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Relative rotation rates for two-dimensional driven dynamical systems are defined with respect to
arbitrary pairs of periodic orbits. These indices describe the average rate, per period, at which one
orbit rotates around another. These quantities are topological invariants of the dynamical system,
but contain more physical information than the standard topological invariants for knots, the link-

ing and self-linking numbers„ to which they are closely related. This definition can also be extended
to include noisy periodic orbits and strange attractors. A table of the relative rotation rates for a
dynamical system, its intertwining matrix, can be used to determine whether orbit pairs can under-

go bifurcation and, if so, the order in which the bifurcations can occur. The relative rotation rates
are easily computed and measured. They have been computed for a simple model, the laser with

modulated parameter. By comparing these indices with those of a zero-torsion lift of a horseshoe
return map, we have been able to determine that the dynamics of the laser are governed by the for-
mation of a horseshoe. Additional stable periodic orbits, besides the principal subharmonics previ-

ously reported, are predicted by the dynamics. The two additional period-five attractors have been
located with the aid of their logical sequence names, and their identification has been confirmed by
computing their relative rotation rates.

I. INTRODUCTION

The motivation for the present work is twofold: (1) to
provide a deeper understanding of a particu1ar physical
system, the laser with modulated parameter, and (2) to
develop methods useful for the description of other two-
dimensional periodically driven damped dynamical sys-
tems. To this end we have introduced the concept of rel-
ative rotation rate and studied its properties.

The relative rotation rate describes the average rota-
tion of one periodic orbit around another in a periodical-
ly forced nonlinear oscillator. This orbit-pair index is re-
lated to the linking number and self-linking numbers,
which are topological indices describing pairs of periodic
orbits or single periodic orbits.

Relative rotation rates are directly measurable in
periodically driven physical systems. As a result, these
topological indices are themselves directly accessible to
physical measurement. Relative rotation rates impose
three diferent kinds of constraints on dynamical systems.

(1}As a control parameter is varied, coexisting orbits
may interact, typically through saddle-node or period-
doubling bifurcations. The set of relative rotation rates
provides "selection rules" on those bifurcations which
are forbidden, those which are allo~ed, and the order in
which allowed bifurcations can occur.

(2} The set of relative rotation rates provides informa-
tion on whether two dynamical systems may be
equi, valent to each other or whether they are ine-
quivalent.

{3)Relative rotation rates may suggest the mechanism
responsible for creation of stable periodic orbits through
saddle-node and period-doubling bifurcations. For exam-
ple, these numbers may be fingerprints of a Smale hor-
seshoe, as occurs in the present study.

Since this concept was introduced to help organize the

complexity present in the driven laser system, these com-
plexities are surveyed in Sec. II. In Sec. III we introduce
the relative rotation rates, illustrating both it and its im-
plications in the context of the laser model. These ideas
are applied to a more thorough discussion of the laser
model in Sec. IV. Certain properties of the laser system
suggest that the dynamics may be organized by a
horseshoe map. The relative rotation rates are computed
for the horseshoe in Sec. V. In Sec. VI the set of relative
rotation rates for the horseshoe and laser model are com-
pared. %'e close with a discussion of our results.

II. PROPKRTIKS OF A I.ASKR
WITH MODULATED PARAMETER

The equations of motion for a periodically driven two-
dimensional dynamical system are

dx, /dt =f, (x;t), x CR'

f;(x;t)=f, (x;t+T) .

The forcing terms f; have a minimum period T and typi-
cally depend on one or more control parameters. The
phase space for such dynamical systems is R gS', where
S' (the circle) parametrizes the time direction. Solutions
of this system of equations may exhibit chaotic behavior
since the phase space is sui5ciently large. '

A number of physical systems described by equations
of type {1)have been studied. These include electric cir-
cuits, laser systems, ' a biological model, a
bouncing ball, ' etc. The behavior of each system is sum-
marized by its bifurcation diagram. Although the bifur-
cation diagram for each system is distinct, they share
more similarities than they exhibit differences. We are
therefore encouraged to believe that methods developed
to enhance the understanding of one such system wi11 be
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useful for all such systems.
To 6x ideas, and for the sake of concreteness, we mill

focus our attention on the rate equations for a laser with
modulated parameter. This system has been studied both
experimentally ' and theoretically, ' ' with results
that are in qualitative agreement. The rate equations for
the laser intensity u and the population inversion z are

du /dt = [z —8 cos(Qt)]u,

dz Id t = ( 1 —E' }z) —( 1 +E2z }'u
(2)

PB

P7~
P6c

p5~

where e],62 are damping parameters, and 8 and n are
the amplitude and frequency of the loss modulation term,
respectively. The bifurcation diagram for this system is
shown in Fig. 1 as a function of the single control param-
eter R for fixed values of the remaining control parame-
ters.

The following features are particularly noteworthy.
Several dift'erent stable solutions can coexist for a given

parameter value. These solutions are subharmonics of
the fundamental, with periods n T, n =2, 3,4, . . . , or
period doublings of the subharmonics. Subharmonics up
to period 11 have been seen both experimentally and nu-

merically. There is reason ' to believe that for any n, a
(at least one) subharmonic exists, but that the rapidly de-

creasing size of the basin with increasing n makes the
higher subharmonics increasingly di%cult to detect.

All subharmonics (n & 2) are born in saddle-node bifur-
cations. These saddle-node bifurcations create a stable
and a regular saddle orbit of period n ( & 2). Every stable
orbit born in a saddle-node bifurcation undergoes a
period-doubling cascade. The cascade terminates in an
accumulation point, with the usual Feigenbaum scal-
ing. ' On the far side of the accumulation point there

is a series of noisy periodic orbits which undergoes an in-
verse cascade. ' Feigenbaum scaling is obeyed in this
region also. The ratio of the canonical scaling on both
sides of the accumulation point, 0.18781. . . , appears to
be obeyed. ' Beyond the last inverse bifurcation a
strange attractor, based on the initial period n orbit, is
formed.

