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We have computed all the orbit-forcing implications, up to period 8, in horseshoe-type flows or maps
that generate strange attractors. The results are presented in a horseshoe implication diagram. We de-
scribe how this diagram was computed, and show how it can be used to construct a minimal (basis) set of
periodic orbits which force the existence of all the periodic orbits associated with a strange attractor, up
to any given period.

PACS number(s): 05.45.+b

I. INTRODUCTION

Unstable periodic orbits form the backbone of chaotic
flows [1—3]. They have recently been used to provide a
discrete topological classification of Aows for low-
dimensional dynamical systems [4]. By low we mean
specifically n-dimensional dynamical systems (n ~ 3) with
a strongly contracting strange attractor having one un-
stable direction [5]. The Lyapunov exponents for such an
attractor satisfy A. , ) ibz =0) A, 3 ) ~ k„, where

(strongly contracting condition).
By the Kaplan-Yorke conjecture [6], the (Lyapunov) di-
mension of such an attractor is dL =2+ &, /l&, l

& 3.
Topological analyses to identify a template [4,5,7,8]

have now been carried out for a number of experimental
systems [8—11]. The first step is to locate unstable
periodic orbits in the strange attractor. This is con-
veniently done with experimental data sets by the method
of close returns [8]. The next step is to compute the link-
ing numbers [12] for all pairs of surrogate periodic orbits
after establishing a three-dimensional embedding. These
linking numbers overdetermine a template. The linking
numbers of the period-1 and -2 orbits are sufhcient to
identify the template [4,5,7,8]. The remaining linking
numbers are then used either to confirm or invalidate this
identification.

In original intent, templates were introduced to de-
scribe the organization of all possible periodic orbits of
period p(=1,2, 3, . . . ) built from n symbols, where an
orbit of period p has symbolic dynamics (o io2 .

crz),
with tr, =0, 1,2, . . . , n —1 [Ref. 7]. In the completely hy-
perbolic, or full shift on n symbol limit, all possible com-
binations of the cr; can occur. In analyses of experimen-
tal data, we have always found that not all possible
periodic orbits, or symbol sequences, are present [8—11].
We have therefore found it fruitful to consider that the
flow is restricted to some subportion of a template [5,8]
which provides the underlying topological organization

for the Aow and the periodic orbits in it. As experimental
conditions or control parameters are varied, the Aow
moves over different portions of the template, with new
periodic orbits created and old ones annihilated by stan-
dard generic bifurcations, which are saddle-node and
period doubling bifurcations in horseshoe dynamics.

The orbits which are associated with a Aow are not to-
tally independent. The presence of one orbit may require
the Aow in phase space in its neighborhood to stretch and
fold in such a way that other orbits must be present. We
then say that the first orbit "forces" the existence of the
latter orbits. The conditions under which one orbit
forces the existence of another have been discussed in
terms of linking numbers [12] and braid theory [13—16].

These phenomena are very clearly seen in the analysis
of about 20 data sets for the laser with saturable absorber
taken under a variety of experimental conditions [9]. In
each case the Aow was restricted to a subportion of a
Smale horseshoe [17] template. As the experimental con-
ditions varied, the Aow was restricted to different por-
tions of the template. Furthermore, under each experi-
mental condition there was a small number of orbits
whose existence appeared to force the presence of all the
other periodic orbit which were extracted from the data.

In view of these results, the goal of a topological
analysis should be twofold: (i) identify a template under-
lying the strange attractor, and (ii) identify a minimal set
of periodic orbits which force all the periodic orbits asso-
ciated with ("in") the strange attractor. The second ob-
jective can be carried out once an orbit implication (or
forcing) diagram has been constructed.

We do this in the present work, for systems with
horseshoe dynamics, for two reasons. On the theoretical
side, templates can arise from either heteroclinic connec-
tions or homoclinic connections. Heteroclinic connec-
tions can create many different kinds of templates, in-
cluding a Smale horseshoe [17]. However, homoclinic
connections will always generate a Smale horseshoe. On
the experimental side, most of the data sets for which to-
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pological analyses have been completed have strange at-
tractors generated by a Smale horseshoe [8—11].

The main result of this work is summarized in the
horseshoe implication diagram [Fig. 1(a)]. This diagram
contains all horseshoe orbits up to period 8. The orbits
are identified by their U-sequence labels: the order in
which they are created in unimodal maps of the interval.
This order is given (to period 11) by Metropolis, Stein,
and Stein [18], along with the symbolic dynamics of each
orbit [19]. This order is summarized in Fig. 1(b). The
symbolic dynamics of these orbits, and some of their oth-
er useful properties, have been collected in Table I. In
Fig. 1(a) the orbits are located by their U-sequence order
along the horizontal axis and their topological entropy
along the vertical axis. The presence of one orbit forces
the existence of all orbits connected to it by any sequence
of links which propagates downward and to the left. For
e»mple, 8, forces 7,(8s=-7, ) and 7, '6, , so 8, :6,.
Conversely, an orbit is forced by any orbit connected to it

by a sequence of upward and rightward propagating links
(8z is forced by 7z, 8s, 86, 8&, etc.).

