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Abstract. A new 3D autonomous dynamical system proposed by Dequan Li [Physics

Letters A, 372, 387, 2008.] produces a chaotic attractor whose global topological

properties are unusual. The attractor has a rotation symmetry and only a single real

fixed point for the parameters used in his study. The symmetric, complex pair of fixed

points cannot be ignored: they play a major role in organizing the motion on a surface

of peculiar toroidal type. We describe this attractor, propose a simple, intuitive model

to understand it, show that it is of toroidal type and of genus three, construct a global

Poincaré surface of section with two disjoint components and use this section to locate

unstable periodic orbits and determine their topological period. We also show that its

image attractor is of genus one and supports flow on a simple wrinkled torus. Finally,

we use the interplay between the original covering attractor and its image as an aid to

understand why the Li attractor is of genus-three type.
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1. Introduction

There are various types of chaotic dynamics. In three dimensions they have been

distinguished by their global topologies, that is, the structure of the phase space that

contains their chaotic attractors. Among all known chaotic attractors produced by

autonomous systems, there are very few toröıdal chaotic attractors [1], and none exhibit

a symmetry. Li [2] has recently proposed a chaotic attractor whose global topology

appears unusual. The dynamical system is autonomous yet the motion appears to occur

on a surface with a toroidal structure. Even the most basic indices needed to identify

the global topological properties, such as its genus, or the genus of its bounding torus,

the nature of its global Poincaré surface of section, and the structure of its branched

manifold, were not known.

In the work below we describe this attractor and identify many of these topological

indices. Specifically, the attractor is toroidal, it is contained within a genus-three

bounding torus, and the global Poincaré surface of section has two disjoint components.

In Sec. 2 we introduce Li’s dynamical system, describe its symmetry and discuss

its fixed points and their stability properties. In Sec. 3 we describe the attractor and

perform a similarity transformation in the phase space to emphasize a symmetry of the

attractor. The dynamics are treated in Sec. 4 by carefully inspecting the time evolution

of the appropriate coordinates. The motion is easy to visualize as occuring on three

funnels: two regular funnels that drain top to bottom and one “anti-funnel” in which the

motion is inverted, from tip to top. In order to bring to bear some recently developed

powerful tools for classifying and analyzing three-dimensional chaotic attractors, we

compute the genus of the attractor in Sec. 5. More accurately, we determine the

three dimensional manifold in R
3 that contains the attractor, and compute the genus

of its boundary, which is three. (An alternative, and more classical, derivation is given

in Appendix 1.) This information is used to construct the global Poincaré surface of

section using a simple standard algorithm in Sec. 6. We use this Poincaré section

to locate segments of a chaotic trajectory that are good approximations to unstable

periodic orbits in Sec. 7. An image attractor is constucted in Sec. 8 using standard

methods to mod out the two-fold symmetry. The image attractor is especially useful in

understanding why its double cover is of genus-three type (c.f. particularly Fig. 12).

Our results are summarized in Sec. 10.

2. The Li system

The set of three ordinary differential equations recently proposed by Li [2] is:










ẋ = a(y − x) + dxz

ẏ = kx + fy − xz

ż = cz + xy − ex2

. (1)

This system of equations is invariant under the group of two-fold rotations about the

symmetry axis in the phase space R
3(x, y, z): Rz(π): (x, y, z) → (−x,−y, +z). It was
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modeled after the Lorenz system [3], but contains two additional symmetry-preserving

terms: dxz in the first equation and −ex2 in the third equation.

This system has three fixed points, one located on the symmetry axis at the origin

(0, 0, 0), and two symmetry-related fixed points. If we define xf and zf by

xf =

√

ac(k + f)

ae + efd + kd − a
zf =

a(k + f)

a + fd
(2)

the symmetric fixed points are (±xf ,±xf × a−kd
a+fd

, zf).

