A Topological Test for Embeddings
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A new test for embedding time series data from low-dimensional chaotic systems into three-

dimensional phase spaces is proposed.

the topological invariants of periodic orbits embedded in chaotic attractors.
independent of artificial thresholds that accompany all other embedding tests.

It is topological, based on the overcompleteness of

As such it is
The test is

illustrated on vector and scalar time series generated by a four-dimensional dynamical system.

A large number of experiments have been carried out
on physical systems that exhibit chaotic behavior over
some range of parameter values. In most cases a sin-
gle observable is measured at equally spaced time in-
tervals, resulting in a scalar time series m; = m(t;),
i = 1,2,...,N. Usually the first step in the analysis
of such data is a search for a suitable embedding. An
embedding is a mapping of the data into a phase space
RP that preserves determinism, so that the original dy-
namical behavior can be reconstructed. If the data are
chaotic, D > 3 [1].

Mappings of scalar time series into R take the form
m(t) — (z1(t),z2(t),z3(t),...,2p(t)), where the coor-
dinates x;(t) are functions of the observables. A num-
ber of mappings have been proposed. The default is the
time delay mapping, in which z;(t) = m(t — (i — 1)7),
where 7 is the time delay [2-4]. Another very useful
mapping is the differential mapping, in which z;(t) =
d=VDm(t)/dt=1) [5]. Other useful mappings take the
form of mixtures of these two types, for example m(t) —
(m(t),dm(t)/dt,m(t — 7)), SVD mappings, and Hilbert
transform pairs. Classes of mappings have been reviewed
in [6-10].

Once observed data have been mapped into a D-
dimensional phase space it is necessary to determine
whether the mapping is an embedding. An embedding
is a mapping that preserves determinism. That is, the
mapped attractor avoids self-intersections, so that the
uniqueness theorem is preserved. A number of embed-
ding tests have been proposed. They all share a common
feature: they are implemented as a function of increasing
dimension and a mapping is declared an embedding when
a threshold is reached. The tests are of two broad types:
geometric and dynamical. Each type has many variants.
The earliest test was geometric. It depended on comput-
ing geometric invariants [11] such as fractal dimensions
and looking for “saturation of fractal dimensions” as a
function of increasing dimension [12-14]. In practice this
test was difficult to implement and is still more of a black

art than science. This was superceded in practice by the
“false nearest neighbor” test [15]. This test looks at two
points near each other in some mapping and determines
whether they remain near each other as the dimension
increases. If ‘yes’, the two points are assumed near each
other in the original attractor that generated the data. If
‘no’, the initial mapping did not provide an embedding.
A mapping is declared an embedding when a sufficiently
small percentage of point pairs are determined to be false
nearest neighbors. Dynamical tests are similar in spirit.
If a mapping is an embedding, then a point in R” has
a unique future. Predictability of the future from the
present was implemented in the “bad prediction” test
[16]. This same property was implemented in another
way as a “test for determinism” [17]. In this test the
phase space was decimated in each dimension and the
uniqueness of the flow direction in each D-dimensional
cube was estimated by computing inner products of tan-
gent vectors to all trajectories passing through each cube.
Both these dynamical tests declare a mapping to be an
embedding when the relevant statistic reaches an appro-
priate value.

Behind all these tests lurk the embedding theorems.
These guarantee that if the dynamics is generated by
an n-dimensional dynamical system, the data describing
the dynamics can always be embedded in R? for D suffi-
ciently large. These theorems are based on the idea that
if the dimension is sufficiently large there is enough room
in phase space so that self-intersections typically ( “gener-
ically”) do not occur. The simplest estimate D > 2n+ 1
based on genericity was reduced to D > 2n by Whitney
[18] and reduced once again to D > 2d 4 [19], where d4 is
an appropriate fractal dimension. For the Lorenz attrac-
tor [21] with d4 = 2.06 these theorems guarantee that
an embedding into RP with D > 5 can always be found.
As pointed out forcefully by Abarbanel and collabora-
tors [6, 7, 15], pleasing as it might be to mathematicians
to have a theorem of this type, for physicists such theo-
rems are useless. If the dynamics is three-dimensional we



need an algorithm for constructing a three-dimensional
embedding rather than a theorem stating that a five-
dimensional embedding exists.