The regular saddles created in the saddle-node bifurca-
tions cannot undergo period doubling since the flow (2) is
weakly contracting. %ith the exception of the period-
two regular saddle, all regular saddles exist to the right of
the saddle-node bifurcation in which they are created.

%e call the collection of orbits associated with a
saddle-node bifurcation a branch. A branch consists of
the regular period-n saddle, the initial period-n stable
subharmonic, its stable progeny of period n g 2 and the
associated flip (Mobius) saddles, the noisy period n X2
orbits, and the "period-n" strange attractor. '

Only the fundamental is not born in a saddle-node bi-
furcation. It undergoes an initial period-doubling bifur-
cation. The resulting stable period-two orbit is then an-
nihilated in an inverse saddle-node bifurcation with the
regular period-two saddle belonging to the period-two
branch. The regular and Aip saddles are involved in three
kinds of crises.

(1) The flip saddles of period n X 2" can collide with the
boundary of a region of noisy periodicity n X2'+' to pro-
duce a noisy period-halving bifurcation. Such a collision
is called an internal crisis.

(2) A regular saddle in a period-n branch can collide
with the boundary of a "period-n" strange attractor,
thereby annihilating or enlarging it. Such a collision is
called a boundary crisis.

(3) A regular saddle in a period n branch can collide
with the boundary of a '"period-n '" strange attractor
(n+n'), thereby annihilating or enlarging it. Such a col-
lision is called an external crisis.

These phenomena are summarized in Fig. 2. Since

3 )6 )C3 C2+ C3

P1
P5

,
4 ~8

t5
C2

FIG. l. Bifurcation diagram for the laser equations {2)shown
as a function of the control parameter R. The periodicity of the
various branches is shown {PI,P2,P3, . . . ). Stable { ), regu-
lar saddle {———), and Mobius or Aip saddle {. - . ) orbits
are shown, as well as the strange attractors (

~ j ~
} and crises. The

two period-five orbits in the crosshatched regions are discussed
in Sec. VI. Periodic orbits have been located with a standard
numerical technique {Ref.50). The parameter values for this di-
agram are el ——0.03, e2 ——0.009, 0= 1.5.

2

FIG. 2. A schematic is presented of the bifurcation diagram
shown in Fig. 1. In this diagram ( 1, ) indicates saddle node bi-
furcation, {A ) an inverse saddle-node bifurcation, (~) a bound-
ary crisis, and (*}an external crisis. Here C2,C3 are the
strange attractors based on the period-two and period-three
branches.
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several stable attractors may coexist for a Axed value of
R, the asymptotic state will depend on the initial condi-
tions. In addition, the system may exhibit hysteresis.

A number of questions may be asked. %ill the period-
one and period-two branches always interact via inverse
saddle-node bifurcation'7 Can other branches interact~ If
so, how and in what order~ These questions are impor-
tant in considering how the properties of Eq. (2) change
as the remaining control parameters (e„ez,Q) are varied,
or additional perturbation terms are added to the forcing
terms.

III. RKI.ATIVE ROTATION RATES

A. Motivation and objectives

Two orbits cannot collide in a saddle-node bifurcation
if a third orbit "comes between" them. An orbit C will

come between two orbits A and 8 if it winds differently
around them.

Our basic objective, therefore, is to construct a topo-
logical quantity which will enable us to determine how
orbits wind around each other. To construct this index,
we imagine that we choose one point (a, b) on each orbit
and connect them with a vector. As time evolves, the
points move under the Now, and the vector rotates, re-
turning to its initial position periodically if A and 8 are
both periodic, %'e define the relative rotation rate of 8
around A (or A around 8) as the number of full rotations
about A made by the vector joining the orbits A and 8,
divided by the number of periods per recurrence.

B. Definition

Let A be an orbit of period pz which has intersections

(a„az, . . . , a ) with a Poincare section t=const, and

similarly for orbit 8. The relative rotation rate 8;J(A,B)
of A around 8 is defined by

1
y

n (hr Xdhr)
4r hr

Here &r=[&s(t) —x„(t),yz(t) y—z(t)] is the diff'erence

vector between points on the two orbits, n is the unit vec-
tor orthogonal to the plane spanned by h,r and dh, r, and
the integral extends over p~ Xp& periods. The initial
conditions are the points 0;,b on the Poincare section.
This integral is positive if the average rotation rate is
counterclockwise as seen looking into the direction of the
flow.

It is useful to gather the ensemble of relative rotation
rates for a dynamical system into a table, or matrix. The
intertwining matrix for the laser system (2) is presented in

Table I.

C Interpretation

The relative rotation rate describes how one orbit ro-
tates around another. In fact, it is the average value, per
period, of this rotation rate.

D. Properties

(1) Robustness: The integral (3) is invariant under
small perturbations of initial conditions of the Poincare
section. The integral is also invariant under deformations
of the system of Eqs. (1) provided the orbits A and 8 are
not destroyed, the spectrum of Poincare recurrence
points remains nondegenerate, and the initial conditions
are smoothly deformed.