We will study this system at two parameter values. One is the set of parameter

values used by Li: a = 40, c = 11/6, d = 0.16, e = 0.65, k = 55 and f = 20. Lyapunov

exponents computed by Li are λ1 = 0.23, λ2 = 0 and λ3 = −1.99. These exponents lead

to a Lyapunov dimension equal to 2.12. Contrary to what Li claimed [2], this attractor

is in fact a limit cycle with a large period (p = 71). This limit cycle easily allow to figure

out the global structure of the attractor, a structure which becomes more intricated for

chaotic attractors when a is increased to 41 as also investigated in this paper. Due

to this, we will start our analysis with the limit cycle and then switch to the chaotic

attractor. At these parameter values the symmetric fixed points are imaginary, with

xf = 41.98i and yf = 30.32i. The z coordinate zf = 69.44̇ plays an important role in

the dynamics.

The second set of parameter values involves the change a = 40.0 → a = 41.0. This

causes a transition from periodic behavior to chaotic behavior. The scenarios involved

in such transitions have recently been described in detail in [4].

At the first set of parameter values the attractor is a limit cycle with a large period.

Three projections of this periodic orbit are shown in Fig. 1. This cycle maps out the

global topological structure of the chaotic attractor that is produced for the nearby set

of parameter values at a = 41.0.

For both sets of parameter values the point (0, 0, zf) can be interpreted as the real

image in the phase space R
3 of the complex fixed points (±xf ,±yf , zf). This point is

as important as the real fixed point (0, 0, 0).

The jacobian for this flow is

J =







−a + dz a dx

k − z f −x

y − 2ex x c







z axis−→







−a + dz a 0

k − z f 0

0 0 c






(3)

The importance of determining the transverse stability properties along the symmetry

axis has been shown in [5]. Along this axis one eigenvalue is always c and its eigenvector

is along the z axis. The other eigenvectors lie in the x-y plane. For a = 40.0 the

transverse eigenvalues are real with opposite signs for z < zf . At z = zf the positive

eigenvalue vanishes. Its eigenvector is (a, a − dzf) = (40, 28.88̇). The nonvanishing

eigenvalue is f−a+dzf = −8.88̇ and its eigenvector is (a, f) = (40, 20). This eigenvector

plays an important role in the dynamics.
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Figure 1. Limit cycle solution to system (1), projected onto three planes. Parameter

values: a = 40, c = 11/6, d = 0.16, e = 0.65, k = 55 and f = 20.

In the range 69.44̇ < z < 69.89 the two transverse eigenvalues are negative and

unequal. For z in the range 69.89 < z < 6930.11 the eigenvalues are complex: r ± iω,

with r = 1
2
(f − a + dz) and ω =

√
z2 − 7000z + 484375. The focus changes its stability

from stable for z < (a− f)/d = 125 to unstable for z > 125. For z > 6930.10 the z axis

has the stability of an unstable node with very large positive eigenvalues.

An essential point is that the z axis changes its stability properties from a splitting

axis for z < zf = 69.44̇ to a rotational axis for z > 69.89 [5, 6]. This can clearly be

seen in the x-y projection shown in Fig. 1(a). For z < zf the trajectory follows a

hyperbolic orbit segment as it approaches and is repelled from the z axis. For z > 69.89

the trajectory spirals around the z axis, first approaching it as z approaches (a − f)/d
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from below, then receeding as z increases above (a − f)/d. This behavior is clear in

the x-z and the y-z projections shown in Fig. 1. The change in stability at z = 125 is

indicated by the caustic in the x-y projection.

3. The Attractor

The planar projections shown in Fig. 1 indicate that there is a second axis around

which spiral motion occurs. This motion occurs around the transverse eigenvector with

nonzero eigenvalue at z = zf . This eigenvector is (a, f). If the x-y axes are rotated

to new coordinates x′-y′ through an angle θ = tan−1(f/a) and the rotated attractor

is projected, the hole around this axis is more easily visible. The projections onto the

rotated planes x′-z and y′-z are shown in Fig. 2.
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Figure 2. Projection of the limit cycle along the eigendirection of the nonzero

eigenvector at (0, 0, zf) and the orthogonal direction. Rotation around the x′ axis

through this point is clearly apparent. Parameter value: a = 40.0.

