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Abstract
We present a systematic way to construct dynamical systems with a specific
symmetry group G. Each symmetric strange attractor has a unique image
attractor that is locally identical to it but different at the global topological
level. Image attractors can be lifted to many inequivalent covering attractors.
These are distinguished by an index that has related topological, algebraic
and group theoretical interpretations. These methods are used to describe
dynamical systems with symmetry groups V4, S4 and S6.

PACS number: 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work, we continue and extend our study of dynamical systems on R
3 with symmetry

and closely related dynamical systems without symmetry [1–3]. The two types of systems
are related by a local diffeomorphism. This is a differentiable mapping that is 1:1 almost
everywhere. The Jacobian of the transformation between the two coordinate systems is
singular only on zero- and one-dimensional subsets of the phase space R

3. Such mappings
are conveniently constructed with the aid of symmetry groups. In fact, there is a very close
relation between symmetry groups, local diffeomorphisms, and strange attractors with and
without symmetry [1].

In previous works, we have studied the cover and image relation for groups with two-fold
symmetry, such as the rotation group RZ(π) and the inversion group P, acting in R

3 [1]. We
have also studied the cover-image relation for n-fold rotation groups of the type Cn [3, 4].
In this work, we apply these results to dynamical systems with more complicated symmetry
groups, in particular the groups V4, S4 and S6.

In section 2, we summarize the properties of dynamical systems Ẋ = F(X) with a finite
symmetry group. We constrain ourselves especially to three-dimensional dynamical systems,
since their global structure is by now rather well understood and they can be explained

1751-8113/07/215597+24$30.00 © 2007 IOP Publishing Ltd Printed in the UK 5597

http://dx.doi.org/10.1088/1751-8113/40/21/011
http://stacks.iop.org/JPhysA/40/5597


5598 C Letellier and R Gilmore

in terms of relatively simple structures called branched manifolds [5–7]. In section 3, we
summarize the methods used to construct dynamical systems invariant under a given symmetry
group G. This is done in particular for the four-group V4. The tools involve invariant and
covariant polynomials [8], invariant coordinates and functions of these coordinates, Jacobians
of transformations and the chain rule of elementary calculus. We also introduce more
sophisticated concepts, such as the index [1] that distinguishes topologically inequivalent
symmetric covers from each other. The index is described in terms of its topological, algebraic
and group theoretic properties. We wrap up this section by constructing all the topologically
inequivalent covers of the Rössler dynamical system [9] that have V4 symmetry. There are
essentially six inequivalent types of covers.

In sections 4, 5 and 6, we discuss equivariant systems that have been previously introduced.
These have symmetry groups V4 (section 4), S4 (section 5) and S6 (section 6). The study
of these dynamical systems is considerably simplified by the methods introduced as well as
the relation between the strange attractors with symmetry and their images without. Finally,
section 7 contains a discussion of our results and some concluding remarks.

2. Review of invariance and equivariance properties

A dynamical system Ẋ = F(X),X ∈ R
n is invariant under a group G if it satisfies

γ Ẋ = γF(X) = F(γX), γ ∈ G. This can be expressed equivalently as γF = Fγ or
γFγ −1 = F . The functions F(X) are said to be equivariant under the action of the group G
[10], while the dynamical system Ẋ = F(X) is invariant under G.

For a dynamical system invariant under the action of a finite group G, dynamics in the
neighbourhood of a point X ∈ R

n looks the same as dynamics in the neighbourhood of its
image γX, γ ∈ G. This observation has the following specific implications [1].

(1) If X0 is a fixed point, then γX0 is a fixed point. At a fixed point, F(X0) = 0. As a result,
F(γX0) = γF(X0) = γ 0 = 0.

(2) The Jacobian [∂Fi/∂Xj ]X0 is related by a similarity transformation to the Jacobian at the
image point [

∂Fi

∂Xj

]
γX0

= γ

[
∂Fi

∂Xj

]
X0

γ −1. (1)

As a result, if X0 and γX0 are fixed points, the eigenvalues of the Jacobians at X0 and
γX0 are identical. Symmetry-related fixed points have identical stability properties. In
addition, the eigenvectors of the two Jacobians are related by the similarity transformation
γ .