(2) Symmetry: 8;~(A,B)=R;~(8,A).
(3) Spectrum: The relative rotation rate depends on in-

itial conditions, as can be seen from the definition (3) and
by inspection of Table I. There are in general pz Xpq
relative rotation rates for orbits A and 8 of periods p~
and pz. They are not all distinct. If p~ and pz are rela-
tively prime they are all equal. More generally, there are
no more than (p „,pz ) distinct values for the orbit pair A

and 8, where (p„,pa) is the largest common divisor of
p~ and pz. In particular, the relative rotation rates be-
tween one period-two orbit and one of the period-four or-
bits are [( —1/4), ( —1/2) ]. That is, four sets of initial
conditions involve two full rotations per eight periods,
while the remaining four sets of initial conditions involve

TABLE I. Relative rotation rates between low period orbits sho~n in Fig. 1. Orbit notation: a (b) indicates stable {unstable) orbit

created in saddle-node bifurcation; 2(1), 4(2), 6{3),period doubled orbits on the period-one, -two, and -three branches. The matrix is

symmetric and diagonal elements are not included. All fractions are negative since rotations are clockwise.
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FIG. 3. The relative rotation rate is not a branch invariant.
Here a saddle-node bifurcation creates the stable ( ) and
unstable ( ———) orbit pair o,a'. This is folio~ed by another
saddle-node bifurcation which creates the orbit pair P,P' which

intertwines the stable orbit o. but not a'.

four full rotations per eight periods.
This dependence on initial conditions may seem a bit

awkward for a topological pair index. However, we will
see below that a well-known topological index (linking
number) can be constructed from the set of relative rota-
tion rates for a pair of orbits. Thus, the orbit-pair rela-
tive rotation rates provide an even more refined diagnos-
tic for orbital linking than the topological knot invariant.

(4) Self-rotation rate: The relative rotation rate can be
defined for an orbit with itself, as R,J ( A, A ). The
definition (3) is applicable, with i&j, as the integral (3)
fails to be defined in this case. [Below, we will adopt the
useful convention that R,, ( A, A ) =0.]

(5) Branch properties: The relative rotation rate is not
a branch invariant. For example, a pair of orbits may be
created in a saddle-node bifurcation (Fig. 3) which encir-
cles just one periodic orbit of a branch pair. The two
members of the original branch then have difkrent rela-
tive rotation rates with respect to the new saddle-node
pair. We will see below that the laser system (2) possesses
additional period-five orbits, some of which (e.g., x y in
Table IV) wind around the stable period-one branch (y)
and her daughter (xy) in difFerent ways.

(6) The relative rotation rates between the two orbits
created in a saddle-node bifurcation and all other orbits
which exist at the time of the saddle-node bifurcation are
the same. This is because the two orbits are localized ar-
bitrarily closely at the time of their creation.

(7) Similarly, the relative rotation rates of all orbits
(n X2", stable and Mobius) created in a cascade are un-

changed with respect to all branches which exist

throughout the duration of the cascade, for the same lo-
calization reasons.

(8) The relative rotation rates for orbits within a
branch, created during a cascade, are nontrivial. The rel-
ative rotation rates for the orbits involved in the period-
one cascade for the laser system (2) are given in Table II.
Tables for the other subharmonic branches are identical
to this table, up to an overall rnultiplicative factor which
is I/n for the principal subharmonic branch of period n T
(i.e., the orbits based on the fundamental with logical se-
quence x" 'y, cf. Sec. V below).

(9) Saddle-node pairs: Orbits created in a saddle-node
bifurcation have the same set of self-rotation rates. Their
relative rotation rates are related to the self-rotation rates
in a simple way. If the self-rotation rates are

(r„rz, . . . , r~, , O) ", the relative rotation rates are

(r, , r2, . . . , r~ „r~ ) '. The last ratio rz describes the

rotation of the Aow around the orbit in the neighborhood
of the closed orbit. This is related to the local tor-
sion ' [cf. Eq. (6) below].

(1) Mother-daughter pairs: Similar results hold for the
unstable Mobius saddle of period p~ and its stable
daughter of period 2p~ involved in a period-doubling bi-
furcation. If the self-rotation rates of the mother orbit
are (r„r2, . . . , r~ i, 0) ", the self-rotation rates of the

p —]0

daughter are (r, „ri, . . . , r~, , r~,O), and the rela-

tive rotation rates are (ri, ri, . . . , r „r ) ", with r

as defined above. These results for saddle-node and
mother-daughter pairs follow from the localization prop-
erty during their bifurcation.

K. Uses

(1) The intertwimng matrix provides selection rules on
bifurcations. Two orbits cannot interact via bifurcation
unless their relative rotation rates are identical with
respect to all other existing orbits. Inspection of Table I
shows that of the orbits listed which are not created in
saddle-node bifurcations (¹and Xb), only the period-
one [1 and 2(l)] and period-two (2b) orbits can interact.
In addition, the two period-three orbits cannot interact
while the period-doubled period-six [6(3)] orbit exists.
The latter must first be absorbed by 3a (as a function of
decreasing 8) before 3a and 3b can interact in a saddle-
node bifurcation. Similar remarks are valid for 2a, 2b,
and 4(2), and more generally for cascades based on period

TABLE II. Relative rotation rates for the period-doubling cascade based on the period-one period-two branch. Instead of provid-
ing all p„)&pz ratios, this table provides the ratios of occurrences of these rates. For period-doubling cascades based on a period-n
orbit, the relative rotation rates of that orbit must be added to all matrix elements. This table is symmetric.
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x 0

0 0 0

FIG. 4. The intertwining matrix contains information about
the topological organization of the periodic orbits. It indicates
whether orbits can interact through bifurcation, and the order
in which the interactions can occur. Here a, o, ' cannot interact
until P,P' disappear.