It is useful to visualize the motion produced by this flow as constrained to three

funnels [7]. The two symmetry-related funnels with the x′ rotation axis are “normal”

funnels that we identify as L and R. Normal means that motion starts at the wide

“top” of the funnel, which is toward the outside of the projection shown in Fig. 2(a)

near z ≃ 50 and x ≃ ±100 and spirals down the funnel in toward the point (0, 0, zf).
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Once in the neighborhood of this point it moves upward, since c > 0 and z > 0. During

this phase it spirals around the z axis for z > zf . The motion here is along an “anti-

funnel” that we call C: it begins at the spout and emerges at the wide end at the top

of the funnel, near z ≃ 200. The flow then proceeds down to one of the two normal

funnels L or R and begins again.

The point (0, 0, zf) is important for the dynamics because it is at the confluence of

the rotation axes (funnel spouts) of the two normal funnels L and R and the anti-funnel

C.

It is not possible to prove that this attractor is globally stable using the arguments

devised by Lorenz [3]. He showed that for a large class of attractors with only linear

and bilinear terms, the time derivative of x2 + y2 + z2 is negative on the surface of a

sufficiently large sphere. The demonstration fails for the Li attractor for two reasons.

(1) The sum xẋ + yẏ + zż contains trilinear terms because of the extra terms dxz and

−ex2 in the Li equations that are not present in the Lorenz equations. (2) The quadratic

terms in this sum are not negative definite because of the choice c > 0 (in the Lorenz

equations the corresponding term −bz has b > 0).

We tested boundedness as follows. The “escape hatch” from this attractor is the

positive z axis. It is invariant: a point on this axis is ejected to (0, 0,∞). Points

suficiently near the axis are also ejected to infinity. We chose a small circle of initial

conditions of radius 1.0 at z = 125, well inside the envelope shown in Fig. 1(a) where

the transverse stability of the z axis changes from stable to unstable focus, and tested to

see whether the motion remained bounded for long times thereafter. Evolution starting

from all these initial conditions remained bounded and relaxed to the attractor outlined

in this figure. Boundedness of the motion also serves to prove the existence of open

neighborhoods surrounding each of the two rotation axes.

4. The Dynamics

Typical time evolution (x′(t), y′(t), z(t)) for a point in the phase space is shown in Fig. 3.

The evolution of the coordinate x′(t) provides the most information. As the trajectory

spirals up the z axis starting at t = 0 the x′(t) coordinate oscillates around zero and

the motion is in the anti-funnel C. When the oscillations become extreme (amplitude

in excess of about 150) the trajectory leaves the central funnel C and enters the funnel

on the left, L, where x′(t) < 0. The trajectory remains in L until x′(t) passes through

zero (t ≃ 1.3) and the trajectory reenters C. On leaving L and entering C, critical

slowing down is observed. The signature for critical slowing down is the decrease in the

oscillation frequency as the trajectory passes from L to C. As the trajectory spirals

up the z axis the oscillation frequency increases, since ω =
√

z2 − 7000z + 484375.

The imaginary critical point (±xf ,±yf , zf) has real part (0, 0, zf), and it is in the

neighborhood of this point that critical slowing down occurs.

On leaving C the trajectory enters either the left- (L, x′(t) < 0) or the right-

(R, x′(t) > 0) hand funnel. The funnel it enters is clearly indicated by the x′ coordinate:
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Figure 3. Plots of x′(t) vs. t, y′(t) vs. t, and z(t) vs. t for the Li attractor. Parameter

value: a = 41.0.

the y′ and z coordinates do not provide strong signatures of the region the trajectory

has entered.

The y′(t) trace provides some information. In many cases just before the trajectory

enters C, y′(t) shows an avoided zero crossing. Such crossings are associated with the

“sharp turns” that can be seen inside the “eye” in the x-y projection shown in Fig. 1.

Critical slowing down is also observed in the y′(t) trace.

The plot of z(t) shows that z increases approximately linearly in time while the

trajectory is in C, and exhibits decaying large amplitude oscillations after emerging

from C and spiralling down the axis of either L or R.

