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Abstract

We introduce one-dimensional sets to help describe and constrain the integral
curves of an n-dimensional dynamical system. These curves provide more
information about the system than the zero-dimensional sets (fixed points) do.
In fact, these curves pass through the fixed points. Connecting curves are
introduced using two different but equivalent definitions, one from dynamical
systems theory, the other from differential geometry. We describe how to
compute these curves and illustrate their properties by showing the connecting
curves for a number of dynamical systems.

PACS number: 05.45.—a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Poincaré proposed that the fixed points of a dynamical system could be used to provide some
information about, or constraints on, the behavior of trajectories defined by a set of n nonlinear
ordinary differential equations (a dynamical system) [1-4]. The fixed points of a dynamical
system constitute its zero-dimensional invariant set. Unfortunately, the fixed points provide
only local information about the nature of the flow.

Since that time many, including Andronov, Tikhonov, Levinson, Wasow, Cole, O’Malley
and Fenichel, have focused on higher dimensional invariant sets, in particular on (n — 1)-
dimensional invariant sets. In many instances these are slow invariant manifolds of singularly
perturbed dynamical systems. These manifolds enable one to define the slow part of the
evolution of the trajectory curve of such systems. Until now, it seems that, except for the
works of [5], no one has investigated the problem of one-dimensional sets which play a very
important role in the structure of chaotic attractors by connecting their fixed points. The aim
of this work is to define and present methods for constructing such one-dimensional sets. The

1751-8113/10/000000+13$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

Q1

Q2


http://stacks.iop.org/JPhysA/43/000000

J. Phys. A: Math. Theor. 43 (2010) 000000 R Gilmore et al

sets that we construct are generally not trajectories that satisfy the equations of the dynamical
system.

The first attempt to study one-dimensional sets has been made in the context of fluid
mechanics by Roth and Peikert [5]. The idea of transporting the concept of ‘vortex core
curves’ to the phase space of dynamical systems is due to one of us (RG), who applied it
to three-dimensional dynamical systems and then to higher dimensional dynamical systems.
In the context of classical differential geometry, another of us (JMG) called such curves
connecting curves since they are one-dimensional sets that connect fixed points.

In section 2 we set terminology by introducing autonomous dynamical systems and define
the velocity and acceleration vector fields in terms of the forcing equations for these systems.
In section 3 we introduce the idea of the vortex core curve through an eigenvalue-like equation
derived from the condition that one of the eigendirections of the Jacobian of the velocity vector
field is collinear with the velocity vector field. We show that this defines a one-dimensional
curve in the phase space. In section 4 we introduce the idea of connecting curves from the
viewpoint of differential geometry. These are defined by the locus of points where the curvature
along a trajectory vanishes. In section 5 we show that the two definitions are equivalent. In
section 6 we describe three methods for computing the connecting curves for a dynamical
system. Several applications are described in section 7 including two models introduced by
Rossler, two introduced by Lorenz, and a dynamical system with a high symmetry. The figures
show clearly that the connecting curve plays an important role as an axis around which the
flow rotates, which is why this curve is called the vortex core curve in hydrodynamics. The
figures also underline an observation made in [5] that this curve is at best an approximation
to the curve around which the flow swirls. In the final section we summarize our results
and provide a pointer to visual representations of many other dynamical systems and their
connecting curves.

2. Dynamical systems

We consider a system of differential equations defined in a compact E included in R" with
X =[x1,x2,...,x,]' € ECR"

dx
dt

where ?()?) =[fi (5(), fz(;(), R (5()]’ C R" defines a velocity vector field in E whose
components f; are assumed to be continuous and infinitely differentiable with respect to all
Xx;, 1.e., are real-valued C* functions (or C" for r sufficiently large) in E and which satisfy
the assumptions of the Cauchy-Lipschitz theorem [6]. A solution of this system is the
parameterized trajectory curve or the integral curve X (t) whose values define the states of the
dynamical system described by equation (1). Since none of the componentsf; of the velocity
vector field depends here explicitly on time, the system is said to be autonomous.

As the vector function X (7) of the scalar variable 7 represents the trajectory of a particle
M, the total derivative of X () is the vector function v (¢) of the scalar variable ¢ which
represents the instantaneous velocity vector of M at the instant 7, namely

=T X), (1)

aX = -
V() = - = 3. 2)

The instantaneous velocity vector v (1) is tangent to the trajectory except at the fixed points,
where it is zero.
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The time derivative of V (¢) is the vector function ¥ (¢) that represents the instantaneous
acceleration vector of M at the instant #:

dv
y () = —. 3
v =4 3)
Since the functions f; are supposed to be sufficiently differentiable, the chain rule leads to the
derivative in the sense of Fréchet [7]:

dV 83 dX
—_— = @)
dr 9x dt

By noting that 23 s the functional Jacobian matrix J of the dynamical system (1), it

follows from equations (3) and (4) that
y=JV. (5)

This equation plays a very important role in the discussion below.