N: Nb and Na, 2XN(N), 2'XN(N) 2"XN(»
(2} The intertwining matrix can be used to predict the

order in which bifurcations can occur. For example, two

orbits (a,a' in Fig. 4) may not be able to interact because
they are linked differently by other orbits (p, p'). The in-

tervening orbits (p, p'} must first be annihilated before the
orbits (a, tx') can coalesce by bifurcation. Creation or an-

nihilation of orbits corresponds to adding or deleting the
corresponding rows and columns to or from the in-

tertwining matrix.

(4)

where ~=@~ Xp& gm & T and to determines the Poin-
care section, exists and determines the average rotation
rate of the periodic orbit around a tube containing the
noisy periodic orbit. Here i indexes an intersection a, of
A with a Poincare section and j indexes a noisy periodic
region of the orbit 8 in the Poincare section. The in-
tegral is well de6ned as long as the periodic orbit is dis-
joint from the tube containing the noisy periodic orbit.
This limit is a rational fraction which may be interpreted
at the relative rotation rate of the period p„orbit with
any closed period p~ orbit embedded in the tube contain-
ing the noisy period ps orbit. This definition can be ex-
tended to pairs of noisy periodic orbits as long as the
tubes surrounding both remain disjoint.

The extension (4) to noisy periodic orbits has been par-
ticularly useful in locating the noisy period-halving bifur-
cations in the inverse cascade along any branch. These
bifurcations are diScult to locate numerically, and espe-
cially experimentally. Such bifurcations are located by
taking A as the Mobius orbit of period n )&2 which ini-
tiates the internal crisis, and B the orbit of noisy period
n X2 + (Fig. 6). The limit (4) remains constant up to
the crisis, after which its value begins to change. '

The relative rotation rate has also been computed for
strange attractors formed after the last period-halving
crisis along each branch. In this region, the relative rota-
tion rates typically begin to change from their well-
defined fractional values (Fig. 7). By computing the rela-
tive rotation rates for the strange attractor on the
period-n branch and regular periodic saddles, it is possi-
ble to determine when crises will occur, the regular sad-
dles responsible for the crisis, the type of crisis (boundary
or external), and the consequences of the crisis. The
crises identified in the bifurcation diagram for the laser

1, 3, 5

0, 2, 4, 6

0, 3, 6

F. Extensions

The relative rotation rate has been defined for pairs of
periodic orbits. This definition can be extended to in-
clude noisy periodic orbits or even aperiodic orbits. If A

has period p~ and B has noisy period pz, then the time
integral over p~ &(pz periods is not quite an integer (Fig.
5). Similarly, the integral over p „Xps X m periods
(m =2,3,4, . . . ) is not an integer —it diff'ers from an in-

teger by an amount related to the "solid angle" of the
noisy periodic region as seen from one of the periodic
points. Therefore, the limit

FIG. 5. The relative rotation rate is well defined, in the limit,
between noisy periodic orbits and periodic orbits which do not
intersect a tube containing the noisy periodic orbit. The
difference vector A between a point on a noisy period-three or-
bit and a period-two orbit evolves, after six periods, to the
difference vector 8. The angle 8 between the difference vectors
A, B is bounded above by the solid angle subtended by a noisy
period disk and a point on the periodic orbit. In the limit
T~ ~, the ratio (5) consists of the well-defined rational frac-
tional part, and a stochastic part whose limit is zero.
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L ( A, A ). It is therefore worthwhile to extend the
relative-rotation-rate concept to the self rotation of a
periodic orbit by identifying B with A in Eq. (2). The
case i =j must then be excluded, since the integral is
undefined. In this way we are able to include the diago-
nal matrix elements in the intertwining matrix.

If by convention we define L,, ( A, A ) =0, then the
definition (5) can be extended to include the self-linking
number of an orbit with itself. The linking and self-
linking numbers of some orbits of the laser system are
given in Table III.

If the system dynamics are governed by a horseshoe,
both the topological invariants L (A,B) and dynamical
invariants R;, ( A, B) can be computed (Sec. V). The latter
are measurable, so the former are also, by Eq. (4).

A11 results can be extended from nonautonomous two-
dimensional dynamical systems to autonomous three-
dimensional dynamical systems. It is only necessary to
replace time as the integration parameter [in Eq. (3)] by a
relative path length (an angle) along each orbit between
successive intersections with the Poincare section.

H. Practical results

Noisy period 2

k
Noisy period 2

k+1
Periodic 2

Periodic 2

(1) The relative rotation rates are directly accessible
from physical data by triggering on the forcing terms.

(2) Many of the subharmonic branches are very local-
ized in phase space. Even when they do not exist, no oth-
er orbits from other branches enter their characteristic
region of phase space. It is then possible to compute the
relative rotation rates even between orbits which do not
simultaneously exist. For this reason it is possible to con-
struct an intertwining matrix (Fig. 2) for orbits or
branches which are non coexistent. In principle, this
cannot always be done (Figs. 3 and 4), although in prac-
tice this has proved a valuable tool for study of the laser
system.

FIG. 6. Internal crises occur when the boundaries of noisy
period 2 + regions collide with a period 2" Mobius saddle.

(Figs. 1 and 2) were confirmed by computation of the ap-
propriate relative rotation rates.

G. Mathematical extensions

RRR
C-S4

C - S3

The relative rotation rate depends on initial conditions,
making the intertwining matrix somewhat awkward, as
its matrix elements are not unique. There is a topological
invariant, the knot linking number L (A, B) which de-
scribes how two closed curves (periodic orbits) are linked
or intertwined. The relative rotation rate and the linking
number are simply related:

L(A, B)= gR; (A, B) .

A proof is presented in the Appendix. The matrix of
linking numbers can be constructed directly from the in-
tertwining matrix (not vice versa, with exceptions noted
in Sec. V).

