant over all periodic pairs. This integer, l(i, j ) ,  is the linking number 
of the ith and j th  period 1 orbit. 

In computing the integers l(i) and l(i, j ) ,  we adopt the following sign convention. 
At each crossing point tangent vectors tl and t2 are drawn to the upper and lower 
curve segments in the direction of the flow. The crossing is labeled + 1 ( -  1) if the 
tangent vectors form a right- (left-) handed coordinate system in the projection plane 
(see Figure 3). 

The template matrix has diagonal matrix elements l(i) and off-diagonal matrix 
elements 21(i, j )  = 21(j, i). 

The order in which the n-branches of the template are joined on the branched line 
is determined by the n-element array. By convention, the higher the integer, the nearer 
the front the component occurs in compression. This information is determined by 
computing the linking number of the period 2 orbits with the period 1 orbits. This in 
fact overdetermines the n • 1 array if n > 2. 

Construction of the template is not quite so straightforward for the Belousov- 
Zhabotinskii attractor. The return map strongly suggests that the template has two 
branches. Its algebraic description is therefore 

/(0) 2l(0, 1) 
21(1,0) 1(1) ) '  (10) 

(o m), 

where m = -+ 1. As can be inferred by inspection of the return map, no segments re- 
semble the period 1 orbit (0) through the orientation-preserving branch of the template. 
Two segments in the data set resemble the period 1 orbit (1) in the orientation-reversing 
component of the template. The local torsion computed using this pair of segments is 
l(1) = 1. 

A periodic orbit (0101t . . .  ) which passes P0 (Pl) times through the orientation- 
preserving (-reversing) branch has local torsion pol(O)+pll(1).  Since the local torsion 
of the period 2 orbit (01) is 1, 1(0) = 0. 
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The linking number l(0, 1) and order information m are determined by computing 
how the period 1 orbit (1) links the period 2 (01) and period 3 (011) orbits. The 
results are 

L((1), (01)) 

L((1), (011)) 

L((O 1), (011)) 

1 
= l ( 0 , 1 ) + ~ ( m + l )  = 1, 

= l (0 ,1 )§  1 = 1, 

= 3/(0,1) + (m + l) = 2. 

(11) 

The integers on the right were computed by superposing the orbits (1) and (01), (1) 
and (011), and also (01) and (011). The result is l(0, 1) = 0, m = 1 and the following 
classification of the template by integers 

(o ~ o) 

(o 1). 

(12) 

This set of integers characterizes a flow with Smale horseshoe return map and zero 
global torsion in suspension [1, 14, 17] (see Figure 1). 

6. Template Verification 

The topological organization of all periodic orbits and all pairs of periodic orbits 
is uniquely determined once the underlying template has been characterized. These 
properties include the following: 

1. Self-linking number of single orbits. 
2. Linking numbers of orbit pairs. 
3. Local torsion. 
4. Self-relative rotation rate. 
5. Relative rotation rate of orbit pairs. 
6. Knot and link polynomial invariants. 

The local torsion of the orbit (01011...) ( P0 O's and pl l's) is 0p0 + lpl.  
The self-linking number is the signed number of crossings of that orbit with it- 
self. The self-linking number of the orbits (011) and (0111) are computed in Fig- 
ure 8. The local torsion and self-linking numbers computed from the template 
matrix are listed for each periodic orbit in Table 1. 

The linking number for any pair of periodic orbits is computed similarly. The two 
orbits are superposed. The linking number is half the algebraic sum of signed cross- 
ings. This computation is illustrated in Figure 9 for (01) and (011). This number can 
also be computed algorithmically. Inputs for the algorithm include the template infor- 
mation (matrix and order information) and the symbolic dynamics for each orbit of 
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+ 

011 0111 

l~g. 8. Self-linking numbers of the periodic orbits are the number of signed crossings. Self- 
linking number for (a) orbit (011) is 2 and (b) orbit (0111) is 5. The flow is counterclockwise. 

interest. The matrix of linking and self-linking numbers computed using this algorithm 
is presented in Table 2. 

These computations were carried out for all pairs of periodic orbits up to period 
8. For all but one of the periodic pairs tested the measurements (counting number of 
signed crossings) and predictions agreed. The discrepancy occurred between the period 
4 orbit (0111) and one of the two period 7 orbit segments used to model the period 
7 orbit (0101011). One period 7 orbit linked the period 4 orbit 11 times, the other 
10 times. Both period 7 segments had the same symbolic dynamics. The discrepancy 
was traced to a lack of precision in the location of one section of a segment of data 
shadowing a period 7 orbit. This allowed us to prefer one period 7 orbit segment over 
the other. 