3. Dynamical systems and vortex core curves

At a fixed point in the phase space the eigenvectors of the Jacobian matrix define the local
stable and unstable manifolds. At a general point in the phase space the eigenvectors of the
Jacobian with real eigenvalues define natural displacement directions. There may be points
in the phase space where two eigenvalues form a complex conjugate pair and one is real, and
the real eigenvector is parallel to the vector field that defines the flow. Under these conditions
we expect that the flow in the neighborhood of such points swirls around the flow direction,
much as air flow swirls around the core of a tornado. This parallel condition can be expressed
in the coordinate-free form

JV =2V = 7. (6)

The first equation is the mathematical statement of parallelism; the second equation is a
consequence of equation (5).
In the coordinate form the eigenvalue condition can be written as

d af; dxg
= —fi= = Jisfs = Mfi, 1 <, <3. 7
= w T e Jo =21, bl @
The condition that the acceleration field is proportional to the velocity field, ¥; = Ax; or
fi = Af;, can be represented in the form
fi_fo_ fs
JL_J2_ /5 ®)
h L f

The intersection of the surfaces defined by the first two equations defines a one-dimensional set
in the phase space. This setis a smooth curve that passes through fixed points. Alternatively, the
three equations define a one-dimensional set in the phase space augmented by the eigenvalue
At (x1,x2, x3, A). The projection of the one-dimensional set from R3*! down to the phase
space R* defines the vortex core curve for the dynamical system.

The above arguments are easily extended to define one-dimensional vortex core curves
for n-dimensional dynamical systems.

Equation (6) has been used to try to identify the location of the ‘vortex core curve’ [5] in
hydrodynamic data. It is known that this equation provides a reasonable approximation to the
vortex core when nonlinearities are small but it becomes less useful as nonlinearities become
more important [5].
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4. Geometry and connecting curves

The approach developed by Ginoux et al [8—10] uses differential geometry to study the metric
properties of the trajectory curve, specifically, its curvature [11-13]. A space curve is defined
by a set of coordinates X (s), where s parameterizes the curve. Typically, s is taken as the arc
length. When s is instead taken as a time parameter #, derivatives have a natural interpretation
as velocity and acceleration vectors. The classical curvature along a trajectory is defined in
terms of the velocity vector v (¢) and the acceleration vector j (¢) by

LR 2] ©)
0 VI

Here, N represents the radius of curvature.
We define connecting curves as the curves along which the curvature «; is zero.

Remark. The curvature measures the deviation of the curve from a straight line in the
neighborhood of any of its points. The location of the points where the local curvature of the
trajectory curve is null represents the location of the points of analytical inflection.

5. Vortex core curves and connecting curves

The dynamical condition equation (6) that defines vortex core curves can be reexpressed
as J T/;, AV = 0. This is equivalent to the geometric condition equation (9) that defines
connecting curves. As a result, the two definitions, one coming from dynamical systems
theory, the other from differential geometry, are equivalent.

Since the two definitions are equivalent, the conditions they provide for defining the
connecting curve are also identical, as we now show. The vanishing conditions for the first
curvature of the flow equation (9) are

JV =2V eJVAV=067AV =0k =0. (10)
By defining ¢o3 = fofs — fof3, 13 = fifs — fi1fs and 1o = f1fo — fif2, the third

equality can be rewritten (cf equation (8)) as

. f2f3—f2f3=0 $23 =0
FAV =0e hifs=fi=0 < $13=0 a1
fifa—=fif2=0 ¢ =0.

It can be proved that two of the three equations of this nonlinear system are equivalent
and so this relation can be written as three subsystems

{¢23 =0
¢33 =0 912=0
by=0 < {4’” =9 (12)
b1 =0 ¢12=0
{¢23 =0
¢13 =0.

By judiciously choosing one subsystem, say the first, we have another condition for
defining the connecting curve, i.e. the intersection of two surfaces:

=0
{o==0
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6. Connecting curve computation

This kind of problem cannot be solved analytically in the general case. As a result,
three numerical approaches have been used to provide the connecting curve defined by the
intersection of two surfaces, i.e. (13).