5. Genus

Proper choice of a Poincaré surface of section is usually the key to understanding chaotic

dynamics. In the present case the Poincaré section is not at all obvious. However,

an algorithm exists for properly choosing a global Poincaré surface of section for low-

dimensional attractors. This algorithm depends on knowing the genus of the attractor.

More specifically, it depends on knowing the genus of the bounding torus that contains

the attractor [8, 9]. We provide a brief review of bounding tori in Appendix 2.

It is clear from Figs. 1 and 2 that the attractor is contained within a sphere and that

this sphere is penetrated by two holes, one surrounding the z axis, the other surrounding
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the x′ axis. These two axes intersect at (0, 0, zf). Thus we are faced with the problem

of determining the genus of a sphere that is penetrated by two intersecting holes.

This surface has genus three. We provide two arguments to demonstrate this fact.

One is based on the Euler-Poincaré Index theorem. This proof is given in Appendix 1.

In this section we present a proof that also allows us to construct the global Poincaré

surface of section. This proof is based on simple but elegant topological arguments.

The genus of a two dimensional surface is unchanged by smooth deformations. At

the intersection of the two holes penetrating the sphere there is a chamber. Expand this

chamber until the surface is very thin, like a basketball with four holes in it, as shown

in Fig. 4(a). Now enlarge one of the holes and deform the surface so that the remaining

three holes fall inside the enlarged hole, as in the projection shown in Fig. 4(b). The

result is a surface of genus three.

z

of Poincaré section
Left component Right component

of Poincaré section

(c)

(b)

(a)

Figure 4. (a) The chamber at the intersection of the two intersecting holes in the

sphere is expanded until the region between the inside and the outside is very thin,

like the surface of a basketball. There are four holes. (b) Deform one of the holes so

that the other three are inside in the projection shown. This surface is a torus of genus

three. (c) Canonical form for the flow in the sphere containing two intersecting holes.

The two components of the global Poincaré surface of section are shown.

The argument above is strictly topological: it does not matter which of the four

holes is stretched. In fact, our sphere surface is dressed with a flow, derived from Eq.

(1). We have dressed each of the four holes in Fig. 4(a) with indicators of flow type and
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direction. We can transform to the canonical form for a bounding torus by choosing

a particular hole around which to perform the deformation. In the canonical form the

hole surrounding the regular saddle is the central hole. Thus, the hole that must be

deformed is the outer rim of the central funnel C.

The nature of the flow in the canonical topological representation in terms of

bounding tori given in Fig. 4(c) is as follows. When the trajectory moves upwards

in the anti-funnel C in the geometric representation (Fig. 1), in the canonical bounding

torus representation it encircles all three holes, first moving outward towards the outer

boundary, then spiralling inwards until it becomes trapped in the neighborhood of either

the focus (funnel) on the left or right. In the canonical representation it spirals in towards

the inner boundary and then out again until it reenters the anti-funnel and repeats the

process. In the processes of spiralling out and in (C) or in and out (L or R) it maps

out part of a torus.

6. Poincaré Section

Since the flow exists in a bounding torus of genus three, the global Poincaré surface

of section has two disconnected components. These are shown in Fig. 4(c). Working

backwards, it is possible to trace these two components to the corresponding components

of the Poincaré surface in the original phase space R
3. The boundary of one disk passes

through the funnels C and R and closes in the upper right hand corner of Fig. 2(a);

the boundary of the other disk passes through the funnels C and L and closes in the

upper left hand corner of Fig. 2(a). As a result, none of the intersections with the two

components of the Poincaré surface of section occurs with z < 50. The boundaries of

these two components are shown schematically in Fig. 5. In this figure, the “crux” links

holes in Fig. 4(a).

z−axis

z= 70.1

Foci

Saddles

Figure 5. Two disjoint components of the global Poincaré surface of section for the

Li attractor.