We include orbits only up to period 8 in Fig. 1 for a
practical reason. As a general rule, the higher the period,
the more dificult it is to extract the orbit from data. In
our experience, period 8 is a practical upper bound on the
orbits which can be extracted from data and used for to-
pological analyses.

The remainder of this work provides a description of
how Fig. 1(a) was constructed and how it can be used. In
Sec II we describe how linking numbers provide informa-
tion about the order in which orbits can be created as a
horseshoe is being developed. We also discuss the transi-
tivity of implications, and the care which must be taken
when two or more saddle node pairs have the same braid
type, and can therefore participate in "exchange elimina-
tion. " In Sec. III we order the orbits in terms of their to-
pological entropy and U-sequence order. This ordering
already provides some information about the structure of
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FIG. 1. (a) Horseshoe implication diagram. Orbit B forces A if B is connected to A by a set of hnks propagating downward and to
the left. Orbits are labeled by the order of their creation in the U sequence. Axes are the order o

'

qor er of creation in the U sequence (hor-
izontal) and topological entropy (vertical). The zero-entropy orbits are distinguished according to whether they are well ordered,
period doubled, or other finite-order orbits. Well ordered orbits form the lower boundary for this diagram and quasi-one-
dimensional orbits lie along an arc which forms the upper boundary. When only one member of a braid is forced, this is in icate ex-

6 ~ 8 oF L 8 8 j~7 R. When only one member of a braid forces an orbit, this is also indicated explicitly,
as in the case 8s~6i (b) Universal sequence, to period 8. Rational fractional value f=p/(q+2p) is shown for all well-ordered or-

f '
d +2 (WO:~~. Orbits of the same braid type are tied together. Mother-daughter pairs of penod-double orbits are indi-

cated by an arrow. Rational fractional value f =m/n is shown for all quasi-one-dimensional orbits of period n (Q:f). or-
bits not WO or QOD lie in an interval bounded by orbits of this type in both parts of this figure. Orbits which are not WO, Q
PD, and do not belong to a braid multiplet, are other finite-order orbits.
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the forcing diagram. We also indicate how portions of
the linking number table can be used to infer the struc-
ture of the forcing diagram. In Sec. IV we show how to
provide a finite description of a strange attractor in terms
of a finite basis set of periodic orbits, and how to use the
forcing diagram to construct this basis set, which is
unique in number and order of orbits up to any given
period. We conclude in Sec. V by comparing our topo-
logical approach for constructing forcing diagrams with
two other recently proposed approaches for determining
bifurcation sequences in horseshoe maps.

II. LINKING NUMBERS

During the creation of a horseshoe, periodic orbits are
created in a variety of bifurcations, including saddle node
and period doubling bifurcations. In multiparameter
families of maps and Qows, more complex bifurcations
can occur [20]. In one parameter families with symmetry
(e.g. , the Duffing oscillator) additional bifurcations can
occur. However, the symmetry forces the underlying
template to have more than two branches, and periodic
orbits require more than two symbols for their descrip-

TABLE I. Useful properties of the horseshoe orbits to period 8. Orbits are identified as PU, where P is the period and U is the or-
der of occurrence of the orbit among those of the same period in the U sequence [cf. Fig. 1(b)]. For each orbit, the symbolic sequence
is given. If a saddle-node partner exists, it is obtained by changing the parity of the underlined symbol. The permutation of the orbit,
either as an orbit in a unimodal map or as an orbit on a Smale horseshoe template, is given. Orbits are identified according to type:
WO: well ordered; PD; period doubled; FO: other finite order; PE; positive entropy but not QOD; QOD quasi-one-dimensional. Ra-
tional fractional values of WO and QOD orbits are given. The entropy of the orbit in unimodal mappings (one-dimensional entropy)
is given, followed by the topological entropy. The two are equal only for QOD orbits.

Orbit

2 'j

3]
4)
42

5)

52

53

6(
62

63

64

65

7]
72

73

74

75

76

77

78

79

8)
82

83

84

85

86

87

88

89

8io

8)2
8

8i4
8is

Symbol
sequence

01
011
0111
0011
011 11
001 11
000 11
011 111
001 011
001 111
000 111
000 011
011 1111
0110111
001 0111
001 1111
001 1011
000 1011
000 1111
0000111
000 0011
011 101 01
011 111 11
011 011 11

001 011 11
001 010 11
001 110 11
001 111 11
001 101 11
000 100 11
000 101 11
000 111 11
000 110 11
000 010 11
000011 11
000001 11

000 000 11

Permutation

12
123
1324
1234
13425
124 35
123 45
143 526
135 246
124 536
123 546
123 456
145 3627
146 2537
1362547
125 4637
135 6247
124 6357
123 5647
123 4657
123 4567
154 726 38
154 637 28
147 256 38
13725648
136472 58
136572 48
125 647 38
125 736 48
135 724 68
124 736 58
123 657 48
124 673 58
123 574 68
123 467 58
123 457 68
123 456 78