6.1. First method

In three dimensions, it is in principle possible to use two of the three equations ¢;;(X) = 0
to express two of the three variables (x, y, z) in terms of the third, for example y = y(x),
z =z(x).

6.2. Second method

If the dynamical system under consideration is of dimension n, the equation J V = AV
represents a set of n equations in n + 1 variables: the n coordinates x;,i = 1,...,n, and
the eigenvalue A. These n equations define a one-dimensional set in the enlarged (n + 1)-
dimensional space. The projection of this one-dimensional curve into the n-dimensional
phase space is the connecting curve of the dynamical system. Since V = 0 at the fixed points,
all fixed points satisfy this equation and thus belong to the solution set. The method for
constructing the parameterized version of the connecting curve involves writing down the n
constraint equations for the n + 1 variables (x, A), and eliminating all but one.

6.3. Third method

As previously observed, the problem for computing the connecting curve for three-dimensional
dynamical systems turns into the problem of computing the intersection of two two-
dimensional surfaces. A nice method for doing just this has been developed by Wilkinson
[14]. We suppose that the intersection of two surfaces ¢12(x, y,z) = 0 and ¢o3(x, y,z) =0
is parameterized by X (x(t), ¥(t), z(t)). The time derivative of the surface equation leads

to Vgy(x,y,2) - X = 0. This means that X is perpendicular to both the gradients
Vé¢;i;(x, y,z) which are the normal vectors to each surface. As long as these vectors are

linearly independent for points on the intersection, then X is collinear to the cross product
Via(x, y,2) A Vaa(x, y, 2):

X (1) = & (1) Vo (x, ¥, 2) A Vg (x. . 2). (14)

By rescaling the time ¢, it is possible to set A(f) = 1. Then equation (14) simplifies to the
form of an associated dynamical system (ADS):

dX (1)
dr

These equations are generally different from, but related to, the original dynamical system
equations. The curves defined by this equation are not heteroclinic trajectories of the original
dynamical system.

Initial conditions for the ADS are any point on the connecting curve, or any point belonging
to the intersection of both surfaces. Thus, the connecting curve may be defined as the trajectory,
or integral, of the ADS. This method is useful as long as the gradients along the intersection
remain nonzero and non-collinear.

:V¢12 ()C, Y, Z)/\V¢23(.x, Y, Z)' (15)
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Table 1. Coefficients of the fifth-degree equation that defines the eigenvalue A in the expression for
the curve along which the velocity and acceleration vectors are parallel for the Rossler dynamical
system.

Ds=a
Dy =2a(c—a—x)
D5 = ax? — 2acx +4a*x — 4a*c + a® + ¢ + 2a + ac?
D, = —2a%x? + x% — 2a®x — 2¢x + 4alcx — dax
+ab +2ac —2a’c* +2a%c + ? — 24>
D, =a’x®> +4a*x —2a%cx —2a’b+a+b+c—3a*c+a’c?

Dy = x* — a*x? + 2a’cx — 2¢cx — 2ax +ac — a*c* + ¢ —ab +a*b

7. Applications

In this section we describe the connecting curves for three- and four-dimensional dynamical
systems.

7.1. Rossler model

The flow equations for the Rossler attractor [15] are

X fl(x’yﬂz) -y —Z
V0i|=F|reyra|= X +ay , (16)
z fr(x,y,2) b+z(x —c)

where a, b and c are the real parameters. The connecting curve for this dynamical system was
computed using all three methods described in section 6. The solution using the third method
has been performed with Mathematica 7 (files are available at http://ginoux.univ-tln.fr).

Of the three solution methods just described, the second leads to the simplest expressions
for the connecting curve. The curve along which J V=2V depends on the three control
parameters (a, b, c) and is parameterized by one of the three phase space coordinates.
Choosing x as the phase space coordinate, the eigenvalue X satisfies a fifth-degree equation

5
> Dji =0. (17)
j=0

The coefficients D; are listed in table 1. At each fixed point, the value of A is the value of
the real eigenvalue of the Jacobian matrix at that fixed point. The coordinates y and z are
expressed as the rational functions of x and A(x; a, b, ¢). These rational expressions are

—b—x+ax(c—x)+rix(x—c+a—2)
a+(c—x)1—-a)+ralc—x+r—a)’
_ +b+x+ (Ax +ab)(A — a)

S a+(c—x)1—a>)+ralc—x+r—a)

y =
(18)

The segment of the connecting curve between the fixed points (dots) is plotted for the
Rossler attractor in figure 1 for the control parameter values (a, b, ¢) = (0.556, 2.0, 4.0). Two
projections are shown. Near the outer fixed point with repelling real eigendirection, this curve
is a good approximation to a curve that defines the core of the tornado-like motion. However,
as it moves toward the fixed point near the x—y plane and the nonlinearities increase in strength,
it becomes a poorer and poorer approximation of such a curve, even intersecting the attractor
twice before joining the inner fixed point. This problem is apparent in the x—z projection.
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Figure 1. Connecting curve of the Rossler model. The curve intersects the attractor twice, as seen
in the x—z projection. Parameter values: (a, b, ¢) = (0.556, 2, 4).