Every topological knot has a self-linking number '

FIG. 7. The relative rotation rate (RRR) (C-S3) between the
regular period-three saddle (S3) and the noisy periodic attractor
on the period-one period-two branch (C) remains constant until
the last internal crisis. This rate then begins to change. When
the collision between the strange attractor and the regular
period-three saddle occurs (external crisis), there is a sudden ex-
pansion of the strange attractor into the region of the stable
period-three branch. Thereafter, the relative rotation rate be-
tween the regular period-three saddle and the period-one
period-three strange attractor continues to change. The relative
rotation rate (C-S4) between the chaotic attractor and the
period-four regular saddle beings to change at a later crisis.
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TABLE III. Linking numbers (o8-diagonal) and self-linking numbers between low period orbits
shown in Fig. 1. Notation is the same as in Table I.

2b 2(1) 4(2) 3Q 3b 6(3) 4a 4b 5 6

1

2Q

2b
2(1)
4(2)
ja
3b
6(3)
4a
4b
5
6

1

2
2
2
4
3
3

3

I. Comparison with previous work

Concepts related to the relative rotation rate have been
discussed previously by a number of authors.

(1) Periodic orbits in the Lorenz system ' may rotate
around the z axis (an invariant set). The number of rota-
tions is an invariant. Two orbits with different rotation
numbers cannot interact through saddle-node bifurca-
tion, nor through period-doubling bifurcation unless their
rotation numbers difFer by a factor of 2.

(2) Parlitz and Lauterborn ' introduced a winding
number defined as the number of maxima or minima of a
projected periodic solution, per period. Although this is
a useful index for particular dynamical systems, it is not a
topological invariant. For the laser system (2), this index
is initially different on the regular saddle of period-two
and the period-doubled daughter on the period-one
branch which undergo the inverse saddle-node bifurca-
tion.

(3) The local torsion for the fiow about a periodic orbit
in a periodic-doubling cascade has been computed by
Uezu. ' " This is essentially the relative rotation rate of
a mother-daughter pair of orbits, derivable from Eq. (3)
and property (10) in Sec. III D above. Uezu has comput-
ed the local torsion and extracted the relation

T(k —1,k) = [(3m +2)2 '+( —1)" ']/3

between orbits of period 2 ' and 2, where m is the
crossing number of the fundamental. One of the relative
rotation rates between a mother-daughter orbit pair is the
local torsion divided by the period of the daughter orbit.

(4) Holmes ' has introduced the "putative braid in-
dex. " This is simply the linking number between a
period-n orbit and the (unique} period-one stable orbit or
Mobius saddle in the system studied.

(5) Schmidt and Wang have introduced a winding ra-
tio (q/p) defined as the ratio of the number of rotations
(q} which an orbit of period p makes around some invari-
ant set, either a fixed point, a limit cycle, or a torus.

(6) The winding number q/p is defined as the number
of rotations (q) a closed orbit (period p) makes on the
surface of a torus. The corresponding knot is a torus
knot of type (q,p). This is essentially the linking number
between the torus knot and the limit cycle from which

the torus bifurcated in a secondary Hopf bifurcation.
These definitions are all asymmetric, in that they do

not treat arbitrary pairs of orbits on an equal footing.
Since the only structurally stable elements which the
dynamical system (1) possesses are the invariant sets, it is
essential to use these elements in a symmetric way in or-
der to characterize the How properties of the system. The
definition (3) does this.

IV. APPLICATION TO THE LASER

%'e illustrate the use of the intertwining matrix by ap-
plying it to the laser system (2). The intertwining matrix
for this system is presented in Tables I and II. There are
three period-two orbits: 2a, 2b, and 2(l). These coexist
over a finite range of parameter values. Since the orbits
2b and 2(1) have identical sets of relative rotation rates
with respect to all other orbits shown, it is possible for
these two orbits to interact. This interaction is an inverse
saddle-node bifurcation which occurs at 8=0.96, des-
troying both orbits. The orbits 2a and 2b do not have
identical sets of relative rotation rates with respect to all
other orbits shown. Specifically, the relative rotation

P3

P1

FIG. 8. A deformation of the laser system (2) can be found
which "straightens out" the snake of the periodic-one branch.
The orbits shown, as well as all the other orbits shown in Fig. 1,
together with the two additional period-five branches, have rela-
tive rotation rates as predicted from the horseshoe map.
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rates differ with respect to the orbit 4(2). Therefore, the
two orbits 2a and 2b cannot interact while the orbit 4(2)
exists. This, of course, is clear. The period-doubled orbit
4(2) must first interact with the orbit 2a (getting des-
troyed in a period-halving bifurcation as a function of de-
creasing R ) before 2b can interact with 2a in an inverse
saddle-node bifurcation which destroys them both.

The intertwining matrix shows that 2a and 2b can in-
teract through a saddle-node bifurcation (R increasing)
while 2b and 2(l) can interact through inverse saddle-
node bifurcation. Thus we predict that we can deform
the laser equation (i.e., by changing the values of the pa-
rameters e„ez,Q) to eliminate both saddle-node bifurca-
tions (Fig. 8) to "straighten out the snake. " Such a defor-
mation exists and has been found.

It is profitable to regard the period-two branch of the
original laser system (Fig. 1) as simply a continuation of
the period-one branch: 1-2(1)-2b-2a. Such a continuation
is called a "snake" by Yorke and co-workers. ' ' In
this sense the laser system has no period-two branch.
This can be made more precise by observing the spectrum
of regular periodic saddles for sufficiently large control
parameter values: regular saddles of periods 3,4,5, . . .
created in saddle-node bifurcations persist for all larger
values of R. There is also a single stable period-one orbit
for small control parameter values as well as one regular
period-one saddle for all values of R. In consequence,
branches of periods 1,3,4,5, . . . are identifiable, but there
is no period-two branch.