Remarks

PD of 1I
WO 3

PD of 2,
WO —'

WO—
QOD —,

'

WO —'

FO
PD of 3)
FO
QOD —'

WO —'

WO-
QOD 5

PE
PE
WO-
PE
PE
QOD 5

WO —'

PD of 4i
FO
WO-
PE
PE
PE
PE
PE
PD of 42
PE
PE
FO
PE
PE
QOD
WO —'

One-dimensional
entropy

0
0.481 212
0
0.609 378
0.414 013
0.543 535
0.656 256
0.240 606
0.481 212
0.583 557
0.632 974
0.675 975
0.382 245
0.442 138
0.522 315
0.562 400
0.601 001
0.618 362
0.645 710
0.666 215
0.684 905
0
0.304 688
0.468 258
0.499 747
0.539 792
0.547 612
0.574 865
0.591 718
0.609 378
0.626 443
0.639 190
0.651 766
0.660 791
0.671 317
0.680 477
0.689 121

Topological
entropy

0
0
0
0
0
0.543 535
0
0
0
0
0.632 974
0
0
0.442 138
0.476 818
0.476 818
0
0.382 245
0.382 245
0.666 215
0
0
0
0
0.346 034
0.498 093
0.498 093
0.346 034
0.498 093
0
0.568 666
0.568 666
0
0.458 911
0.458 911
0.680 477
0
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tion.
For these reasons, we consider in this work only one-

parameter families of maps and Aows without symmetry
leading to the creation of a Smale horseshoe. In such
families the only bifurcations which occur generically are
saddle node and period doubling bifurcations. Typically,
in the development of a horseshoe a pair of periodic or-
bits is created in a saddle node bifurcation (saddle node
pair) [21]. One is a regular saddle. The other is a stable
node. In the progression to the fully developed hor-
seshoe, the node loses its stability in a period doubling bi-
furcation, becoming a "Aip saddle" and giving rise to a
daughter orbit of twice the period (mother-daughter
pair). This daughter orbit, stable at the time of its
creation, then loses its stability, undergoing a period dou-
bling bifurcation, etc. In the fully hyperbolic limit the
regular (Hip) saddle passes an even (odd) number of times
through the orientation reversing component (1) of the
horseshoe template, so its symbolic description contains
an even (odd) number of symbols 1. The orientation of
neighborhoods of this orbit are preserved (reversed) when
the orbit returns to its initial condition.

In the completely hyperbolic limit all periodic symbol
sequences of period p (o,cr2 . .o~ ), o.; =0, 1, are present,
so that the number of orbits of period p is
X(p)-2~/p —(1/p)e~ "' '. The order in which the
periodic orbits are created depends on the route taken to
the fully hyperbolic limit. This depends in detail on the
family of Aows or orientation preserving maps considered
and the path taken in the space of their control parame-
ters. However, independent of details, some orbits must
be created before others are created [13—16]. Conversely,
when a horseshoe is "unfolded", some orbits must be des-
troyed ("pruned") before others [22].

The order in which orbits are forced can be determined
from their linking numbers [12]. The linking numbers
between all pairs of orbits can be computed in the fully
hyperbolic limit, where all periodic orbits exist. These
linking numbers remain invariant as long as the orbits ex-
ist. Forcing information can be determined from the
linking numbers as follows. We consider two pairs of or-
bits, A and B. We assume no other orbits have the same
braid type as A, and similarly for B. We further assume
that A and B are saddle node pairs, consisting of a regu-
lar and a flip saddle [AR, AF] and [BR,BF]. The link-
ing numbers between these two pairs of orbits can exhibit
the possibilities shown in Fig. 2. When all four linking
numbers are equal [Fig. 2(b)], neither pair forces the oth-
er. However, if the linking numbers between AR and
[BR,BF] are equal, but different from the linking num-
bers between AF and [BR,BF], then the pair [AR, AF]
must be created before the pair [BR,BF] (or B must be
annihilated before A can be annihilated), as shown in Fig.
2(a). Under these conditions, if orbits B are present, or-
bits A must also be present, so that B forces A, or
B --A. The third possibility, shown in Fig. 2(c), is that
A forces B (A 'B).

A similar analysis can be carried out replacing either
saddle node pair by a mother-daughter pair. We illus-
trate with the example of the period-three mother orbit
001 and the period-six daughter orbit 001011. Two itera-

(a) (b) (c)

AR AF

BR

B„

AR AF

n ~ BF

AR

Btt B„

A n, n,

A„n, n,

BR BI-

AR n n

AI; n n

AR n

A„. n,

B —&A A )B

FIG. 2. Linking numbers for two saddle-node pairs. (a) If
the linking numbers between AR and [BR,BF] are equal, but
different from the linking numbers between AF and [BR,BF],
then the pair AR, AF must be created before the pair BR,BF.
(b) When all four linking numbers are equal, neither pair forces
the other. (c) If the linking numbers between BR and [AR, AF]
are equal, but different from the linking numbers between BF
and [AR, AF], then the pair AR, AF must be created after the
pair BR,BF. A similar analysis holds with mother-daughter
pairs of period-doubled orbits.