The relative rotation rates for two periodic orbits are computed as follows. A 
Poincar6 section is chosen and the p intersections a l . . . . .  ap of a period p orbit 
and the q intersections bl . . . . .  bq of a period q orbit are located. A difference 
vector ai -- bj is propagated forward p q  periods, after which it returns to its original 
orientation by rotating through an integer multiple (p * q * Rij (a, b)) of 27r radians. 
The relative rotation rate of the difference vector ai -- b j ,  Ri j (a ,  b), is the average 
number of rotations, per period, made by this difference vector under forward time 
evolution. The relative rotation ra tes  Rij (a, b) for different intersection pairs (a i, b j )  
on the Poincar6 section need not all be equal [20]. The sum of the relative rotation 
rates over all pairs of initial conditions is the linking number of the two periodic 
orbits: L(a ,  b) = ~'~i,j Rij (a ,  b). The relative rotation rates of an orbit with itself are 
computed similarly, with the exception that Rii(a,  a) is defined to be zero. With this 
convention, the sum of the self-relative rotation rates is its self-linking number. 
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(b) 

(r 

(d) 

[olo] [1  
P(011)--  0 0 1 , P ( 0 1 ) =  0 1 

1 0 0 1 0  ' P =  

[~176 1 C(OII)= 0 0 1 , C(OI)= 0 1 
1 1 0  1 0 ' C =  

2 * (nl * n2) * R R R  = 

0 2 
2 0 
2 2 
2 2 
2 2 

2 2 
2 2 
0 2 
2 0 
2 3 

0 1 0  
0 0 1  
1 0 0  
0 0 0  
0 0 0  

0 0 1  
0 0 1  
1 1 0  
0 0 1  
1 1 1  

0 0  
0 0  
0 0  
0 1  
1 0  

0 1  
0 1  
1 1  
0 1  
1 0  

Fig. 9. (a) The linking number of the period 2 and period 3 orbit is �89 - 2) = 2. 
(b) Permutation matrices for the individual orbits, (011) and (01), and the two orbits together. 
(c) Crossing matrices for the individual orbits, (011) and (01), and the two orbits together. 
(d) Matrix of relative rotation rates for the orbits, (011) and (01), computed from Eq. (13). 



164 G . B .  Mindlin, H. G. Solari, M. A. Natiello, R. Gilmore, and X.-J. Hou 

Table 2. Linking numbers of reconstructed periodic orbits. The period 6 orbit passes 
through the cut point separating the orientation-preserving from the orientation-reversing 
template component. 

1 
2 

3 

4 

5 

6 

7 

8a 

8b 

1 2 3 4 5 6 7 8a 8b 
1 O1 011 0111 01011 OllOM1 0101011 01011011 01010111 

0 

1 1 
1 2 2 
2 3 4 

2 4 5 

2 4 6 

3 5 7 

3 6 8 

4 6 8 

5 

8 8 

8 10 

11 13 

12 15 

13 16 

9 

14 16 

16 21 21 

16 21 24 23 

These rational fractions depend on initial conditions and provide phase informa- 
tion lacking in linking numbers. They are therefore more closely linked to physical 
processes than linking numbers. They have beautiful properties which provide some 
selection rules on the order in which bifurcations can occur in dynamical systems 
[20]. 

The relative rotation rates for orbits generated by a horseshoe have been tabulated 
[20]. These fractions can be computed by an algorithm whose inputs are identical to 
those for linking number algorithms. Relative rotation rates for the orbits extracted 
from the Belousov-Zhabotinskii data, up to period 8, are given in Table 3. 