Once a suitable embedding has been determined, the
embedded data can be analyzed. The analysis procedures
are of three broad types: geometric [13], dynamical [20],
and topological [5]. Geometrical and dynamical analy-
ses focus on computing the spectra of fractal dimensions
and Lyapunov exponents, respectively. These calcula-
tions can be carried out for any value of the dimension
D. The results are real numbers with no underlying sta-
tistical theory to provide believable error estimates (er-
ror bars are “educated guesses” [14]), and no informa-
tion about the mechanism that generates chaotic behav-
ior. Topological analyses can be carried out only when
D = 3. However, these tests reveal the mechanism that
generates chaotic behavior. Furthermore, the results are
overdetermined and therefore contain their own rejection
criteria [5, 9]. We will exploit this overdeterminism and
rejection criteria in this new test for embedding in R3.
The restriction to three dimensions is not as problematic
as it might seem. All of the embedding tests described
above were benchmarked primarily on low-dimensional
flows generated by the standard chaotic attractors such
as the Lorenz [21] and Réssler [45] attractors. Further,
our understanding of the description and properties of
three-dimensional attractors (those that exist in a three-
dimensional phase space) far exceeds our understanding
of higher-dimensional attractors. For these reasons the
present topological test for embedding in three dimen-
sions presents a powerful complement to embedding tests
based on geometry and dynamics. A comparison of the
geometrical, dynamical, and topological tools and their
application to tests of embeddings and analyses of chaotic
data is presented in Table I.

TABLE I: Relation among the geometrical (G), dynam-
ical (D), and topological (T) methods of analyzing and
embedding chaotic data. Dim. is the dimension for which
the test is applicable; Rej. indicates whether the test
contains its own rejection criteria.

| Embedding Dim. Rej.|Analysis Dim. Rej.

G||Correlation dim. >3 N |Fractal dims. >3 N
False NN Lyapunov dim.

D||Bad prediction >3 N |Lyapunov exps. >3 N
Determinism

T || Linking #s 3 Y |Linking #s 3Y

The basic idea of and algorithm for this test is simple to
state. Estimate the Lyapunov dimension, dy,, from m(t)
[22]. If di, > 3, stop. Otherwise follow these steps: (1)
Search through the scalar time series m(t) for surrogates
for periodic orbits. This can be done by the method of
close returns before any embedding is attempted [25, 26].
(2) Choose a mapping and (3) construct a generating
partition for this mapping [27]. (4) Construct a table of
linking numbers for the periodic orbits identified in step

(1) [28]. (5) Construct the branched manifold based on a
small number of lower-period orbits [29] and (6) compare
the predicted and computed linking numbers for the rest
of the orbits identified in the data. If there is any dis-
agreement then (a) the mapping is not an embedding; or
(b) the symbolic labeling of one or more orbits is ques-
tionable; or (c) the branched manifold is incorrect. This
algorithm can be repeated over many mappings until a
suitable embedding is found, if ever. Items (b) and (c)
are part of the analysis procedure; item (a) is the heart
of this new embedding test.

We illustrate this algorithm using data generated by
the four-dimensional dynamical system:

X = o(-X+Y)-17.11118U

Y = (R/V)X-Y -XZ 1)
Z = —vZ+XY
U= -AU+X

This system is a modification of the Malkus-Robbins dy-
namo equations (involving only (X,Y,Z)) which were
originally introduced to model the action of a self-exciting
dynamo. The extension is to include the variable U,
which represents the angular speed of the motor of the
dynamo [38]. For 8 = 0 there is no feedback from the U
subsystem into the (X,Y,Z) subsystem, which behaves
like a Lorenz attractor. The four-dimensional system is
reducible in this case [9]. The dynamics was studied for
(o,v, R) = (10,8/3,74.667), where the Lorenz equations
generate a chaotic attractor, and A = 3.2. In the range
0 < B <179, Eq. (1) generates a chaotic attractor with
Lyapunov dimension Dy ~ 2.2 [48]. A boundary crisis
destroys the attractor at § ~ 7.9.