Intersections of the chaotic attractor with the two components — the two disks

delimited by red lines in Fig. 5 — of the Poincaré section are shown in Fig. 6. All
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intersections with the component with y′ = 0, x′ > 0 have ẏ′ < 0 and all intersections

with the other component y′ = 0, x′ < 0 have ẏ′ > 0.
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x’

n
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300

350

z n

Figure 6. Intersections of the chaotic Li attractor with the two components of

the global Poincaré surface of section. The intersections are from opposite sides

in the two half-planes x′ > 0 and x′ < 0. Parameter values: (a, c, d, e, f, k) =

(41, 11/6, 0.16, 0.65, 20, 55).

In the transition from periodicity to chaos as a increases from 40.0 to 41.0 the

trajectory occassionally explores regions very close to the z axis. The more tightly the

trajectory spirals around the z axis in the tubular region 100 < z < 200, the further

it travels upward near the z axis before leaving its neighborhood (for large z this axis

has the transverse stability of an unstable node) and the further it progresses from the

periodic set outlined in Fig. 2. These are the pointillist arcs that can be seen in Fig.

6. It is for this reason that the intersections shown in Fig. 6 appear to converge on the

z axis in this region (100 < z < 200). In fact, the trajectory never reaches the z axis,

since it is an invariant set [10]. If it did intersect the z axis, it would extend to z → ∞
and the attractor would be unstable.

7. Unstable Periodic Orbits

We used intersections with the Poincaré section to locate segments of the chaotic

trajectory very close to unstable periodic orbits. These segments were located by

searching for close returns in the Poincaré section. The topological period of these

orbits is the number of distinct intersections with the Poincaré section.

In Fig. 7 we show a segment of chaotic trajectory that so closely approximates a

symmetric orbit of period 48 that they cannot numerically be distinguished. In Fig. 8

we show a pair of asymmetric orbits of period 25. These orbits are the lowest periodic

orbits which can be extracted from this chaotic attractor. This results from the averaged

winding number (≈ 24.53) in one components of the Poincaré section. How these

orbits contribute to the global structure of the attractor is the next step to investigate

(postponed for future works).
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Figure 7. A symmetric orbit of period 48.

-200 -100 0 100 200
x

0

50

100

150

200

250

300

z

Figure 8. (Color online) A symmetric pair of asymmetric orbits of period 25.

8. Image Attractor

Experience has shown that when a dynamical system exhibits a symmetry, it is

much simpler to analyze the image dynamical system than the original system [10].

Information that is determined about the image dynamical system system can then be

“lifted” to the original (or “covering”) dynamical system in a relatively simple way. For

this reason, the image of the Li system (1) is constructed by modding out the two-fold

rotation symmetry about the z axis in the usual way [11, 10, 12, 13]. The 2 → 1 mapping

Ψ : R
3(x′, y′, z) 7→ R

3(u, v, w) is defined by:

Ψ ≡

∣

∣

∣

∣

∣

∣

∣

u = Re(x′ + iy′)2 = x′2 − y′2

v = Im(x′ + iy′)2 = 2x′y′

w = z

. (4)

This mapping involves identifying symmetry-related pairs of points (+x′, +y′, z) and

(−x′,−y′, z) off the symmetry axis with a single point (u, v, w) in the image space. The

image phase portrait can be obtained by applying this mapping to a trajectory in the

original (cover) space R
3(x′, y′, z). Two plane projections are shown in Fig. 9. The hole

around the z axis maps into a hole around the w axis and the two holes around the
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x′ half axes, with x′ > 0 and x′ < 0, map into the single hole around the u ≥ 0 axis.

The hole appears distorted. This property has deep consequences in the structure of

the original (cover) phase portrait as described below.

Since the image attractor is bounded by a genus-one torus, an appropriate Poincaré

section has a single component. Fig. 10 shows the intersections of the image attractor

with the plane v = 0. The intersections outline the toroidal nature of the attractor and

clearly show the folding that is characteristic of toroidal chaos. One choice of Poincaré

section with vn = 0, v̇n < 0 (light color) is shown to the right of the dashed line in this

figure. Another possible choice, with vn = 0, v̇n > 0 (dark color) is shown mostly on the

left of the dashed line in this figure.

