Global Topology from an Embedding
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An embedding of chaotic data into a suitable phase space creates a diffeomorphism of the
original attractor with the reconstructed attractor. Although diffeomorphic, the original and
reconstructed attractors may not be topologically equivalent. In a previous work we showed
how the original and reconstructed attractors can differ when the original is three-dimensional
and of genus-one type. In the present work we extend this result to three-dimensional attractors
of arbitrary genus. This result describes symmetries exhibited by the Lorenz attractor and its

reconstructions.

I. INTRODUCTION

Mappings of scalar and vector time series into suitable
phase spaces are regularly used to visualize processes that
generate experimental data [1, 2]. When the mapping is
an embedding, a diffeomorphism exists between the orig-
inal (“experimental”) attractor and the reconstructed at-
tractor. It is known from numerous examples that a sin-
gle time series can be embedded in different ways, giving
rise to reconstructed attractors that “look different”. We
illustrate this idea in Fig. 1, which shows two representa-
tions of the Lorenz attractor [3]. Under the usual vector
embedding (z(t),y(t), 2(t)) = R® the attractor exhibits
rotation symmetry about the z-axis. The branched man-
ifold [4-7] describing this representation of the Lorenz
attractor is shown in Fig. 1(a). It has a two-fold ro-
tation symmetry about an axis through the origin and
perpendicular to the plane. On the other hand, under
the scalar differential embedding (z(t), #(t), #(t)) — R®
the reconstructed attractor exhibits inversion symmetry
through the origin [6-9]. The branched manifold describ-
ing this reconstruction of the Lorenz attractor is shown in
Fig. 1(b), where inversion symmetry is clearly exhibited.
These two representations of the Lorenz attractor look
different: in fact they are topologically inequivalent in
the sense that there is no smooth deformation of phase
space that transforms one into the other. There is no
family of smooth nonsingular transformations in R® that
deforms an object with rotation symmetry to one with
inversion symmetry. The two representations of this at-
tractor are diffeomorphic but topologically inequivalent.

The problem can be presented more precisely as fol-
lows. An experimental attractor can be reconstructed
(recreated, represented) by an embedding. An embed-
ding is a diffeomorphism between the original and the re-
constructed attractor. Two different embeddings create
topologically equivalent attractors if there is an isotopy
that takes one diffeomorphism into the other [10]: that is,

the two diffeomorphisms are both members of a smoothe
one parameter family of diffeomorphisms. The central
point is that not every pair of diffeomorphisms can be
joined by a smooth isotopy [10]. When two diffeomor-
phisms are not isotopic the attractors they recreate are
not topologically equivalent [6, 7, 11]. It is known that
diffeomorphic but topologically inequivalent embeddings
can result from time delay embeddings with different de-
lays [11].

(b) With inversion symmetry

FIG. 1: Branched manifolds describing two representa-
tions of the Lorenz attractor: (a) with rotation symme-
try; (b) with inversion symmetry. The two attractors are
related by a diffeomorphism restricted to the attracting
set but they are not topologically equivalent.

This raises an important question. How much of what
we learn by studying a reconstructed attractor depends
on the embedding and how much is independent of the
embedding? The properties that are independent of the
embedding characterize the original attractor.

Geometric properties, such as the spectrum of frac-
tal dimensions, are in principle diffeomorphism indepen-



dent [12] (but see [13]). Dynamical properties, such as
the spectrum of Lyapunov exponents, are also diffeomor-
phism independent (but see [14, 15]). As a result, these
real numbers can usually be assumed to be valid for the
original attractor when computed from any reconstructed
attractor. Conversely, they cannot be used to distinguish
one embedding from another. Nor do these real numbers
shed any light on the mechanism generating chaotic be-
havior [16].