A

A'+' C' D'

(a)

V. HORSESHOES

One diSculty of previous studies of driven damped
dynamical systems has been the lack of information on
the existence and multiplicity of subharmonic branches
of any periodicity. For example, it would be useful to be
able to make statements of the form "For any n there is a
subharmonic branch" or "For any n there are (no more
than) E(n) subharmonic branches. " These are analogous
to completeness statements of linear systems theory. The
only mechanisms available for providing completeness
statements are mapping constructions of horseshoe-
type. The presence of a horseshoe is suggested by the
partial spectrum of regular periodic saddles„and particu-
larly the absence of a regular period-two saddle.

To test this possibility, we investigated the return map
of the outset of the regular period-one saddle which exists
for all 8 values. This return, for large R values, indicated
the incomplete formation of a horseshoe. This informa-
tion suggested that it would be useful to compute the rel-
ative rotation rate for ihe horseshoe return map.

There is, of course, the di%culty that the horseshoe is a
map while the construction of relative rotation rates must
be carried out for Aows. The fitting of a horseshoe return
map to a flow is unique up to an overall rotation (torsion)
about the axis of the liow. Figure 9(a) shows a hft of the
horseshoe map to a flow with zero torsion; Fig. 9(b)
shows a lift with torsion + 1.

It is now possible to compute the intertwining matrix
for any Aow whose underlying return map is a horseshoe.
First, the torsion of the lift is computed. This may be

~ Wn

A' B' C D

FIG. 9. (a) A zero-torsion lift of the horseshoe return map
has intersections with the planes "phase=constant" as shown.
(b) This 1ift of the horseshoe map to a flow has torsion +1;one
complete clockwise rotation (as seen looking into the Aow) of
the image on the plane "phase=constant" is made per period.
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TABLE IV. Relative rotation rates for the zero-torsion lift of the horseshoe. All rotation rates are clockwise; the negative sign has
not been shown. This table sho~s the relative number of occurrences when two or more ratios occur by varying the initial condi-
tions. Orbits are named by their logical sequence; the corresponding orbit for the laser system is indicated in the second column.
Parentheses after period indicates the 8 value at which orbit is created by saddle-node bifurcation. Notation is as in Table I: a,
stable; b, regular saddle; 2(1) and 6(3) are period-doubled orbits along period-one and period-three branches. T indicates torsion of
the horseshoe lift. This is the relative rotation rate of the two period-one orbits about each other. If this is nonzero, the positive or
negative integer T should be added to all entries in this matrix (which are nonpositive).
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determined by computing the relative rotation rate of the
two period-one orbits around each other.

Second, this torsion is added to each matrix element of
a canonical intertwining matrix for the torsion-free lift.
To construct this canonical matrix, the periodic orbits
must be enumerated. This can be done using logical se-
quences. ' Once the rows and columns (periodic orbits)
have been enumerated, the relative rotation rates can be
computed. %e have carried out these computations; the
results are summarized in Table IV. These results were
computed in two di8'erent ways: from kneading theory
applied to one-dimensional maps with a single maximum
(Holmes's template construction ) and from a piecewise
linear horseshoe.

A matrix of topological invariants, the linking and
self-linking numbers, can be constructed from the in-
tertwining matrix. This is presented in Table V. This
matrix is constructed for the torsion-free lift. For lifts
with torsion n the integer p~ Qp&gn must be added to
each matrix element: L„(A, B)=Lo(A, B)+pz Xpz X n

Tables VI and VII provide the relative rotation rates and

the linking and self-linking numbers for the period-
doubling cascade based on the period-one branch.

Tables of relative rotation rates for cascades based on
any periodic orbit can be constructed relatively easily.
%'e first note that in a period-doubling bifurcation the
daughter orbit rotates around the mother orbit. In the
next period-doubling bifurcation the granddaughter
winds around the daughter, and both together rotate
around the mother orbit in the same way. Therefore the
intertwining matrix becomes essentially trivial except
along the major diagonal and the diagonals adjacent to it,
which describe mother-daughter linking. The self-
rotation and relative rotation rates for a mother-daughter
pair, given in Sec. III D property (10) are summarized in
Table VIII(a). Here the mother orbit has period p„and
the daughter 2p~. The additional relative rotation rater, is the local torsion (6), divided by the period of the

daughter orbit (local relative torsion). The intertwining
matrix for cascades in the zero-torsion lift can be built up
from the sequence of local torsions together with the rela-
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TABLE IV. (Continued).
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TABLE V. Linking and self-linking numbers for low period orbits of the zero-torsion lift of the horseshoe map.
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TABLE VI. Intertwining matrix for the cascade based on the period-one branch, assuming a zero-
torsion lift. The relative rotation rates are the relative local torsions. The entries give only the relative
occurrence of these rates. Scaling appropriately, the period-eight and period-16 orbits have the follow-

ing spectrum of relative rotation rates: 64( —'), 32( —'), 16(
8 ), 16{—,'6 ). t, = —', t2 = —', t, = 8, t4 ———,'6, etc.

period

2
4
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16

0
1

0
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1

2

t10
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t lt2t3

2

3
8

tl t2

t lt2t3
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t', t,'t, t4

16

tIE2
2

t &t2~3~4
4 2
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tive rotation rates of the fundamental orbit.
If the fundamental orbit along a branch has period p

and self-rotation rates (ri, r2, . . . , rr i,0) with local rel-
ative torsions tk+, around the orbits of period pg2,

l

then the matrix elements I(k, l) of the intertwining ma-
trix, describing the orbits of periods p)&2 and @&2'
(k &1 =0, 1,2, . . . ) are

I(k, k)=[2 (ri, r&, . . . , rr i),2" '(ti), 2" (t2), . . . , 2 (tk), 0]
~2k+1I(k, k +1)=[2"(ri,r2, . . . ,r, ),2" '(ti), 2 (t2), , tk, tk+i]

x2k +lI(k)I) =[ri~r2t. . . ) rp j, tl it2, . . . , tg)tk+I]

The local torsions are computed from (6), and the local
relative torsions are

t„+,=T(k, k+ I)/p X2"+' .