This result reinforces an observation made by Roth and Peikert that the ‘eigencurve’, i.e. the
connecting curve defined by JV = AV, is a good approximation to the vortex core curve in
regions where the nonlinearities are weak, but not where the nonlinearities become strong [5].

7.2. Lorenz model

The purpose of the model established by Lorenz [16] was initially to analyze the unpredictable
behavior of weather. After having developed nonlinear partial differential equations starting
from the thermal equation and Navier—Stokes equations, Lorenz truncated them to retain only
three modes. The most widespread form of the Lorenz model is as follows:

X N fl(x’yvz) O-(y_x)
Vis|=F[reryo]=|rR—y—xz]|. (19)
Z f3(x,y,2) —bz +xy

where o, R and b are the real parameters. Once again, the connecting curves were computed
using all three methods described in section 6. The calculation using the third method was
performed with Mathematica 7 (files are available at http://ginoux.univ-tln.fr). All methods
gave the same curves.
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Figure 2. Connecting curve of the Lorenz model. One nontrivial connecting curve heads off to
z — —oo and has little effect on the structure of the attractor. The other nontrivial connecting curve
connects all three fixed points, and is plotted extending through the foci. The third connecting
curve is the z-axis. Parameter values: (R, o, b) = (28, 10, 8/3).

Three connecting curves pass through the saddle at the origin: one corresponding to each
of the three eigendirections with real eigenvalues. The simplest of these curves is the z-axis,
which is simple to compute by hand. This particular curve is a trajectory of the Lorenz model.
A second heads off to z — —oo and has little effect on the attractor. The third connecting
curve passes through all three fixed points. This curve is shown in figure 2 in both the x—y and
y—z projections for (R, o, b) = (28, 10, 8/3). When R is increased, the return flow from one
side of the attractor to the other exhibits a fold and the connecting curve intersects the attractor
at the fold. This reflects a similar property shown by the Rossler equations.

The connecting curves present additional constraints on the structure of the Lorenz
attractor above and beyond those implied by the location and stability of the fixed points.
Specifically, the flow spirals around and away from the connecting curve that passes through
the two foci. In addition, the z-axis also provides some structure on this flow, as the flow also
always passes in the same direction around this axis [17].

7.3. Lorenz model of 1984

In 1984 Lorenz proposed a global atmospheric circulation model in the truncated form [18].
The model consists of three ordinary differential equations:

8
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Figure 3. Strange attractor generated by the Lorenz global circulation model of 1984. The
connecting curve threads through the inside of the attractor, and is caressed by the attractor where
the stretching and folding is most pronounced. Parameter values: (a, b, F, G) = (1/4,4,8, 1).

X N f1(x,y,2) vy —z22—a(x—F)
VI i|=Frey]|=| —y+xy—bxz+G |. (20)
b4 f3(x,,2) bxy+xz—z

In this model the variable x represents the strength of the globally circling westerly wind
current and also the temperature gradient toward the pole. Heat is transported poleward by
a chain of large scale eddies. The strength of this heat transport is represented by the two
variables x and y, which are in quadrature. The control parameters a F' and G represent thermal
forcing. The parameter b describes the strength of displacement of the eddies by the westerly
current.

In figure 3 we show two projections of this attractor for control parameters (a, b, F, G) =
(1/4,4,8, 1) as well as the connecting curve. For this set of parameter values there are three
fixed points, only one of which is real at (x, y, z) = (7.996, —0.006 53, 0.0298). It is clear
that the connecting curve goes through the hole in the middle of the attractor, and that the
attractor winds around the part of the connecting curve where most of the bending and folding
of the attractor occurs. The connecting curve in the x—y projection passes through the fixed
point off scale to the right.
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Figure 4. Hyperchaotic attractor generated by the 1979 Rossler model for hyperchaos. Parameter
values: (a, b, c,d) = (1/4,3,1/2,1/20).