Table 3. Relative rotation rates of reconstructed periodic orbits 

1 2 3 4 5 6 7 8a 8b 
1 01 011 0111 01011 0110M1 0101011 01011011 01010111 

1 

2 

3 

4 

5 

6 

7 

8a 

8b 

0 
1 1 ~,0 

~,~ g ~,0 

2_ 2_ ! 2_ 
5 5 3 5 

! ! ! i 
3 3 3 3 

3_ ! ! i_I 
7 14 3 28 

3_ 3_ ! 3_ 
8 8 3 8 

1 1 1 1 ( 1 1 2  3 1 

@4,o 
! (Lr  L fl 
3 " 3  z ' 6  ' v  

13 ! 
35 3 

3 i 
8 3 

2 1 
5 3 

3 4 2 2 (~) ,(~) ,o 

s ~- @7, 0 
3_ 3_ 
8 8 

(J~4 3 (1~2 (i 



Topological Analysis of Chaotic Time Series Data 165 

The relative rotation rates for the periodic orbits extracted from the Belousov- 
Zhabotinskii data can be computed as follows. Initial conditions in a Poincar6 section 
are chosen. Then the signed number of crossings of these initial conditions is counted 
during each successive period, until the system returns to the initial conditions. The 
algebraic number of crossings is then divided by the number of periods required to 
return to the initial conditions. 

The counting procedure is facilitated by a simple algorithm, illustrated in Figure 
9. The orbit segments for the first orbit of period p l are numbered 1, 2 . . . . .  P l, and 
those for the second orbit of period p2 are numbered Pl + 1, Pl + 2 . . . . .  Pl +p2.  This 
is shown in Figure 9 for the period 3 orbit (011) and period 2 orbit (01) extracted from 
the Belousov-Zhabotinskii data. The segments are defined with respect to the cross 
section shown in Figure 9a. For example, segment 1 extends from the top of the left 
hand side of the cut, in the counterclockwise direction, to the middle of the bottom of 
the cut (between the two asterisks). The numbers in the figure indicate the segments of 
the period 3 and period 2 orbits. Then a permutation matrix is defined which describes 
the forward time evolution of the system. This is a (pl + p2) • (pl + P2) matrix with 
the properties 

pp l*p2  = Ip l+p2 " (13) 

For example, forward time evolution causes the phase space point in the period-three 
orbit to evolve from segments 1 --> 2 --> 3 --~ 1. Thus, P(1, 2) = P(2, 3) = 
P(3, 1) -- 1; similarly P(4, 5) = P(5, 4) = 1 for the period-two orbit (cf., Figure 
9b). Finally, a crossing matrix C is defined. This describes which orbit segments cross 
over each other. This is a signed real symmetric (/)1 + p2) • (/)1 + p2) matrix with 
integer entries. This is constructed as follows. Segment 1 crosses in sequence segments 
3 ( + 1 ) ,  5 (+1),  2 (+1),  4 (+1),  4 ( - 1 ) ,  and 2 ( -1 ) .  Then C(1, 2) = +1 - 1 = 0, 
C(1, 3) -- +1,  C(1,4)  = +1 - 1 = 0, and C(1, 5) = +1. The remaining elements 
in the crossing matrix are computed similarly. The crossing matrix for these two orbits 
is shown in Figure 9c. 

During the first period, initial conditions at (i) and ( j )  will cross C(i, j )  number 
of times. During the second pass, they will cross (P-1CP)(i ,  j )  times. Summing all 
crossings of initial conditions (i, j )  for any i, j ,  we compute the matrix of relative 
rotation rates 

2 •  • P2 • RRR = 
pl *p2-1 

k=O 

(14) 

where p - 1  = p r  since P is a permutation matrix. The integer matrix 2 • Pl • P2 
• is shown in Figure 9 for the orbits (011) and (01). From this matrix one easily 
determines the relative rotation rates for the period 2 and 3 orbits as well as the relative 
rotation rate of the period 2 orbit with itself and the period 3 orbit with itself. 

There were no discrepancies between the relative rotation rates and self-relative 
rotation rates for all orbits extracted from the Belousov-Zhabotinskii data up to period 
8 when computed from the reconstructed orbits or predicted from the template, with 
the exception of the period 4 (0111) and one of the period 7 (0101011) segments, as 
discussed above. 
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Table 4. Knot types of reconstructed periodic orbits. 