The integer m in Eq. (6) is the (local torsion —1) of the
fundamental orbit. The local torsion obeys the equation
of Fibonacci-type

T(k, k +1)=T(k —I,k)+2x T(k —2, k —1), (9)

with imtial conditions T( —1,0)=0, T(0, 1)=m —1. For
the cascade along the period-one branch, the local tor-
sions T(0, 1), T(1,2), etc are 1, 1. ,3,5, 11,21,43, etc., and
the local relative torsions t, , t 2, t 3, t4, t 5, . . . are
1/2, 1/2, 3/2, 5/2, 11/2, 21/2, etc.

The linking and self-linking numbers for any cascade
are easily obtained from eq. (5). We note, first of all, that
those far from the diagonal are simply related to the
mother-daughter linking numbers, since all (great} grand-
daughters rotate around the mother in the same way as
the daughter,

L(k, I)=2"-'"+'"L(k,k+1) (I ~k) . (10)

TABLE VII. Linking and self-linking numbers for the
period-doubling cascade based on the period-one branch.

period
1

2
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32

1

2
1

1

3
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3

6
13
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51
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4
16

8
12
26
51
97

205

S

32
16
24
52

102
205
399

The linking and self-linking numbers are recursively re-
lated by [Table VIII(b}]

S(k + l, k +1)=4xS(k,k)+ T(k, k +1),
L (k, k +1)=2xS(k, k)+ T(k, k +1) .

The initial condition for this recursion relation is
S(0,0) =p X g r; For the. cascade along the period-one
branch, the self-linking numbers are 0,1,5,23,97,399,
1617,6511, etc.

VI. SECOND APPLICATION TO THE LASER

The intertwining matrix for the zero-torsion lift of the
horseshoe (Table IV) can be compared with the intertwin-
ing matrix of the laser after the three period-two orbits in
the period-one snake have been identified, and two are re-
moved from Table I. After this identification, the two in-
tertwining matrices are equivalent for the orbits appear-
ing in both. The observed period-n subharmonic in the
physical system corresponds to the periodic orbit with
logical sequence x" 'y. This corresponds to both obser-
vation and intuition: in the laser the subharmonic orbits
show one energetic spike and n —1 following tiny
tremors. This is also expected on the basis of energy bal-
ance arguments.

The horseshoe scenario predicts additional subharmon-
ic branches. The lowest subharmonic for which there is
degeneracy is n=5, for which up to two additional
branches could exist. For the subharmonics of period
6,7,8,9, . . . , the maximum degeneracy of stable branches
is 4,9,14,28,. . . . Since the horseshoe is incomplete, not
all branches mill necessarily exist for any value of the
control parameter. They all will exist if there is a com-
plete horseshoe.

Location of another period-n subharmonic would pro-
vide a strong indication that the dynamics of the laser
system is in fact governed by a horseshoe. Since basins
decrease rapidly in size with increasing n and n =5 is the
first periodicity with degenerate multiplicity, we searched
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TABLE VIII. (a) Elements of the intertwining matrix I(k, l)
involving a mother-daughter pair of orbits of periods p =2 and
2@=2 +'. (b} The linking numbers 1.(k, l) and self-linking
numbers (for k =I) S(k,k) for these orbits are related to the lo-
cal torsion T(k„k + 1) as indicated in this portion of the matrix
of linking numbers.

I(k, k')

(r&, r2 rp f 0)p (r] r2 rp ] rp) 2p

$2p g 2 2(r(sr2s ~ - ~

harp

)harp ~ «)ir2s ~ ~ ~ s rp gsrps~&

S(k,k) 2xS(k, k)+ T(k, k+1)
2&& S(k, k) +T( k, %+1) 4xS(k, k)+T(k, k+ I)

carefully for a second period-five basin. Knowing the
logical sequence (xy ) associated with the stable periodic
orbit, we were able to estimate its approximate shape and
location. These estimates provided initial conditions
which led to rapid location of the second stable period-

five orbit. The third period-five orbit (x y }was found in
the same way. Both their basins are very small. Neither
had been found during earlier searches over random ini-
tial conditions in this region of the phase space, and both
would have remained undiscovered without knowledge of
their names (logical sequence) and this implication on or-
bital size and shape. The identi5cation of the second and
third period-6ve branches was confirmed by computing
their relative rotation rates against other low periodicity
orbits. These computations reproduced the intertwining
matrix for the zero-torsion lift of the horseshoe map
(Table IV). An additional period-five orbit has been seen
experimentally. Its location agrees qualitatively with
the location of the second period-five orbit (x y } com-
puted from the laser equations (2).

%'e expect that there are no other independent period-
6ve branches. If additional period-five subharmonic
branches were to be discovered in the laser system, they
will be "snaked" to one of the three branches already
discovered. The snake will be clear from its relative rota-
tion rates. In addition, a deformation of the equations (2)
can straighten out the snake, as discussed for the period-
one "period-two"-branch in Sec. V. Such snakes have
been observed for the period-one branch and the period-
three regular saddle.