Surrogate periodic orbits were extracted from the
chaotic time series by the method of close returns
[24, 25]. These were extracted using the full
(X(#),Y(t),Z(t),U(t)) time series and the scalar time
series Y (¢) alone. A symbolic dynamics on two symbols
L and R was constructed using a projection into the Y-V
plane, shown for § = 3.8 in Fig. 1. Projections for other
values of 3, and projections into other subspaces (except
(Z, Z)) looked similar. The topological entropy of this
system is slightly less than log2 so most orbits on two
symbols were present. The two exceptions were the two
period-one orbits L and R.

Each mapping into R? was tested as an embedding as
follows. The orbits were mapped into R®> and a table
of linking numbers was constructed. The mapping was
considered an embedding if this table was consistent with
a table of linking numbers that could be constructed for
this spectrum of orbits using some branched manifold.

The first mapping we tested was the projection R* —
R3 given by (X,Y,Z,U) — (X,Y,Z). For 0.6 < 3 < 5.4
the table of linking numbers obtained from the unstable
periodic orbits was not compatible with any branched
manifold. For 0 < 8 < 0.6 and 54 < 8 < 7.9 the
tables were compatible with linking numbers derived
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FIG. 1: Projection of the chaotic attractor onto
the two-dimensional subspace (YY) provides cod-
ing information.  Parameter values: (o,v,R,A) =
(10,8/3,74.667,3.2) and B = 3.8.

from Lorenz branched manifolds with rotation symme-
try [30, 31, 33, 44]. Moreover, we found that for each
pair of orbits A and B, the linking number LN (A, B) in
the large (§ limit was the negative of its value in the small
0 limit. This means that the branched manifold in the
large (3 limit is the mirror image of the branched manifold
in the small § limit [48]. This comes about because the
mapped attractor undergoes self-intersections, inverting
itself in the process as ( increases.

When self-intersections occur, pairs of periodic orbits
“pass through” each other. A robust way to determine
when this occurs is to locate two periodic orbits whose
linking number (LN) changes from a value compatible
with the Lorenz template to a value incompatible with
any branched manifold somewhere in the range 0.6 < g <
5.4. This test was carried out on two period-three orbits,
LLR and RRL. For these orbits, LN(LLR, RRL) = +1
for 0 < 8 < 0.85, 0 for 0.85 < 8 < 4.0 and and —1 for
50< 6 <T7.9.

To show these orbits intersect, we computed the min-
imum distance between them as a function of 3 in three
different spaces: the four-dimensional space with coordi-
nates (X,Y, Z,U) and the two three-dimensional projec-
tions (X,Y, Z) and (X,Y,U). The result is presented in
Fig. 2, which clearly shows that LLR and RRL inter-
sect between 8 = 0.85 and § = 0.9 only in the (X,Y, 7Z)
projection. The region of self-intersection of the attractor
begins at smaller values of 3, as can be seen by analyzing
the linking numbers of higher period orbits. The mini-
mum distance between these two orbits in R* is never
zero by genericity arguments.

The differential mapping based on Y (¢) into three di-
mensions was also investigated. The linking numbers for
the appropriate branched manifold, the Lorenz branched
manifold with inversion symmetry, are given in Table
II. Analysis of the linking numbers revealed that this
was not an embedding for values of § in the range
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FIG. 2: Minimum distance between the two surrogate
orbits LRR and LLR as a function of § in the chaotic
attractor in R* and under two projections into three-
dimensional spaces. Under the mapping (X,Y,Z,U) —
(X,Y, Z) these orbits undergo an intersection: this map-
ping cannot be an embedding for all values of 3. Param-
eter values: (o,v, R,A) = (10,8/3,74.667,3.2).