Symbolics Knot Type Conway Polynomial Remarks 

1 trivial V = t 
01 trivial V = 1 

011 trivial V = 1 
0111 toms T2, 3 ~7 = 1 q- z 2 ~ ~73 

01011 toms T2,5 V = 1 + 3Z 2 + Z 4 ~ V5 
0110M1 toms T2,5 V = 1 + 3z 2 + z 4 
0110101 pretzel P7.3,-2 V = (1 + z2)V9 + z2V7 

first nontrivial 

doubled from 011 
first nontorus knot 

~7 7 = Z 6 q- 5Z 4 -- 6Z 2 + 1 

I7 9 = Z 8 + 7Z 6 + 15Z 4 + 10Z 2 + 1 

The knot polynomials were useful in the search for a period 6 orbit. Three orbital 
segments were identified in which the close return after six periods was closer than 
the return after three. In two instances in which the period 3 return map was fairly 
close, the symbolic dynamics was (011011). The knot polynomial indicated that the 
orbital segment followed the period 3 orbit closely for two full (period 3) periods. 
The third segment did not have a close return on the third period and had symbolic 
dynamics (0110M1), where M was the cut point (maximum) for symbolic dynamics 
in the return map. Its knot polynomial indicated it closely followed the period doubled 
orbit of  the period 3, with symbolic dynamics (011001). 

We computed the Conway polynomials for each of the periodic orbits listed in 
Table 1 up to period 7. These polynomials are presented in Table 4. The Conway 
polynomials for each of  the knots reconstructed from the Belousov-Zhabotinskii data 
were computed using the standard rules [21]. Once again, the polynomials computed 
from the horseshoe template and those computed from the reconstructed orbits agreed 
in all instances [17]. 

7. Qualitative Dynamics 

By identifying a template, we have provided a method to model the qualitative dy- 
namics of  the system. Once the template is known, so are some topological features 
of the orbits which can be extracted using the procedure described in Sec. 3. For 
example, we know that the extracted orbits can be arranged as positive braids, or that 
the (p, q) torus knots will have p / q  <_ 2 /3  [17]. But which of the orbits present in 
our induced template are actually present in the chaotic solution is an unsolved issue. 
The knowledge of  how the orbits that are found are knotted in a "complicated" data 
set is not merely academic; the presence of certain kinds of  orbits imply an entropy 
greater than zero (i.e., positive topological entropy). The reason is that some periodic 
behaviors imply, by continuity, a complicated behavior for the complement of  the 
periodic orbit. The precise statement [22] is that in a flow there will be orbits that 
are neither rotations nor rotations around rotations if and only if the entropy is greater 
than zero. This remarkable result tells us that the mere existence of such an orbit is 
a sufficient condition for the "chaoticity" of  the flow. In the horseshoe template there is 
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l~g. 10. The shaded region in the horseshoe tem- 
plate supports only toms knots. The flow is coun- 
terclockwise in this projection, from top to bottom 
in the two-branch region. All toms knots in this 
portion of the template consist of words composed 
of the letters 0 and 11 "as equally spaced as pos- 
sible." All such toms knots are well-ordered. The 
presence of a period 7 "pretzel knot" P(7, 3, -2) ,  
which does not lie entirely within the shaded re- 
gion, implies positive topological entropy. 

definitely "space" for orbits that are neither rotations nor rotations around rotations, 
but it could be the case that embedded in our attractor there are only resonant toms 
knots (see Figure 10), their symbolic dynamics consisting of  words built from letters 
0 and 11 "as equally spaced as possible" (e.g., 011, 01101101111). 

We have observed that the letter 0 is always followed by a 1 in this data set. 
The orbits (1), (01), (0111), (01110101) are rotations around rotations around . . . .  
the period doubling sequence. The period 5 orbit (01101) is the saddle node partner 
of  (01111) and is therefore well ordered. The orbit (0110M1) is the double of  the 
period 3 orbit. The lowest periodic orbit that is neither cabled nor well ordered and 
compatible with the observation above is the period 7 orbit (0101011). This orbit was 
reconstructed from the data. It was identified as a pretzel knot of  type (7, 3, - 2 )  [17]. 
An orbit knotted as a pretzel, not being a "hereditarily rotation compatible" (i.e., 
neither cabled nor well ordered) orbit [22], is a sufficient condition for stating that 
the entropy of the system is greater than zero. 



168 G.B.  Mindlin, H. G. Solari, M. A. Natiello, R. Gilmore, and X.-J. Hou 

8. Discussion 

In the present work we have been concerned with establishing a practical procedure for 
analyzing and understanding chaotic time series data in a topological way. A number 
of questions have been raised in the course of the development and implementation of 
this topological method. These range from practical experimental questions to long- 
range theoretical issues. We have been able to address some of these questions, but not 
others. We feel it is important to state here those questions which remain unsolved. 