(c) Poincare plane

+11 ' +12 ' 21 ' 22=0@

A

FIG. 10. The relative rotation rates of two periodic orbits are computed in three equivalent vvays. (a} Each time the dift'erence Ar
crosses the half line 5r =0, hr' «0, the crossing direction is counted positive (cr =+1) if der /dt ~ 0 and negative if der'/dt ~0.
(b) Whenever A crosses over 8 (Ar =0, hr' g0), the crossing is counted positive if A crosses 8 from left to right (looking in the
direction of the time evolution} and negative if A crosses over 8 from right to left. (c) Curve A is partitioned into p& segments,
A „A„.. . , A», where 3; connects a, to a;+ l in the Poincare plane. Curve 8 is treated similarly. The index o „counts the signed
number of times segment 3; crosses over segment 8, , counting + 1 if A; crosses over 8, from left to right and —1 if the crossing is
from right to left.



H. G. SOLARI AND R. GILMORE

The relative rotation rate has been introduced as an or-
bit pair index with rational fractional values on pairs of
periodic orbits. Their values indicate the average, per
period, that one orbit winds around another. These in-
dices are simple to measure and compute. They can even
be computed for noncoexistent orbits. Their values de-

pend on initial conditions. This de6nition can often be
extended to noisy periodic orbits as well as strange at-
tractors.

These indices are useful for determining whether or not
two orbits can interact through bifurcation. In addition,
the intertwining matrix can be used to determine the or-
der in which bifurcations can occur. This index has been
particularly useful for locating internal crises to verify
the Feigenbaum ratios for the periodic and noisy periodic
cascades, and the Lorenz ratio relating these cascades. It
has been useful for locating boundary and external crises
as well.

These dynamical indices are closely related [Eq. (5)]
with topological knot-pair and knot indices, the linking
and self-linking numbers. Since the dynamical indices
are easily measured, the topological indices are also
measurable. In fact, the dynamical index (relative rota-
tion rate) provides more information than the topological
index. In essence, this is because the topological knot is
"too floppy. " It can be deformed by "isotopy moves" in
a way which does not preserve dynamical information,
i.e., intersection with the Poincare section. Such linking-
number preserving deformations typically destroy infor-
mation about the periodicity of the orbit. The relative
rotation rate preserves just sufficient underlying physics
(intersection with the Poincare plane) together with the
topological information (crossing numbers for return
maps, see the Appendix) to summarize the physics of the
Row while at the same time providing information on to-
pological invariance.

The intertwining matrix provides information to deter-
mine a decomposition of the fiow into an underlying map,
which organizes the local bifurcation properties, and a
lift, which determines the global Bow properties. This
decomposition is precise in case the map has the rigidity
of a horseshoe or iterated horseshoe. The lift is then
specified by a single integer, the torsion. The torsion is
the relatI've rotation rate of the two period-one orbits.

The intertwining matrix for the laser (2) (with the
snaked period-two orbits identified) and the zero-torsion
lift of the horseshoe reveal that the dynamics of the laser
is governed by a horseshoe. This identification has indi-
cated that additional periodic orbits should exist. %'e

have estimated the locations of the two additional
period-five orbits in phase space (based on their "names")
and their relative rotation rates with all other low period
orbits. These orbits have been located where predicted
and their identification has been confirmed through their
relative rotation rates, which agree with the values given
in Table IV.
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APPENDIX: RELATIVE ROTATION
RATES AND LINKING NUMBERS

In this appendix we show the relation between relative
rotation rates and linking numbers. %e first present
three additional equivalent definitions of the relative rota-
tion rate; from the last one the relation with the linking
number is evident.

(2) Whenever b,r =0 and b,r' &0, define o(t) [cf. Fig.
10(a)]

+ 1 if d hr /dt & 0
cr(t)= '

—1 if db, r /dt (0 .

~„(~»)=(1/p~ptt) g a(t) .
0&1 & Tp~p~

(A2)

(3) Whenever A crosses over 8 (hr =0 and b, r '
& 0),

define o (t) by [cf. Fig. 10(b)]

o(t)= '
+1 if A; crosses B& from left to right
—1 if A; crosses BJ from right to left.

R;.(A, 8}=(1/p„ps) g o(t} .

0&t & Tp&p+

(A3)

(4) Partition the orbit A (8) into p„(pii) segments,
each starting at a„(b, ) and ending at the next intersec-
tion a, +, (b, +i). Let o „, be the number of upper cross-
ings between the segments (r, r +1) of 3 and (s,s+1) of
8. Then [cf. Fig. 10(c)]

Equivalent definitions of the relative rotation rates

Let A (8) be an orbit of period p„(ps ) which has suc-
cessive intersections [a, , a2, . . . , ar (b~ )] with the

pa
Poincare section. The relative rotation rates can be com-
puted in the following four equivalent ways.

(1)The first way is

RJ(A, 8)=(1/2npzpti) f n (hrXdhr)/(hr hr),

br=(hr', hr )=[x„(t) xtt(t), y—„(t) ytt(t)) . (A—l)

%e thank K. T. Alligood, F. T. Arecchi, E. Eschenazi,
C. Robinson, G. Schmidt, I. B. Schwartz, and J. R.

&~J( A, 8)=(1/pgpti )

n =1,2, . . . ,p~p~

cr, +„+„. (A4)
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Considering the propositions 1,2,3,4 in this order, the
equivalence results are self-evident.

Definitions (A2) and (A3) are more appropriate for
computational purposes than the original one (Al), as
they do not involve integrals. In fact, they can be imple-
mented with an integer counter to avoid roundoff error.

Since the definition (A4) is independent of time, the en-
tire concept of a relative rotation rate may be extended to
three-dimensional autonomous dynamical systems.

The relation between relative rotation rates and linking
numbers is now easily determined from (A4). In this
language, the linking number is

3 and 8

A simple manipulation of the indices gives

L(A, B)=

which is the desired relation.
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