Topological indices shed a great deal of light on the
mechanism generating chaotic behavior [6, 7, 17]. At
the same time they are not embedding invariants. As
a result we must understand what part of the topologi-
cal information obtained from a reconstructed attractor
is independent of the embedding, and what part is not.
This program has been completed for three dimensional
attractors that are contained in a bounding torus of genus
one [16]. In this case we find that embeddings have three
degrees of freedom: parity, global torsion, and knot type.

In the present work we extend these results to three-
dimensional attractors of higher genus (¢ > 1). These
include many attractors generated by autonomous dy-
namical systems with two-fold or higher-fold symmetry
[7, 18-20]. We find the analogs of parity and global tor-
sion, but do not discuss knot type. All embeddings reveal
the same stretching and folding mechanism.

Our work is restricted to three-dimensional attractors.
These are attractors that exist in a three-dimensional
manifold, not necessarily R®. This restriction is necessary
because the topological indices that we compute (linking
numbers, relative rotation rates) are for closed periodic
orbits that have a rigid organization in three-dimensional
manifolds but not in higher dimensional manifolds [10,
17].

In Sec. II we briefly review the results for the genus-one
case. In Sec. III we construct the analog, in the higher-
genus case, for global torsion in the genus-one case. In
Sec. IV we construct the analog, in the higher genus-
case, of parity in the genus-one case. We discuss the
implications of our results in Sec. V.

II. REVIEW OF GENUS-ONE RESULTS

In [16] we assumed that an experimental attractor is
contained in a three-dimensional manifold that has the
global topology of a genus-one torus. An embedding con-
structs a diffeomorphism between the original and recon-
structed attractors. A different embedding provides an-
other diffeomorphism between the original and another
reconstructed attractor. The two (in fact, all) recon-
structed attractors are diffeomorphic when restricted to
the attracting set. The question of how embeddings of
an unseen attractor can differ simplifies to the question
of how diffeomorphisms of a torus to a torus can differ.

Diffeomorphisms form a group. The subset of diffeo-
morphisms that is isotopic to the identity forms an in-

variant subgroup [10, 16]. In fact, this invariant sub-
group cannot change any topological indices, which are
integers or rational fractions [6, 17]. The quotient group,
diffeomorphisms/ (diffeomorphisms isotopic to identity),
is discrete and describes the equivalence classes of diffeo-
morphisms of the torus [10, 16]. Each element in this
discrete group changes the topological indices in a differ-
ent way.

The action of this discrete group can be understood
by its action on the boundary of the torus [10, 16]. This
is done as follows. Cut the torus open and stretch it
out along the central axis. Label the position along the
axis by an angle ¢, 0 < ¢ < 27. Choose a plane at ¢
and rotate the intersection of the torus boundary with
this plane by an angle 6. Set (¢ = 0) = 0. Now close
the torus back up. A diffeomorphism is created by this
process only when periodic boundary conditions are sat-
isfied, so that 6(¢ = 2m) = 27n, with n an integer [21].
This integer is the degree of freedom called global torsion
[6, 16, 22).

A parity transformation is obtained by reflecting the
torus in an external mirror. Parity is a single index:
P =+1.

A genus-one torus can be embedded into R® by allow-
ing its central axis to follow the curve of any knot. We
do not yet know how to classify knots algebraically. Even
less is known about extrinsic embeddings of higher genus
tori in R%. We do not discuss extrinsic embeddings of
genus-g tori (g > 1) into R? in the present work.

IIT. ANALOG OF GLOBAL TORSION

A bounding torus of genus g [23, 24] can be con-
structed, Lego®© fashion, from Y-junctions. These are
two-dimensional manifolds with three ports. For our pur-
poses there are two types: splitting units with one input
port and two output ports and joining units with two
input ports and one output port. These units are shown
in Fig. 2(a) and Fig. 2(b). A canonical bounding torus
of genus three is shown in Fig. 3. The Lorenz attractor
is contained in a bounding torus of this type. The fig-
ure shows how this bounding torus is decomposed into
two input units and two output units. As usual, output
ports connect to input ports, and there are no free ends
6, 17, 4, 5].