(a)

BF

(b)

FIG. 3. (a) Exchange elimination: a linking number analysis
(Fig. 2) may indicate that A~B and A~C. If B and C have
the same braid type, then [ BR,CF] could be formed in one sad-
dle node bifurcation and [BF,CR] in another. Then orbit pair
A cannot force any of the four orbits in the quartet [B,C]. (b)
The transitivity of forcing: if A B and B C, then A C.

tions of the mother orbit and the daughter orbit (001 001,
001 011) can be treated formally like a saddle node pair of
orbits [AR, AF] with the period of the daughter orbit.
The linking number calculations in which either (or both)
saddle node pairs is replaced by mother daughter pairs
proceeds exactly as shown in Fig. 2.

The implications analysis carried out by linking num-
bers is subject to two additional conditions. These are
the possibility of exchange elimination and the transitivi-
ty of implications. Both concepts are illustrated in Fig. 3.

Exchange elimination is illustrated in Fig. 3(a). A link-
ing number analysis may indicate that A =B and
A-- --C. However, if 8 and C have the same braid type,
[13—16,23] then BR and CR can exchange saddle node
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partners so that IBR,CF] form a saddle node pair while

I BF,CRI form another. In the case shown, orbit pair A
cannot force any of the four orbits in the quartet I B,C].
This means that the linking numbers must be computed
between orbit multiplets of the same braid type rather
than just between the saddle node pairings which occur
in the U sequence. Period is a braid type invariant, so
that only orbits of the same period can be of the same
braid type and participate in exchange elimination.

The transitivity of forcing is illustrated in Fig. 3(b). If
A == B and B - C, then A —C. This allows us to
reduce the complexity of a forcing diagram. Instead of
showing all possible implications, it is sufhcient to show
only the first order forcings, up to any given period. For
example, by direct computation 64 -87. It is not neces-
sary to show this forcing in Fig. 1, since 64 ---'8~O —87.
If A does not force C by direct linking number computa-
tion, but A B and B = C, then A — -- C. If there is no
intermediate orbit B of low period ( 8 in Fig. 1), then
the linking number calculations will not reveal that
A -=- C up to that period.

III. COMPUTATIONAL DETAILS

A. Topological entropy

Strictly speaking, topological entropy is a function of
flows or maps, not individual orbits in the flows or maps
[13—16]. However, we can define the topological entropy
of an orbit as the minimum of the topological entropies of
all flows or maps containing an orbit of the same braid
type. The topological entropy of an orbit is bounded
above by the entropy of that orbit in unimodal maps of
the interval. The topological entropy of an orbit A, A.(A),
provides an estimate of the minimum number of orbits of
period p which are forced by A in the set of all flows or
maps possessing orbit A: N(p)-(1/p)e~ '

The topological entropy provides a rough ordering for
orbits, since orbits of lower entropy cannot force orbits of
higher entropy. Similarly, the U-sequence order for or-
bits of unimodal maps of the interval provides a rough
ordering for horseshoe orbits, since orbits created earlier
in the U sequence cannot force orbits created later. To-
pological entropy and U sequence order provide the two
convenient axes on which to present the horseshoe orbit
implication diagram.

The one-dimensional entropy for all orbits up to period
8 in unimodal maps of the interval was computed using
an algorithm suitable for one-dimensional maps [24].
The topological entropy for these same orbits was also
computed [16,25] using recently proposed algorithms
[26—28]. The results are summarized in Table I. The
one-dimensional entropy increases monotonically with
U-sequence order, except for the period-doubled orbits.
The entropy of orbits in one dimensional maps provides
an upper bound on their topological entropy, which is sa-
turated in certain exceptional cases labeled quasi-one-
dimensional (QOD) in Table I.

For convenience, the horseshoe orbits are divided into
two groups by their topological entropy, the zero-entropy
orbits and the positive-entropy orbits, discussed in the
following two sections.

B. Zero-entropy orbits

0 if [if]—[(i —1)f]=0
11 if [if]—[(i —1)f]=1, (la)

f =p/(q +p), 1 ~i ~ q +p, and [x] is the greatest integer
in x. For example, the well-ordered orbits of period 7 are
determined by the irreducible rational fractions

7

(7&.011 1111),—,'(75;001 1011), and —,
' (79:0000011). The

saddle node partner of each orbit is obtained by changing
the penultimate symbol from 1 to 0. The well-ordered
horseshoe orbits to period 8 are (7&, 5„83,3„7~,42,
53 65 79, 8,6). They are identified by their fractional
values, which decrease in the order of their creation in
the U sequence [cf. Fig. 1(b) and Table I]. They are also
shown along the horizontal (zero-entropy) axis of Fig.
1(a).