FIG. 3: Lorenz branched manifold with inversion symme-
try. This describes the topological organization of all the
unstable periodic orbits for embeddings obtained by pro-
jections into (X, Y, U) and differential embeddings based
on the odd variables X (¢) and U(t).

0.6 < B < 5.4. This zero-parameter family of mappings
was replaced by the one-parameter family of delay map-
pings (Y (¢),Y(t —7),Y (¢t — 27)). In the limit of small 7,
this is equivalent to the differential mapping. We stud-
ied this mapping as a function of 7 for data generated
at § = 3.8. For small 7 the linking numbers did not
agree with those compatible with any branched mani-
fold. As 7 is increased, the linking numbers that were
incompatible with the branched manifold shown in Fig.
3 changed because of intersections until all reached val-
ues compatible with this branched manifold for a small
range of delay values above 7 = 10. In Fig. 4 we show
the minimum distance between orbits LRR and LLRR
as a function of 7. An intersection occurs near the delay
7~10. For 7 =7 LN(LRR,LLRR) =0 and for 7 =13
LN(LRR,LLRR) = —1: the former incompatible and
the latter compatible with the branched manifold in Fig.
3 and Table II. the linking number changes at other orbit
intersections.



TABLE II: Linking numbers of low period orbits in the
inversion-symmetric Lorenz attractor.

LR LLR LRR LLLR LRRR LLRR
LR | — 0 0 0 0 0
LLR | O — 0 +1 0 +1
LRR | O 0 - 0 -1 -1
LLLR| 0 +1 0 - 0 +1
LRRR| 0 0 -1 0 - -1
LLRR| 0O +1 -1 +1 -1 —

40 60
Timedelay T

FIG. 4: Minimum distance between orbits LRR and

LLRR in the time delay mapping (Y'(¢),Y (t —7),Y (¢t —
27)) as a function of the time delay 7. The integers above
some peaks is LN(LRR, LLRR). The characteristic pe-
riod corresponds to 7 ~ 80.

Fig. 5 shows a simple “cardboard model” represen-
tation of the geometric structure created by the pro-
jection (X,Y,Z,.U) — (X,Y,Z) for § = 3.8 when it is
not an embedding. The dark line indicates the region in
the (X,Y, Z) phase space where the two lobes of the at-
tractor undergo self-intersections. This set of dimension
2 x 2.2 —3 ~ 1.4 [34] has measure zero, and is the region
responsible for failure to embed. Most of the geomet-
rical tests and all of the dynamical tests for embedding
depend upon picking up a signal from this measure zero
set. This small signal could easily be obscured by choice
of threshold parameters for these two classes of tests. On
the other hand there is no way to misinterpret the zero-
crossing signatures in Figs. 2 and 4.

In order to complete the symmetry that exists be-
tween methods for analyzing chaotic data and meth-
ods for testing whether a mapping is an embedding or
not, in this Letter we have introduced a new embed-
ding test. This test depends upon the rigid organization
of the unstable periodic orbits that exist in abundance
in three-dimensional chaotic attractors, and the descrip-
tion of this organization by branched manifolds. More
specifically, for a mapping to be an embedding, it must
preserve the results of the Birman-Williams theorem for
low-dimensional chaotic attractors [35]. The three anal-
ysis techniques and the symmetry between embedding
tests and analyses once an embedding has been found
are summarized in Table I.

R. G. thanks CNRS for the invited position at CORIA
for 2006-2007.

= Self-intersections

FIG. 5: Cardboard model of the self-intersections of the
projection of the chaotic attractor into the (X,Y, Z) sub-
space for 0.6 < 5 < 5.4.
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