A Topological Test for Embeddings
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A new test for embedding time series data from low-dimensional chaotic systems into three-
dimensional phase spaces is proposed. It is topological, depending on specific invariant struc-
tures within a data set, rather than statistical averages over the entire attractor. We illustrate
this test by applying it to electrolytic data. Although it can only be used to test for three-
dimensional embeddings, it succeeds where the classical tests, depending on fractal dimension,
largest Lyapunov exponent estimates, and false neighbor estimates, often fail.

PACS numbers: 05.45.-a

The first step in analyzing chaotic data generated by
a physical system is the search for a suitable embedding.
The classical tests for embeddings depend on estimating
geometric or dynamical quantities. Geometric quanti-
ties include fractal dimensions and fractions of false near
neighbors. Dynamical quantities include Lyapunov expo-
nents and dimensions, and the ability to predict behavior
short times into the future.

Once an embedding has been determined the recon-
structed attractor can be analyzed. Analyses are of three
types: geometric, dynamical, and topological. Topolog-
ical analyses concentrate on determining the spectrum
and organization of the unstable periodic orbits in the
attractor. In three dimensions the organization of the
unstable periodic orbits can be used to determine the
mechanism responsible for producing chaotic behavior.
This type of analysis is restricted to three dimensions
because knot organization is determined by a topological
index, the Gauss linking number that can be computed
for pairs of orbits, only in three dimensions.

In this note we rectify the asymmetry that exists be-
tween tests for embeddings — there are two types —
and analyses after an embedding has been constructed —
there are three types. We do this by introducing a new
test for embedding. This can only be used to test whether
a mapping into a three-dimensional space is an embed-
ding. It cannot be used in higher dimensions. However,
this test succeeds where the classical tests often fail. The
new test proceeds as follows. A set of unstable periodic
orbits is located in the data. A mapping of the data into
R?® depending on one or more parameters is proposed.
The unstable orbits are mapped into R® under this map-
ping. The minimum distance between each pair of orbits
is computed as a function of the mapping parameter.
Where orbits cross the minimum distance goes to zero
and an embedding is not possible. This is so because
crossing points do not have a unique future: they are on

two different trajectories. A plot of minimum distance as
a fucntion of mapping parameter will show values of the
parameter for which an embedding does not exist and
values where an embedding is possible.

We illustrate this new test on experimental data taken
in an electrolytic experiment [1, 2]. It has already been
shown that a three dimensional differential embedding is
possible [3]. Such an mapping is equivalent a time delay

mapping

(i) = [2(i), 2(i —71), 2(i — m2)] (1)

with minimum delay: 7 = 1 and » = 2. It is widely
appreciated that each derivative or integral of a scalar
time series costs about an order of magnitude in the
signal to noise ratio. It is therefore worth investigat-
ing differential-delay mappings as possible embeddings.
These have the form 71 =1 and /5 = 7+ 1 with . We use
the topological test for embeddings to determine ranges
of values of the single delay parameter 7 for which this
mapping might be an embedding.

The first step is to locate a set of segments of the trajec-
tory that behave like unstable periodic orbits. We used a
simple version of the recurrence test [4] on the unfiltered
scalar time series data z(i), sampled at 5000 Hz. The
statistic D = ZkK:o |x(i + k) — (i + p + k)| was com-
puted over the data set i as a function of p in the range
50 < p < 1100. For this statistic to be small, x(j) must
be near z(j+p) for j =¢,i+1,...i+ K. After p data sam-
ples the trajectory returns to its original neighborhood
for the next K samples (at least). The time series from i
to i+ p — 1 is a candidate for an unstable periodic orbit.
For this data set 32 < x(i) < 56 for all i. We used K = 20
and investigated all 20 data segments with D < 0.5. We
looked at each segment and chose 9 segments that de-
scribed distinct orbits. The period one, two, and three
orbits appeared more than once in this list. (Period is



defined by the number of intersections with a Poincaré
section [3].) Multiple copies of the same orbit were repre-
sented by samples of different lengths p — 1. The lengths
differed by about 2%. This indicates that the data are not
stationary. Such nonstationarity presents severe impedi-
ments to tests for embeddings based on fractal dimension
estimates.

In total, we found 9 segments of the chaotic trajec-
tory that described orbits with periods from 1 to 7, with
two distinct orbits of periods 5 and 6. A Fourier series
was constructed for each using [p/10] Fourier sine and
cosine coefficients. An FFT was not used so that we did
not have to interpolate the data. We checked that the
Fourier representation was an excellent representation of

the orbit. The first derivative was constructed in the
Fourier renresentation. The nine orhits in the x-dx/dt
P

dx(i)/dt
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FIG. 1: Nine periodic orbits found in chaotic data from
an electrolysis experiment are shown in the z-dx/dt
plane.