(ii) Period-doubled daughter orbits force only their
mother (and grandmother, etc. ) orbits. The period-
doubled orbits, to period 8, are [8&- —-4& --2&, 6z( .3&),
89(=4@)]. They are clearly identified in Figs. 1(a) and
1(b).

The remaining finite-order orbits to period 8 are
(6„82,63, 8,2). These force only the orbits shown in Fig.
l(a). The self-relative rotation rates of the zero-entropy
orbits easily distinguish between the well-ordered and
period-doubled orbits. For the well-ordered orbit corre-
sponding to the rational fraction p/(q +2p) all relative
rotation rates are p/(q +2p); for period-doubled orbits
the systematics of the self-relative rotation rates are given
in Ref. [12].

C. Positive-entropy orbits

Positive-entropy orbits force an exponentially growing
number of orbits of higher period. The positive-entropy
orbits fall in two classes. These are the quasi-one-
dimensional orbits (QOD) and the remaining positive en-
tropy orbits.

(i) Quasi-one-dimensional orbits force all the orbits in
two-dimensional maps as they force in one-dimensional
maps of the interval. In this sense they are dual to the
well-ordered orbits, which force only the period one or-

Zero-entropy or finite-order orbits force only an alge-
braically growing number of orbits of higher period. All
zero-entropy orbits are isotopic to torus knots or iterated
torus knots [23]. A simple algorithm exists to identify
finite-order orbits. There are two well-known classes of
zero-entropy orbits: the well-ordered and the period-
doubled orbits.

Well-ordered orbits do not force the existence of any
other orbits, except for the period-one orbits t 1R, IE],
which are forced by all horseshoe orbits and which are
therefore not shown in Fig. 1. The symbolic dynamics of
a well-ordered orbit of period q +2p consists of q symbols
0 and p symbol sequences 11 "as equally spaced as possi-
ble [23]." The irreducible rational fraction p/(q+2p)
uniquely identifies each well-ordered orbit. The symbol
sequence of the well-ordered orbit with irreducible ra-
tional fraction p/(q+2p) is W(1)W(2) . W(q+p),
where
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bits {1R,IF]. Like the well-ordered orbits, there is a 1-1
correspondence between the QOD orbits and the irreduc-
ible rational fractions in the interval (0,—, ) [14,16]. To
each irreducible rational fraction 0 &f=m ln & —,

' there
corresponds a QOD orbit of period n +2 with symbolic

&I (f) &2~f) ~ [f]
dynamics 0 ' 110 ' 11 . 110 111,where

exchange elimination [cf. Fig. 3(b)].
In Fig. 4(c) we show the linking numbers between the

quartet [84, 87] and the quartet [8&o, 8&&]. This clearly
shows [8&0, 8&&] [84 87].

D. Zero and positive-entropy orbits

a, (f)= [ I /f] —1 = [n Im] —1,
a, (f)= [i/f] —[(i —1)If]—2

= [inlm] —[(i —1)n lm] —2, 2 &i & m . (lb)

For example, the QOD orbits of period 7 are determined
by the irreducible rational fractions —', (72.0110111)and —,

'

(7s:0000111). The saddle node partner of each is ob-
tained by changing the penultimate symbol from 1 to 0.

The QOD orbits to period 8 are (72, 52, 64, 7s, 8»).
Their corresponding rational fractional values are shown
in Fig. 1(b) and Table I. Each QOD saddle node pair be-
longs to a braid type containing no other horseshoe or-
bits. The entropy of the QOD orbits is the same for
three-dimensional Aows and two dimensional maps as for
one-dimensional maps of the interval.

(iii) The remaining positive-entropy orbits consist of
those orbits not previously discussed. For these orbits,
two or more saddle pairs always belong to the same braid
type. Orbits of the same braid type were identified by
their spectrum of relative rotation rates. This topological
index is sufhcient to identify braid type through orbits of
period 10 [29]. Orbits of the same braid type have the
same entropy.

The positive-energy orbits were organized in order of
increasing topological entropy; those with the same topo-
logical entropy were organized by order of occurrence in
the universal sequence, or one-dimensional entropy. This
order is {[84, 87], [76,77], 72, [8i3, 8&4] [73 7c] [8s 86,'8s],
52, [8&o, 8&&],6&, 7s, 8&&]. In this ordering no earlier orbit
can force a later orbit. Orbits within square brackets [ ]
have the same braid type, and can therefore participate in
exchange elimination. In the sextet, the linking number
calculations show that 85 and 86 are more similar to each
other than to 8&. in particular, 85 and 86 participate in
exchange elimination but 88 does not. In addition, 88
forces 63 as well as the orbits forced by 8~ and 86. Orbits
with unique braid type (e.g. , 72) are QOD.