9. Double covers of a genus-one torus

In this section double covers of flows on a torus are investigated using the inverse of

the 2 7→ 1 local diffeomorphism Ψ given in Eq. (4). It is not necessary to lift a chaotic

trajectory to visualize the global structure of the phase portrait. Simply outlining

the shape of the lift of the torus is sufficient to show the shape of the double cover,

which depends on the location of the rotation axis. As previously explained [10], many

topologically inequivalent covers can be obtained, depending on the location of the

rotation axis. The three basic cases are depicted in Fig. 11. When the rotation axis

is in the middle of the hole of the genus-one image torus, the double cover is also a

genus-one torus (Fig. 11a). When the symmetry axis is outside of the image torus (Fig.

11c), there is a symmetry-related pair of genus-one tori. But when the symmetry axis

does intersect the torus (Fig. 11b), the double cover is a genus-three torus. This is

for instance what happens when the proto Lorenz attractor is lifted to its cover, the

Lorenz attractor [11, 13]. It is possible to transit from one extreme case (Fig. 11a) to

the other (Fig. 11c) through the so-called “peeling” bifurcation [10]. In previous cases,

the rotation axis was always parallel to the core of the hole in the image torus. The

case of the genus-three torus as a double cover was discussed starting from van der Pol

toröıdal chaos considered as the image attractor [14].

None of the three covers previously described corresponds to the original Li

attractor. As shown in Fig. 10, the rotation axis is not always parallel to the core

of the hole of the genus-one torus bounding the Li attractor. In fact, the rotation axis

is parallel to the core of the hole in the upper part of the attractor (Fig. 12) but, the

lower part of the hole is distorted and the rotation axis intersects the bounding torus

and the attractor it contains. The rotation axis thus crosses the torus in such a way

that the upper part of the attractor is covered as in Fig. 11a and the lowest part of

the attractor is covered as in Fig. 11b. A cartoon of the distorted image and its double

cover is shown in Fig. 12.

As for any cover resulting from a rotation axis intersecting the chaotic attractor,

the flow of the double cover is structured around an axis with a transverse stability

corresponding — at least over a significant segment — to a saddle [6]. Thus, the lowest
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Figure 9. Two plane projections of the image of the Li attractor. Parameter values

as for Fig. 6.
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Figure 10. Intersections of the image attractor with the v = 0 plane clearly show

its toroidal structure. A Poincaré section with v = 0, v̇ < 0 is shown to the right

and above the dashed line (light color). An alternative choice for the Poincaré section

(v = 0, v̇ > 0, (dark) is shown to the left and below the dashed line. The dashed line

itself approximately follows the rotation axis, or hole, of the genus-one attractor. The

break occurs around w ≈ 70. Parameter values as in Fig. 6.
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(a) (b) (c)

xxx

Figure 11. The three inequivalent covers of a genus-one torus depending on the

location of the rotation axis. In the double covers, the rotation axis is marked by a

cross.

Double cover"Distorted’’ image

Figure 12. Double cover of the “distorted” genus-one image torus. The double cover

is a genus-three torus as indicated in Figs. 5 and 13.

part of the double cover of the distorted genus-one attractor is organized around a z-axis

with a transverse stability of saddle type (Fig. 5). Since the rotation axis intersects the

toröıdal surface, the double cover must be bounded by a genus-three torus.

10. Conclusion

A dynamical system recently introduced by Li exhibits a chaotic attractor with an

unusual topological structure. We have studied the nature of this attractor by using

several powerful, recently developed topological tools. First, we described the motion

qualitatively as occurring “on” three funnels. Next, we observed that the attractor

is contained in a three dimensional space that is topologically equivalent to a solid

sphere pierced by two intersecting holes. The genus of the boundary of this surface

was computed and found to be three. This already determines the nature of the global

Poincaré surface of section: it consists of two disjoint components [8, 9].

In order to construct the Poincaré section, we deformed this surface to a standard

canonical form for dynamical systems, that of a canonical bounding torus. In this
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representation the algorithm for constructing the Poincaré section was applied, and

the two two-dimensional components thus determined were used to identify the two

components in the original phase space. Several unstable periodic orbits were identified,

along with their periods, using this Poincaré section.