A.  Topological Questions 

In the Birman-Williams theorem, periodic orbits embedded in a 3-manifold are pro- 
jected along a contracting direction to a branched 2-manifold. All the knotting and 
linking information for the periodic orbits is preserved in the projection. If  scalar time 
series from this three-dimensional flow are used to construct an induced template fol- 
lowing the procedure described above, what is the relationship between the template 
for the original flow and the induced template for the embedded flow? Do embed- 
dings using different variables (e.g., y(t),  or z( t )  instead of x( t ) )  induce identical 
templates? 

We do not know the answer to these questions. For the Rossler attractor the original 
template and the three templates induced from x( t ) ,  y( t ) ,  and z( t )  are identical, up 
to handedness. 

However, we point out that it may be possible to construct an induced template 
from a high-dimensional (n > 3) dynamical system for which the Birman-Williams 
theorem is not applicable. We do not know the conditions under which an induced 
template can be constructed from scalar data from an n-dimensional dynamical system, 
but we suspect that "strongly contracting" conditions can be found to extend the 
theorem to a class of flows in higher dimensions with only one unstable direction. 
A converse question can be posed. If a time series can be successfully embedded in 
three dimensions, does it mean that the flow can be described by a three-dimensional 
system of equations? 

It is received wisdom that knots "fall apart" in ~n, so that a topological description 
of periodic orbits in high-dimensional (n > 3) dynamical systems cannot be antic- 
ipated. While it is true that the linking of images of S 1 --> ~n (n > 3) cannot be 
defined, it is also true that periodic orbits in n-dimensional dynamical systems come 
"dressed" with stable and unstable invariant sets, and that (un)stable sets of distinct 
periodic orbits cannot intersect. As a result, it might be possible to define the linking 
of periodic orbits in ~n through the linking of their invariant sets. In fact, White [28] 
provides an elegant method for computing the linking number of manifolds M m and 
K k of dimension m and k in R '~+~+l in terms of a generalization of the Gaussian 
integral when the manifolds have no boundary. Thus, a key to extending topological 
analysis to n-dimensional systems is finding a way to associate manifolds without 
boundary to periodic orbits. 

B. Close Returns 

The first step in the topological analysis of data is the search for close returns. It is 
therefore important to explore the properties of this search. 
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This search can be carried out on scalar or vector data sets with and without 
first constructing an embedding. In this work we have carded out the search without 
embedding to show that the extraction of periodic orbits is independent of embedding. 
In general, embedding the data prior to the close returns search will clean up the close 
returns plot. For example, the data suggesting nonhorizontal line segments in Figure 
2 are present because on the neighboring side of each minimum or maximum are data 
elements with nearly the same values. Such "accidental" close returns are not harmful 
to our search for long-lived close returns, represented by horizontal line segments, 
and are genetically removed by almost any kind of embedding. The sharpened nature 
of the close returns search resulting from embedding can be seen in Figure 2 of [23]. 

The effect of noise on the search for close returns has been carded out and docu- 
mented in [29]. The standard deviation, tr, for chaotic time series data generated by 
the Rossler attractor (R(o-)) was computed. An independent and identically distributed 
Gaussian random data set with mean 0 and standard deviation tr (GIlD(O, o-)) was 
also generated. Then a data set R(cr) + fGI ID(O,  o') was generated by pointwise 
addition, 0 -< f -< 2. The search for close returns was carried out on this mixture 
of chaotic and stochastic data. The close returns plot degraded very gracefully with 
additive noise, with close return line segments still clearly visible for f ~ 0.4. For 
f = 2.0 the close returns plot was not readily distinguishable from the close returns 
plot for a stochastic data set (0.0R(o-) + 1.0 * GIlD(O, o-)). However, by noise av- 
eraging over 11 adjacent data values, it was possible to retrieve a clear return signal 
from the data set R(tr) + fGI ID(O,  o') with f = 2.0. 

In these analyses the sample rate ranged from 50 to 150 measurements per char- 
acteristic period (i.e., returns to a Poincar6 section) and data sets ranged from 20 to 
500 periods. 

A similar set of experiments was carried out on the Belousov-Zhabotinskii data. 
These data (64K) were sampled at about 120 samples per characteristic period and 
contained - 543 periods. The results differed in no substantial way from the analysis 
of the Rossler data set documented in [29]. 

C .  E m b e d d i n g  

The entire question of embedding scalar data in R 3 would benefit from more investi- 
gation. We have investigated several families of embeddings depending on parameters 
and found that the strange attractor can undergo self-intersections as the parameters are 
varied. We use embeddings which are optimized to display the topological properties 
of flows. 