7.4. Rossler model of hyperchaos

Rossler proposed a simple four-dimensional model in 1979 to study hyperchaotic behavior
[19]. This model is

x fix,y,z, w) —y g

7 }.] :?) fZ(X,y,Z,w) _ _x+ay+w . 21
< f3(x,y, 2, w) b+xz Q1)
w f4(X,y,Z,w) —Cz+dw

Here the state variables are (x, y, z, w) and the control parameters are (a, b, c,d). The
connecting curve was computed using methods 1 and 2 of section 6. The first method gave
very complicated results. Method 2 gave simpler results when the coordinate z was used to
express the behavior of the remaining four variables. The eigenvalue A was expressed as the
root of a seventh-degree polynomial equation whose coefficients were functions of the four
control parameters (a, b, ¢, d) and z. The remaining three coordinates were rational functions
of small degree in the variables z and A(z; a, b, ¢, d). Two projections of the hyperchaotic
attractor and the connecting curve are shown in figure 4. The computation was carried out
for (a,b,c,d) = (1/4,3,1/2,1/20). The fixed points are shown as large dots along the
connecting curve. It is clear from this figure that the connecting curve provides information
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about the structure of the attractor, as the flow in the attractor swirls around the connecting
curve.
7.5. Thomas model

Thomas proposed the following model of a feedback circuit with a high degree of symmetry
[20]:

X N fi(x,y,2) —bx +ay — y3
v =X |y = -by+az -2 ]. (22)
4 fr(x,y,2) —bz +ax — x3

This set of equations exhibits the six-fold rotation—reflection symmetry Sg about the (1, 1, 1)
axis. The symmetry generator is a rotation about this axis by 277 /6 rad followed by a reflection
in the plane perpendicular to the axis. The origin is always a fixed point and, fora — b > 0,
there are two on-axis fixed points at x = y = z = £+4/b — a. For (a, b) = (1.1, 0.3) there are
24 additional off-axis fixed points. These fall into four sets of symmetry-related fixed points
(sextuplets). One point in each sextuplet is (0.085, 1.037, 0.309), (0.250, 1.013, 0.865),
(0.364, —1.095, 1.175), (1.146, —1.180, —0.816). The remaining points in a multiplet are
obtained by cyclic permutation of these coordinates: (u, v, w) — (w, u, v) — (v, w, u) and
inversion in the origin (u, v, w) — (—u, —v, —w). The chaotic attractor for this dynamical
system is shown in figure 5, along with the symmetry-related connecting curves and the 27
fixed points. One of the connecting curves is the rotation axis. This is an invariant set that
connects the three on-axis fixed points. It therefore cannot intersect the attractor. In fact,
this set has the same properties as the z-axis does for the Lorenz attractor of 1963 [17]. The
remaining connecting curves trace out the holes in the attractor. In this sense they provide
additional constraints on the structure of the attractor over and above those provided by the
spectrum of fixed points.

8. Discussion

In this work we go beyond the zero-dimensional invariant sets (fixed points) that serve to a
limited extent to define the structure of an attracting set of a dynamical system. We have
introduced a curve that we call a connecting curve, since it passes through fixed points of an
autonomous dynamical system. We have defined this curve in two different ways: dynamically
and kinematically. It is defined as a vortex core curve dynamically through an eigenvalue-like
equation JV = AV, where V (x) is the velocity vector field defining the dynamical system
and J;; = 0V;/0x; is its Jacobian. We have defined a connecting curve kinematically as the
locus of points in the phase space where the principal curvature is zero. These two definitions
are equivalent.

Three methods were introduced for constructing this curve for autonomous dynamical
systems. They were applied to the standard Rossler and Lorenz attractors, where their
behavior with respect to the attractors is shown in figures 1 and 2. In the figures shown for
these attractors, it is clear that the flow rotates around the connecting curves, which therefore
help to define the structure of the attractor. The connecting curves were also constructed for
a later Lorenz model, the global atmospheric circulation model of 1984, and for a later model
introduced by Rdssler to study chaotic behavior in four-dimensional phase spaces. Finally, a
multiplicity of connecting curves was computed for an attractor with a high degree of symmetry,
the Thomas attractor. This is shown in figure 5. The flows shown in figures 3-5 are clearly
organized by their connecting curves. In this sense the connecting curve provides additional

11
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Figure 5. Connecting curves for the Thomas attractor. One connecting curve is the symmetry axis
x = y = z. The remaining connecting curves exhibit the six-fold symmetry of the system and
seek out the holes in the attractor. Parameter values: (a, b) = (1.1, 0.3).

important information about the structure of an attractor, over and above that provided by the
number, nature and distribution of the fixed points. A number of other connecting curves have
been computed, and can be seen at http://www.physics.drexel.edu/~tim/programs/.
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