The standard 2 → 1 local diffeomorphism was applied to this dynamical system

with two-fold rotation symmetry in order to mod out the symmetry. In this way we

constructed the image attractor. This attractor exists in a genus-one bounding torus

and is itself of toroidal type. The lift of this image attractor back to the original double

cover shows clearly why the original Li attractor exists in a genus-three bounding torus.

Triple, quadruple, ... covers of this image are attractors with three regular funnels and

one anti-funnel, four regular funnels and one anti-funnel, etc.

Appendix 1

The genus g of a two dimensional surface is defined by the Euler-Poincaré Index

V − E + F = 2 − 2g (5)

Here (V, E, F ) are the number of vertices, edges, and faces required to make any

simplicial decomposition of the surface. This is a decomposition of the two dimensional

surface using triangles.

In Fig. 13 we show a decomposition of the surface containing the Li attractor

using rectangular plaquets (for clarity). The conversion to a triangular decomposition

is straightforward: each plaquet is divided into two parts by an edge joining two opposite

vertices. This simply adds one edge and one face for each plaquet, and these additional

contributions cancel in the alternating sum. For the decomposition shown for the sphere

penetrated by two intersecting holes, (V, E, F ) = (32, 72, 36) and therefore g = 3.

Rotation axis

Figure 13. Surface surrounding Li attractor has a simplicial decomposition with

(V, E, F ) = (32, 72, 36) and thus g = 3.
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Appendix 2

It is clear just by inspection that the chaotic attractors produced by the Rossler and the

Lorenz equations for their standard parameter values cannot be equivalent. No smooth

deformation can deform one into the other, since the Rossler attractor is organized

around one focus and the Lorenz system is organized around two. To put this another

way, the phase space in which the Rossler attractor exists has one hole in it and the

Lorenz attractor exists in a phase space with at least two holes in it.

This observation has been made rigorous for three-dimensional chaotic attractors

[8, 9]. The attractor is “inflated” by surrounding each point in it by a small sphere. The

union of these spheres is a bounded three-dimensional manifold. By a standard theorem

of topology, the boundary of this manifold is a two dimensional manifold of genus g,

g = 0, 1, 2, . . .. Effectively, the surface is a torus with g holes in it: the sphere S2 for

g = 0, a regular tire tube for g = 1, and analogs with more holes for larger values of g.

The surface associated to a chaotic attractor in this way is called its bounding torus.

The genus is determined from the flow by looking for the fixed points of the

flow, when the flow is restricted to the surface. In R
3 a flow that produces a chaotic

attractor has one unstable direction, one flow direction, and one stable direction, with

corresponding Lyapounov exponents λ1 > 0, λ2 = 0, λ3 < 0. As a result, a fixed point

on the bounding torus has one stable and one unstable direction and is therefore a

regular saddle. As a result, the index of each fixed point on the surface is (−1)nu = −1,

where nu is the number of unstable directions at the fixed point. By another theorem of

topology, the sum over the indices of all fixed points on a surface is related to its genus

by
∑

fixed points

(−1)nu = 2 − 2g (6)

(a) (b)

Figure 14. (a) Bounding torus of genus-one encloses the Rossler attractor and the

image of the Li attractor. (b) Bounding torus of genus-three encloses both the Lorenz

and the Li attractors. Round holes exclude foci and square holes exclude regular

saddles.

Bounding tori of genus-one and -three are shown in Fig. 14. The Rossler attractor

is contained within the surface of a genus-one bounding torus. So also is the image

of the Li attractor. The flow that generates these attractors has no fixed points on

the surface. The Lorenz attractor is contained with a bounding torus of genus three.
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Two holes exclude the two unstable foci; the third excludes the z symmetry axis. The

four singularities on this surface are associated with the z axis, which is responsible for

splitting the flow into the left- and right-had regions, and also joining the flow from

the left and right hand regions. Two of the four singularities are associated with the

splitting directions and the other two with the joining directions. The Li attractor is

also contained within a genus-three bounding torus.
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