The phase space embedding which we prefer depends on successive differences. 
If  such an embedding is possible, the coordinates satisfy equations of the form 

dyl 
dt - Y2, 

dy2 
dt - Y3, 

dy3 
- f (Y l ,  Y2, Y3). dt 

(15) 
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By plotting the phase portrait of  this flow in the Y2, Y3 plane it is an easy matter 
to see that all periodic orbits must circle the yl axis, y2 = y3 = 0, in the same 
direction. Moreover, for every bounded periodic orbit, y2 oscillates about 0 (see the 
first equation in 14); by the same token Y3 oscillates around 0; finally Y2 increases if 
Y3 > 0 and decreases if Y3 < 0 requiring the rotation of the orbit around the origin 
in the (Y2, Y3) plane. Thus, a half plane having the Yl axis as boundary can serve as 
a control section. We call this plane a control section rather than a Poincar6 section, 
since the flow might be tangent to the plane at some points. 

Since it is almost always a bad idea to differentiate experimental data, differential 
phase space embeddings are not easy to construct. We could not construct such an 
embedding even on a very clean data set like the Belousov-Zhabotinskii data set which 
we used. Rather, we were driven to devise integral filters, so that the embedding still 
retained the important aspects of differential phase space embeddings. 

D. Induced Templates 

Under which conditions can we hope to induce a template from a chaotic data set? 
We cannot answer this question. Following our "de facto" approach we can say that 
in all the cases studied so far the association of a finite number of  orbits with those 
on a template has been possible. 

In constructing and verifying templates and induced templates we need to compute 
the linking numbers of  pairs of low-period orbits. Inequivalent templates can give 
rise to the same spectra of periodic orbits and linking numbers. We know instances in 
which this occurs. The Borromean rings consist of  a set of  three rings mutually linked 
together although each pair is unlinked. It is possible to construct templates with three 
or more branches in which the period 1 orbits in each pair of  branches have linking 
number zero, but the period 1 orbits in three or more branches cannot be unlinked. No 
two-point function (functions of pairs of orbits) can distinguish such a template from 
a template in which the three (or more) period 1 orbits in three or more branches are 
unlinked or even pairwise unlinked but linked in a different way. Such templates can 
only be distinguished by three-point functions, four-point functions . . . . .  Fortunately, 
we have yet to encounter such complicated templates in physical systems or models 
of  physical systems. 

E. Template Verification 

One expects the analysis of time series data to degrade as the noise level increases. 
In general, the lower the period of  the orbit, the more robust it is against noise 
degradation. As the noise level increases, it is possible to extract a decreasing num- 
ber of  periodic orbits. The orbits which are lost are typically those of  the highest 
period. Since the induced template construction depends only on the lowest-period 
orbits, it is very robust against noise. Verification of the induced template depends 
on orbits of  higher period. Thus, as the noise level is increased, fewer orbits become 
available to verify the induced template. This in a sense is a reversal of  Murphy's 
Law: as a general rule noise degrades the least important first and the most important 
last. 
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Verification of the template induced from the Belousov-Zhabotinskii data depended 
on proper identification of the orbits by their symbolic dynamics. This in turn was 
made relatively easy by the existence of an essentially one-dimensional return map. 
This raises two questions: Is a topological analysis useful when a symbolic dynamics 
is available? Under what conditions can we associate a symbolic name to an extracted 
periodic orbit? 

To answer the first question, we note that two systems with identical return maps, 
and therefore identical symbolic dynamics, but differing in their global torsion, can- 
not be distinguished at the level of their mappings, but only at the topological level 
described here. This occurs, for example, for the Duffing equation [30]. Control pa- 
rameter values in different "fingers" generate essentially identical return maps. How- 
ever, the topological properties (global torsion) differ in a systematic way from one 
finger to another. Thus, the fingers in the control parameter space can be labeled by 
an integer n which identifies the global torsion of all orbits generated for those control 
parameter values as 2n + 1. 

The existence of a one-dimensional map in the case we studied is strictly related 
to a high degree of dissipation, but even in such a case we have to expect some 
violation of the symbolic dynamics generated by the map. By this we mean that the 
order associated with the kneading sequence will differ for some pair of points from 
the order in the interval and that the symbolic names of the orbits given by the one- 
dimensional map will differ from the (true and invariant) names deduced from the braid 
structure. This was seen explicitly for the period 6 orbit, identified through its knot 
polynomial, whose symbolic name (011001) is not compatible with the independent 
observation that in this data set passage through the orientation-preserving branch 
(0) is always followed by passage through the orientation-reversing branch (1) of the 
return map. 