The linking numbers of all 18 pairs of positive entropy
orbits were computed. We do not reproduce the entire
linking number table here. Rather, we reproduce some
submatrices of this table in Fig. 4.

In Fig. 4(a) we reproduce the linking numbers between
the quartets [8&, 8&] and [73,74]. These results show that
73- ---84 R, 74——84 R. In fact, any orbit in the quartet
[73,74] forces 84 R, which may be paired with either 84 F
or 87 I'.

In Fig. 4(b) we reproduce the linking numbers between
the lower entropy quartet [76,77] and the higher entropy
sextet [8s, 86, 8s]. This appears to show that
76 ——8s, 76 -86, and similarly for 77 [cf. Fig. 3(a)]. How-
ever, once both 85 and 86 exist, 85R and 86R can exchange
fhp saddles, so that in fact [76,77] do not force [8s,86] by

The linking numbers between the zero-entropy orbits
and the positive-entropy orbits were then computed to
complete the forcing diagram. The interpretation of the
linking number table was straightforward. We make a
few remarks about the construction of Fig. 1(a).

(i) It is possible to locate each periodic orbit by its one-
dimensional entropy, or entropy in unimodal maps (hor-
izontal coordinate) and topological entropy, or minimal
entropy in two-dimensional maps (vertical coordinate).

(a) 73

F R R F

R 18 18 18 18
84

F 19 19 19 19
F 19 19 19 19

87
R 19 19 19 19

(b) 86 Ss
F R R F R F

R 14 15 14 15 15 15
76

F 14 15 14 15 15 15
F 14 15 14 15 15 15

77
R 14 15 14 15 15 15

82 0 811
F R R F

R 18 18 18 18
84

F 19 19 19 19
F 19 19 19 19

87
R 20 20 20 20

(d) 85

F R

86

R F
8s

R F

R 14 15 14 15 14 14
63

F 14 15 14 15 15 15

FIG. 4. Four sections of the linking number table for
horseshoe orbits up to period 8. (a) Linking numbers between
the quartets [84,8, ] and [7,,74]. Any of the quartet of orbits
[73,7~] forces 8~R which may be paired with either 84F or 87F
(b) Linking numbers between the lower-entropy quartet [76,7, ]
and the higher-entropy sextet [8~, 86, 8s]. . Once both 8, and 86
exist, 8,R and 86R can exchange flip saddles, so that [76,77] do
not force [8„86], by exchange elimination. (c) Linking
numbers between the quartet [84, 87] and [8,0, 8»] show
[8,&»8„] [8~,8~]. (d) Linking numbers for the zero-entropy
finite-order orbit 63 and the sextet [8„86;8„]show that the
zero-entropy orbit 63 can force either 8, or 86 when just one of
the two pairs is present, cannot force either saddle-node pair
8~R, 86F or 85F, 86R, and cannot force either 85 or 86 when both
are present, by exchange elimination.
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In such a representation all zero-entropy orbits lie on the
horizontal axis and all QOD orbits, for which the topo-
logical entropy saturates the one-dimensional entropy, lie
on the equal entropy diagonal. All remaining orbits lie
between these two limits. Orbits of the same braid type
are easily identified as having the same vertical coordi-
nate. In practice, this representation suffers from two
difficulties. First, period-doubled orbits in a cascade are
degenerate. Second, such a diagram is difficult to read
because of the compression due to increasing density of
orbits with increasing entropy. In constructing Fig. 1(a)
we have adjusted the positions of orbits somewhat to
make the figure more legible. The zero-entropy orbits
have been placed on three levels depending on whether
they are well ordered, period doubled, or other finite or-
der. The lower and upper boundaries for this diagram
then consist of well-ordered and quasi-one-dimensional
orbits. We further observe that every other orbit belongs
to an interval in the U sequence which is bounded on the
left and right by either a well-ordered or a QOD orbit.
For example, 74 is in an interval bounded on the left by 52
and on the right by 75 in Fig. 1(b). The horizontal loca-
tions of all orbits in Fig. 1(a) have been adjusted some-
what within these intervals, but no orbit has been relocat-
ed outside its interval.

(ii) Each positive-entropy orbit forces a contiguous se-
quence of well-ordered orbits. That is, if a positive-
entropy orbit forces well-ordered orbits corresponding to
the rotational fractions P/Q and J"/Q', it forces all
well-ordered orbits with intermediate rational fractional
values.

(iii) The linking numbers for the zero-entropy finite-
order orbit 63 and the sextet [8~, 86;8s] are shown in Fig.
4(d). This is comparable to Fig. 4(b) and shows that the
zero-entropy orbit 63 can force either 8~ or 86 when just
one of the two pairs is present, cannot force either
saddle-node pair [ 85R, 85F ] or [ 8~F, 86R ], and cannot
force either 85 or 86 when both are present, by exchange
elimination. While 8g forces 63, neither 85 nor 86 does.