In Fig. 3(b) we insert a “flow tube” between each out-
put port and the input port on a different unit that it is
connected to. Periodic boundary conditions are satisfied
if each of these tubes is rotated through an integer num-
ber of full twists [16, 21]. Since there are 4 = 2(3 — 1)
units in the decomposition of the genus-three torus, each
has three ports, and one tube is inserted between each
pair of ports, there is a total of (3 — 1) x 3 tubes, each of
which can exhibit an integer twist. Each configuration is
diffeomorphic but not isotopic to every other.

The general result is that a genus-g torus can be de-



composed into g — 1 splitting units and g — 1 joining
units, so that 2(g — 1) x (3/2) = 3(g — 1) tubes can be
inserted. As a result, the genus-g analog of the genus-1
global torsion is an index ZV, N = 3(g—1). This is a set
of N = 3(g— 1) integers, one for each inserted flow tube.
Recall that for bounding tori, g =1 or g > 3 [23, 24].
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FIG. 2: Bounding tori can be constructed from two types
of units with three ports. (a) Splitting units have one
input port and two output ports; (b) Joining units have
two input ports and one output port.
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FIG. 3: (a) A genus-3 bounding torus is decomposed
into two splitting units and two joining units. (b) Each
input/output port pair is separated by a cylindrical flow
tube. Periodic boundary conditions are satisfied if each
flow tube is given an integer twist. There are 6 flow
tubes, so the analog of global torsion in the genus-3 case
is Z9. In the genus-g case the analog is Z3(9—1),

IV. LOCAL REFLECTIONS

The genus-g analog of the parity transformation in the
genus-1 case consists of local reflections.

The construction of local reflections is subtle. It is clear
what a local reflection does to a branched manifold that
describes a genus-g flow. It simply maps a joining unit of
a branched manifold into its mirror image. This is illus-
trated in Fig. 1. The problem is that local reflections in
R® cannot be used in general to create diffeomorphisms
between the two flows responsible for the branched man-
ifolds related by a local reflection, as shown in Fig. 1.
The exception occurs when a symmetry is involved [7].

We can create diffeomorphisms that include local re-
flections as shown in Fig. 4. Choose a joining unit and
insert a flow tube of length L at each port. Each flow
tube contains a branch of the branched mainfold describ-
ing the attractor generated by the flow. Deform the flow
so that it is “laminar” or “uniform” in each flow tube.
By “laminar” or “uniform” we mean the flow assumes the
form & = const, y =0, 2 =0 in local coordinates. Here
x is a coordinate along the central axis of the cylindrical
flow tube, y is a coordinate in the plane of the branch
through the flow tube, and z measures distance above or
below this plane. The branch occurs in the plane z = 0.

6=0 - (xyzw 0)
(xyz cosB, z sinb)
(Xy. 2,w=0)
(xy.2) = (xy,~2) (x,y,—z,w=0

=0 - (x,y,—z,w=0)

(x,y,—zcosb ,—z=inb )
0=m (x,y,2,w=0)

FIG. 4: Three flow tubes are attached to a joining unit.
The flow in the joining unit undergoing local reflection is
immersed in R* according to (z,y,2) = (z,y, —z,w = 0).
The flow in the flow tubes is rotated in the (z,w) plane
according to (z,w) — (zcosf —wsin b, zsin § + w cos ),
where 6 = 0 at the entrance of each added flow tube and
0 = 7 at the exit. This creates a diffeomorphism between
the original flow in R* ¢ R* and a nonisotopic flow in a
three-dimensional manifold M3 C R*.