In the absence of a one-dimensional map, the process of giving symbolic names to 
the extracted orbits is "global", that is, it involves assigning names to all extracted or- 
bits simultaneously. Usually several names are possible for each orbit. This procedure 
leads to a tedious but possible process of eliminating all those assignments incom- 
patible with the braid structure. This procedure was successfully applied in previous 
work [9, 20, 30]. 

9. Summary and Conclusions 

We were successful in constructing a three-dimensional embedding without self- 
intersections from the experimental data set. We were able to construct, for that flow, a 
template that is compatible with it, in the sense that every periodic orbit in the flow can 
be held by the proposed template. This template predicts the topological organization 
of all unstable periodic orbits buried in a strange attractor. The minimal information 
required to construct the template was extracted from the three lowest-period orbits. 

In confronting experimental data we have encountered typical difficulties. All such 
difficulties have been overcome by perturbations of the general procedure described 
in Sec. 2. 

The first step in template determination is reconstruction of periodic orbits from 
chaotic time series data. Such orbits are located by a search for close returns. This has 
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a particularly appealing graphical representation, as shown in Figure 2. This graphical 
representation is suggestive of a new class of tests for chaos which are topological 
yet quantitative at the same time. 

The general theory of embeddings is in a preliminary stage of development. We 
have found a very nice embedding of the Belousov-Zhabotinskii data based on the 
introduction of filters. We suggest that the question of optimum filters for topological 
(as opposed to metric) properties is an area well worth pursuing. 

Template determination proceeds algorithmically using the reconstructed and em- 
bedded period 1 and period 2 orbits. If  some of these orbits are not available, the 
necessary information can be extracted from orbits of higher period. Not all orbits 
(0), (1), (01) are available from the Belousov-Zhabotinskii data; the template was 
reconstructed from the lowest-period orbits which were available: (1), (01), (011). 

The correctness of the template identification can be checked by further compu- 
tation. On the one hand, the template can be used to construct the linking and self- 
linking numbers of all orbits and orbit pairs, the local torsion of all orbits, the relative 
rotation rates of all orbits and orbit pairs, and, indirectly, the knot polynomials. On 
the other hand, all these quantities can be determined from the reconstructed orbi ts  
and their embeddings. A comparison between the predicted (from the template) and 
the measured (from the orbits) invariants can then be used to show that the template 
identification is incorrect, or else to provide additional confidence that it is correct. 

The template serves to model the qualitative dynamics of the system generating 
the time series data. 

Acknowledgments 

We thank Prof. D. P. Lathrop for providing the Belousov-Zhabotinskii data file on 
which this work was based. We thank Prof. M. Valli6res for useful discussions, 
and E Papoff for comparisons of data files from a laser with saturable absorber, 
which seems to be governed by a dynamics similar to that governing the Belousov- 
Zhabotinskii reaction. We also thank Prof. E Holmes for providing useful comments 
and criticisms on an earlier version of this manuscript, and Profs. J. S. Birman and 
R. E Williams for discussions about templates and their uses. One of the authors (R. 
G.) thanks another (M. A. N.) for the hospitality extended during a visit to Uppsala 
University. This work is partially supported by N.S.E Grant PHY 88-43235. 

References 

1. G. B. Mindlin, X.-J. Hou, H. G. Solari, R. Gilmore, and N. B. Tufillaro, Classification 
of strange attractors by integers, Phys. Rev. Lett. 64, 2350-2353 (1990). 

2. K. Coffman, W. D. McCormick, Z. Noszticzius, R. H. Simoyi, and H. L. Swinney, 
Universality, multiplicity, and the effect of iron impurities in the Belousov-Zhabotinskii 
reaction, J. Chem. Phys. 86, 119-129 (1987). 

3. E Richetti, E De Keeper, J. C. Roux, and H. L. Swinney, A crisis in the Belousov- 
Zhabotinskii reaction: experiment and simulation, J. Stat. Phys. 48, 977-990 (1987). 

4. P. Grassberger and I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic 
signal, Phys. Rev. A 28, 2591-2593 (1983). 



Topological Analysis of Chaotic Time Series Data 173 

5. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents 
from a time series, Physica 16I), 285-317 (1985). 