IV. BASIS SETS DF ORBITS

Our long-range goal is to find a discrete classification
for chaotic dynamical systems. A comparable goal is to
be able to compare two strange attractors and determine
if they are topologically equivalent, that is, if one is a
reparametrization of the other. For low-dimensional
(dL & 3 ) dynamical systems this goal appears within
reach.

The first step is to identify the topology of the embed-
ding space: the manifold containing the strange attractor.
In the experimental data sets analyzed so far [8—11], the
embedding space has been D XS ' (D is a two-
dimensional disk, D XS' is a solid torus). Identifying
the topology of the embedding space is a classical discrete
problem.

The next step is to identify a template, or "knot-
holder, " in the embedding space [3,4,7,8]. This structure
is a branched manifold obtained by projecting the flow
along the stable direction. The template supports the
strange attractor and describes the organization of all the
periodic orbits in it. Templates are identified by a set of

integer invariants [4]. We have shown how to extract
these integers from time series data [8], and this program
has now been carried out on a number of experimental
data sets [8—11].

The third step is to enumerate all the periodic orbits
associated with the strange attractor. This is a very am-
bitious step, particularly in view of the problem that,
both experimentally and mathematically, less information
is available about higher period than lower period orbits.
Accordingly, we define two strange attractors as topolog-
ically equivalent (conjugate, isotopic) to period p if they
possess the same spectrum of periodic orbits up to period
p. Identifying equivalence classes of strange attractors to
some finite period p is analogous to identifying
equivalence classes of mappings by their k jets (Taylor
series expansions), for some finite k [31].

The problem of determining equivalence to period p is
resolved by the appropriate choice of a basis set of
periodic orbits, to period p. A basis set is a minimal set
of periodic orbits which force all the periodic orbits
which are present in a strange attractor, up to some fixed
period. This can be done for horseshoe-type strange at-
tractors using Fig. 1(a). We illustrate this idea with an
example. If the orbit 76 is present in a data set, then to
period 8 the five orbits [62

—-. 3&, 7&, 89—-42] are forced.
However, if the flow is highly dissipative, many more or-
bits will be present. All orbits which occur before 76 in
the U sequence will be present [Fig. 1(b)] [18]. The basis
set for this collection of orbits, to period 8, is uniquely
[52, 8s, 86F, 7~F, 76, 87R ]. This basis set is easily con-
structed as follows. All orbits present (i.e., forced by 76
in one-dimensional maps) are listed in increasing topolog-
ical entropy and U-sequence order, as described in Sec.
III C. This order is [2„4„8„6„82,7„5„83,
3„62,63 7s 2, 89,~8, 87, 76, 7z, 73, 74, 85, 86, 8s, 52]. The last
orbit in this list is identified as a basis orbit, and all orbits
which this orbit forces (they are underlined) are removed
from the list. The shortened list is [63,75, 42, 89, 87R,
76, 74F, 85, 86F, 8s j. This procedure is repeated on the
shortened list. To any period, this is a finite, fast, and
efficient algorithm that provides a list of basis orbits
unique in both number and order. This algorithm in-
volves orbit removal from top to bottom (decreasing to-
pological entropy), right to left (decreasing one dimen-
sional entropy) in Fig. 1(a).

This procedure is the dynamical system analog of the
determination of dimension and choice of basis vectors
for a linear system. The choice of a basis set of orbits
identifies the subportion of a horseshoe template to which
a flow with a given spectrum of periodic orbits is restrict-
ed. A lower bound on the entropy of such a flow can be
estimated by computing the topological entropy of the
(reducible) braid consisting of the basis orbits.

V. SUMMARY AND CQNCLUSIQN

The construction of an orbit forcing diagram, carried
out here by topological methods, is intermediate in spirit
between two recently proposed approaches to this prob-
lem. Hall [14,15] and Tufillaro [16] consider two-
dimensional diffeomorphisms and ask the question: which
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braids must be present when others are present? They
provide machinery for answering this question in general,
and Tulfillaro gives explicit answers in the case of orbits
forced by the quasi-one-dimensional orbits AB, A B, and
A B of period 7, 10, and 13, with A =011 and B=0111or
0101.

Cvitanovic, Gunaratne, and Procaccia [22] consider
families of dissipative orientation preserving maps and
ask the question: which orbits must be missing when oth-
ers are missing? Their answer is given in terms of a
"pruning front" moving through the space of periodic or-
bits, systematically removing orbits from the hyperbolic
limit. This description becomes an increasingly good ap-
proximation to the bifurcation sequence as the dissipa-
tion of the maps increases.

As in Ref. [22], our topological approach starts from
the hyperbolic limit for flows in which all possible
horseshoe orbits exist. In this limit the linking numbers
of all orbits, up to some particular period, are computed.
As in Refs. [14—16], we ask which orbits must exist when
others are present. From this information we can infer
which orbits must be annihilated before any particular
orbit is annihilated ("horseshoe unfolding" ). Proceeding
in the reverse direction of horseshoe formation, we can
infer which orbits must be created before others are
formed. This provides a partial order on orbit formation

for three dimensional flows and two dimensional orienta-
tion preserving maps which evolve into horseshoes under
parameter variation. The results are not perturbative, are
valid independent of dissipation from the conservative
limit (zero dissipation) to the unimodal limit (infinite dis-
sipation), and are given explicitly in Fig. 1(a) up to period
8.