Now embed the three dimensional flow into R* by in-
troducing a fourth coordinate, w. The original three di-
mensional flow has coordinates (z(t),y(t), z(t), w) with
w = 0. Now create a diffeomorphism between this flow
in a three-dimensional manifold in R*, R® ¢ R*, and
another three-dimensional manifold in R*, M3 c R,
as follows. Perform a rotation through # radians in



the z,w plane in each flow tube according to (z,0) —
(zcos(z/L),zsin(z/L)). This rotation maps coordinate
(y, z) at the input side of a flow tube (z = 0) to coor-
dinate (y,—z) at the output side (x = L). In the join-
ing unit, map coordinates (z,y, z) to their mirror images
(z,y,—%) in the z = 0 plane. This set of transforma-
tions creates a diffeomorphism between flows in R® and
M?3. The projection of the branched manifold describing
the flow in M3 into R® differs from the branched mani-
fold describing the flow in R® by the mirror image of the
joining unit, as shown in Fig. 1. The two branched man-
ifolds are 1-1, locally isomorphic, and not isotopic (i.e.,
globally distinct). The flows in R® and M3 are diffeo-
morphic but the projection of the flow in M3 c R* into
R? is not an embedding. This phenomenon has already
been encountered in descriptions of autonomous coupled
dynamo systems [25].

Local reflections can be carried out independently on
each of the g—1 joining units. The effect of a local reflec-
tion can be seen by comparing the two representations of
the Lorenz flow shown in Fig. 1. A local reflection has
been carried out on a joining unit in Fig. 1(b). This oper-
ation transforms a rotation-symmetric representation of
the attractor (Fig. 1(a)) to an inversion-symmetric rep-
resentation of the attractor (Fig. 1(b)). We can describe
the two representations shown in Fig. 1 as (+,+) and
(—,4), with the positions referring to the joining units
on the left and right, and the signs referring to a reflec-
tion (=) or no reflection (+). Two other representations
are easily constructed with signatures (—, —) and (+, —).
The latter two are related to the former two by a global
reflection transformation.

A strange attractor in a genus-g torus has 29— rep-
resentations related by local reflections. They are all
related to each other by diffeomorphisms acting in R*.
None is isotopic to any other.

V. SUMMARY

Embeddings based on scalar or vector time series cre-
ate diffeomorphisms between the original attractor and
the reconstructed attractor. Different embeddings create
diffeomorphic reconstructed attractors that are not nec-
essarily topologically equivalent - that is, not isotopic.
Since topology indicates clearly what are the mecha-
nisms (stretching, folding, tearing, squeezing) that gen-
erate complex behavior [17], it is an important question
to ask: How much do we learn about the original at-
tractor by carrying out a topological analysis of a recon-
structed attractor, and how much about the embedding
do we learn? For the genus-one case the result is that em-
beddings can differ by three degrees of freedom: parity,
global torsion, and knot type. The mechanism displayed
is independent of the embedding [16].

In this work we have answered this question for attrac-
tors contained in higher-genus bounding tori. We have

done this by constructing a discrete classification of all
nonisotopic (topologically inequivalent) diffeomorphisms
of a bounding torus into itself. We have enumerated the
degrees of freedom, not including how the bounding torus
can be embedded into R®. There are two degrees of free-
dom: local torsion in each of 3(g—1) flow tubes and local
reflections in each of g —1 joining units. It is useful to re-
gard these degrees of freedom as follows: There are 2(9—1)
topologically inequivalent representations of an attractor
related to each other by different subsets of local reflec-
tion transformations. Each is the patriarch for a 3(g—1)
parameter family of strange attractors defined by an in-
dex z3(9=1 [21]. All representations are topologically
inequivalent.

What is an invariant of an embedding, and the same for
each of the 260~ @ Z3(9=1) representatives of a strange
attractor is the mechanism that generates the dynamics.
The mechanism describes how the flow is split apart to
flow to different regions of the phase space, and how dif-
ferent parts of the phase space are joined [6, 16]. This
information is encoded in the transition matrix: stretch-
ing is described by the rows of this matrix and squeezing
by the columns of this matrix [23, 24].
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