6. C. Grebogi, E. Ott, and J. A. Yorke, Unstable periodic orbits and the dimension of chaotic 
attractors, Phys. Rev. A 36, 3522-3524 (1987). 

7. E Cvitanovic, G. H. Gunaratne, and I. Procaccia, Topological and metric properties of 
Henon-type strange attractors, Phys. Rev. A 38, 1503-1520 (1988). 

8. G. H. Gunaratne, E S. Linsay, and M. J. Vinson, Chaos beyond onset: a comparison of 
theory and experiment, Phys. Rev. Lett. 63, 1 4  (1989). 

9. N. B. Tufillaro, H. G. Solari, and R. Gilmore, Relative rotation rates: fingerprints for 
strange attractors, Phys. Rev. A 41, 5717-5720 (1990). 

10. T. C. Halsey, M. H. Jensen, L. E Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal 
measures and their singularities, Phys. Rev. A 33, 1141-1151 (1986); 34, 1601 (1986). 

11. J. G. Caputo, Practical remarks on the estimation of dimension and entropy from exper- 
imental data, in Measures of complexity and chaos edited by N. B. Abraham, A. M. 
Albano, A. Passamante and E Rapp, NATO Series B. 208, 99-110 (1989). 

12. R. Devaney and Z. Nitecki, Shift automorphisms and the Henon mapping, Commun. Math. 
Phys. 67, 137-146 (1979). 

13. J. S. Birman and R. E Williams, Knotted periodic orbits in dynamical systems I: Lorenz's 
equations, Topology 22, 47-82 (1983). 

14. J. S. Birman and R. E Williams, Knotted periodic orbits in dynamical systems II: knot 
holders for fibered knots, Cont. Math. 20, 1--60 (1983). 

15. P. Holmes, Knotted periodic orbits in suspensions of Smale's horseshoe: the period multi- 
plying and cabled knots, Physica 21D, 7-41 (1986). 

16. E Holmes, Knots and orbit geneaologies in nonlinear oscillators, in New Directions in 
Dynamical Systems, edited by T. Bedford and J. Swift, Cambridge U. Press., 1988, pp. 
150-191. 

17. P. Holmes and R. E Williams, Knotted periodic orbits in suspensions of Smale's horseshoe: 
torus knots and bifurcation sequences, Arch. Rat. Mech. Anal. 90, 115-194 (1985). 

18. L. Gyorgyi, T. Turanyi, and R. J. Field, Mechanistic details of the oscillatory Belousov- 
Zhabotinskii reaction, J. Phys. Chem. 94, 7162-7170 (1990). 

19. T. Uezu and Y. Aizawa, Topological character of a periodic solution in three dimensional 
ordinary differential equation system, Prog. Theor. Phys. 68, 1907-1916 (1982). 

20. H. G. Solari and R. Gilmore, Relative rotation rates for driven dynamical systems, Phys. 
Rev. A 37, 3096-3109 (1988). 

21. L. H. Kauffman, On Knots, Princeton University Press, Princeton, New Jersey, 1987. 
22. J. M. Gambaudo, S. Van Strien, and C. Tresser, The periodic orbit structure of orientation 

preserving diffeomorphisms on D 2 with topological entropy zero, Ann. Inst. Henri Poincar6 
49, 335-356 (1989). 

23. D. P. Lathrop and E. J. Kostelich, Characterization of an experimental strange attractor by 
periodic orbits, Phys. Rev. A 40, 4028--4031 (1989). 

24. H. Whitney, Differentiable manifolds, Ann. Math. 37, 645-680 (1936). Geometric Inte- 
gration Theory, Princeton University Press, Princeton, New Jersey, 1957. 

25. E Takens, Detecting strange attractors in turbulence, Lecture Notes in Mathematics 898, 
366-381(1981). 

26. A. M. Fraser, Information and entropy in strange attractors, IEEE Trans. Inf. Theory, 35, 
245-262 (1989). 

27. R. Badii and A. Politi, Renyi dimensions from local expansion rates, Phys. Rev. A35, 
1288-1293 (1988). 

28. J. H. White, Self-linking and the Gauss integral in higher dimensions, Am. J. Math. 91, 
693-728 (1969). 

29. C. Gilmore, A new test for chaos, J. Econ. Behavior and Organization, submitted. 
30. H.G. Solari and R. Gilmore, Organization of periodic orbits in the driven Duffing oscillator, 

Phys. Rev. A38, 1566-1572 (1988). 