Each orbit was then mapped into R® under

() = [2(1), 7 (1), 2(i = 7)] (2)

14
The distance between every point on one orbit and ev-
ery point on another orbit was computed and the mini-
mum distance saved. This minimum distance was com-
puted as a function of the delay, 7. Distances were
computed with a diagonal metric g;; = g(#)d;;, with
g(1) = g(3) = (2.0/21.0)? and g(2) = (2.0/1.88)?
scale all components into an interval of length 2. The
minimum distance function for all 9 x 8/4 = 36 orbit
pairs is shown in Fig. 2. For regions where the minimum
distance function is bounded away from zero an embed-
ding is possible. This figure suggests that an embedding
is possible in the ranges 1 < 7 < 50 and 55 < 7 < 65,
and 80 < 7 < 100.

The intersections of some orbits as the delay 7 changes
could be masked by the discrete sampling size. In such
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FIG. 2: Minimum distance between all pairs of orbits as
a function of the delay 7.

cases the minimim distiance approaches zero rapidly on
one side of the intersection and departs rapidly from zero
on the other, without ever reaching zero because the in-
dex 7 is integer. At such suggestive “knife point” sig-
natures, it is a simple matter to interpolate between the
integer values of 7 using the Fourier representation of the
orbits. We have done this for the period-one, -two, and
-three orbits, and have found intersections at 7 ~ 11,
7~ 84 and 7 =~ 135 (c.f., Fig. 3). The linking numbers
of the orbits can also be computed on either side of a
possible crossing to see if the orbits actually undergo an
intersection [8]. Since these orbits are in the attractor,
they are surrounded by both the attractor and other pe-
riodic orbits. If they intersect at 7ying the mapping of
the attractor is not an embedding for values of 7 in the
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FIG. 3: Minimum distance between the three lowest pe-

riod oribts. These orbits were interpolated by a factor

of 10 in the Fourier representation, allowing the delay to
assume nonintegral values (10 x 7 is an integer).

We have compared these results of the topological test
for embeddings with traditional tests for embeddings. In



all the tests described below each component of each
vector time series studied was scaled into the interval
[—1,+1]. We first investigated the false near neighbor
test [5] using embeddings of the form x(i) — [z(i), z(i —
1),z(i—1—71),2(i—1—7—-40),z(i —1—7—2x 40)]. Fig.
4 shows the fraction of false near neighbors in going from
2 — 3 dimensions, from 3 — 4, and from 4 — 5 dimen-
sions. The fraction of false near neighbors is sufficiently
small only in the case n = 2rightarrown + 1 = 3 for
very small values of the delay 7. This is incorrect since
chaotic dynamics requires n > 3. In the other two cases
n = 3rightarrown+1 = 4 and n = 4rightarrown+1 =5
the fraction of false near neighbors is so large that em-
beddings for any value of 7 are ruled out (icorrectly).

False Near Neighbor Test
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FIG. 4: Fraction of false near neighbors. These results
suggest that no embedding into dimensionn = 3 orn =4
is possible.

We also performed correlation dimension estimates and
largest Lyapunov exponent estimates on the three dimen-
sional mappings z(i) — [z(2),2(i — 1), 2(i — 1 — 7)] using
the algorithm proposed in [6]. The results are shown in
Fig. 5 and Fig. 6. Since the correlation dimension esti-
mate Do should be larger than 2 if the mapping is an em-
bedding, these results suggest that no three dimensional
mapping of the type used is an embedding. In fact, it
is well-known that small values of the delay can cause
the estimate of the correlation dimension to be anoma-
lously large [7]. There is nothing in the behavior of the
largest Lyapunov exponent to suggest that the mapping
is an embedding for some values of the delay and not for
others.

In this work we have proposed a new topological test
for embeddings into R3. This test has been used to de-
termine ranges of the time delay for which a differential-
delay mapping of experimental data into R® cannot be an
embedding and ranges for which it might be an embed-
ding. For parameter ranges not ruled out, further topo-
logical studies, such as those carried out in [3], should
be used to confirm or reject whether the mapping is an
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FIG. 5: Correlation dimension Do estimate as a function

of the mapping parameter 7. In principle this should be
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FIG. 6: Largest Lyapunov exponent estimate as a func-
tion of delay 7. Nothing about this plot suggests that
the mapping is an embedding for some values of 7 and
not for others.

embedding. This new test depends on invariant struc-
tures (unstable periodic orbits) in chaotic data that can
be extracted and studied in detail. It does not depend
on statistical averages. We have compared this new topo-
logical test with older tests that do depend on some sort
of statistical averaging. In general, the traditional tests
have failed to indicate values of the delay 7 for which
embeddings can and cannot be possible.
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