Two flows with isotopic embedding manifold s and
identical knot holders are equivalent to period p if they
have the same basis set of periodic orbits to period p.
The forcing diagram can be used to construct a finite
basis set of periodic orbits for any dynamical system
which exhibits dynamics compatible with the formation
of a Smale horseshoe. We have shown how to construct a
basis set for any spectrum of horseshoe orbits, up to any
pcl lod.

ACKNOWLEDGMENTS

R. G. thanks Nick Tufillaro and Toby Hall for exten-
sive discussions, and we thank both for making their
work available to us prior to publication. G. B. M. and
R. L-R. received financial support under Grant No.
DGICYT (Spanish government) PB90-0632. R.L-R.
thanks the Gobierno de Navarra (Spain) for a grant.

[1]R. Devaney and Z. Nitecki, Commun. Math. Phys. 67, 137
(1979).

[2] D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G.
Gunaratne, and I. Procaccia, Phys. Rev. Lett. 58, 2387
(1987).

[3] P. Cvitanovic, Physica D 51, 138 (1991).
[4] G. B. Mindlin, X.-J. Hou, H. G. Solari, R. Gilmore, and

N. B.Tufillaro, Phys. Rev. Lett. 64, 2350 (1990).
[5] G. B.Mindlin and R. Gilmore, Physica D 58, 147 (1992).
[6] J. L. Kaplan and J. A. Yorke, in Functional Difference

Equations and the Approximation of Fixed Points, edited

by H. O. Peitgen and H. O. Walther, Springer Lecture
Notes in Mathematics Vol. 730 (Springer-Verlag, Berlin,
1979), p. 204.

[7] J. S. Birman and R. F. Williams, Topology 22, 47 (1983).
[8] G. B. Mindlin, H. Solari, M. Natiello, X.-J. Hou, and R.

Gilmore, J. Nonlinear Sci. 1, 147 (1991).
[9] F. Papoff; E. Arimondo, F. Fioretto, G. B. Mindlin, H. G.

Solari, and R. Gilmore, Phys. Rev. Lett. 68, 1128 (1992).
[10] N. B.Tufillaro, R. Holzner, L. Flepp, E. Brun, M. Finardi,

and R. Badii, Phys. Rev. A 44, 4786 (1991).
[11]P. Glorieux and M. LeFranc, Int. J. Bifurcation Chaos (to

be published).
[12] H. G. Solari and R. CJilmore, Phys. Rev. A 37, 3096

(1988).
[13]P. Boyland, Comtemp. Math. 81, 119 (1988).
[14]T. D. H. Hall, Ph. D. thesis, University of Cambridge,

1991 (unpublished).
[15]T. Hall, Phys. Rev. Lett. 71, 58 (1993).
[16]N. B.Tulfillaro, (unpublished).
[17]S. Smale, Bull. Am. Math. Soc. 73, 747 (1967).

[18]N. Metropolis, M. L. Stein, and P. R. Stein, J. Combina-
torial Theory 15, 25 (1973).

[19]J. Milnor and W. Thurston, in Dynamical Systems, edited
by J. Alexander, Springer Lecture Notes in Mathematics
Vol. 1342 (Springer-Verlag, Berlin, 1988), p. 465.

[20] R. Gilmore, Catastrophe Theory for Scientists and En
gineers (Wiley, New York, 1984).

[21] E. Eschenazi, H. G. Solari, and R. Gilmore, Phys. Rev. A
39, 2609 (1989).

[22] P. Cvitanovic, G. Gunaratne, and I. Procaccia, Phys. Rev.
A 38, 1503 (1988).

[23] P. Holmes and D. Whitley, Philos. Trans. R. Soc. London
Ser. A 311,43 (1984).

[24] L. Block, J. Guckenheimer, M. Misiurewics, and L.-S.
Young, in Global Theory of Dynamical Systems, edited by
Z. Nitecki and C. Robinson, Springer Lecture Notes in
Mathematics Vol. 819 (Springer-Verlag, New York, 1980),
p. 18.

[25] T. Hall (unpublished).
[26] M. Bestvina and M. Handel, Ann. Math. 135, 1 (1992).
[27] J. Los, Proc. London Math. Soc. 66, 1 (1993).
[28] T. White (unpublished). A copy of this program is avail-

able by contacting T. White at the following electronic ad-
dress: tadpole@ucrmath. ucr. edu.

[29] T. Hall (private communication).
[30] Computer codes for computing the linking numbers and

relative rotation rates for periodic orbits are available on
request from any of the authors.

[31]M. Golubitsky and V. Guillemin, Stable Mappings and
Their Singularities (Springer-Verlag, Berlin, 1973).