(3) If X0 is a fixed point that is left invariant under γ , then the Jacobian evaluated at that fixed
point commutes with γ :

[
∂Fi

∂Xj

]
X0

= γ
[

∂Fi

∂Xj

]
X0

γ −1.
(4) If φ(t) = (φ1(t), φ2(t), . . . , φn(t)) is a solution to dXi/dt = Fi(x) at X0, then

γφ(t) = (φ̃1(t), φ̃2(t), . . . , φ̃n(t)), φ̃i(t) = γ
j

i φj (t), is a solution to dXi/dt = Fi(x)

at γX0.
(5) If X0 is on a closed orbit φ(t), then γX0 is on the closed orbit φ̃(t) = γφ(t). If φ(t) has

period T, so that φ(t +T ) = φ(t), then φ̃(t) also has period T. The points X0 and γX0 may
be on different orbits or on the same orbit. If they are on the same orbit, φ̃(t) = φ(t + τ),
where kτ = T and k is an integer, k > 1 when γ �= I.

(6) If X0 is ‘in’ a strange attractor, γX0 is also. By ‘in’ we mean that X0 lies in the closure
of a strange attractor (the ω-limit set of the flow). This includes all the unstable periodic
orbits associated with (in) the strange attractor.
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(7) A strange attractor can consist of one connected component or several disconnected
components. In the latter case, if one disconnected component is mapped into itself by
group operations hi ∈ H ⊂ G, this component is mapped into distinct disjoint components
by coset representatives ωj ∈ G/H.

A word on notation. Throughout this work, we discuss the relation between dynamical systems
invariant under a group G and their image dynamical systems invariant under a group that is
a homomorphic image of G, in all cases the identity I. We distinguish these two cases by
use of capital letters in the case of the former, and lower case letters in the case of the latter.
We systematically refer to the former as symmetric dynamical systems and the latter as image
dynamical systems.

3. Covers with V4 symmetry

The four-group V4 (vierergruppe) has four group operations, the identity, two generators, σ1

and σ2, and their product σ1σ2. The generators satisfy the relations I = σ 2
1 = σ 2

2 = (σ1σ2)
2.

This group can be implemented in R
3 as the group of rotations by π radians about the X-, Y-

and Z-axes. The matrix representation of the three rotations in this group is

RX(π) RY (π) RZ(π)
+1 0 0

0 −1 0
0 0 −1





−1 0 0

0 +1 0
0 0 −1





−1 0 0

0 −1 0
0 0 +1


 .

The product of any two is the third. The square of each is the identity.

3.1. Invariant polynomials

Invariant polynomials are unchanged under the action of each of the operations of the symmetry
group [1, 8]. Every function that is invariant under the group action can be expressed as a
function of a small set of basic invariant polynomials. These basic invariant polynomials are
the proper tool to use to construct relations between symmetric dynamical systems and their
invariant image dynamical systems.

The four basic invariant polyonmials with V4 symmetry are

p1 = X2, p2 = Y 2, p3 = Z2, p4 = XYZ.

The quartic invariants are all products of quadratic invariants. The four basic invariant
polynomials above are not independent, but obey one relation (syzygy) [1, 8]

(X2)(Y 2)(Z2) − (XYZ)2 = p1p2p3 − p2
4 = 0.

The generating function for the number of invariants N(d) of degree d is [1, 8]

f (x) =
∑

N(d)xd

= 1

4

∑
gi

1

det[I3 − xR(gi)]
= 1 + x3

(1 − x2)3
.

This shows that there are three independent quadratic terms (X2, Y 2, Z2), and that the cubic
term obeys the syzygy p2

4 = p1p2p3 [8].
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3.2. Invariant coordinates

It is useful to establish a 4 → 1 local diffeomorphism of (X, Y,Z) ∈ R
3(X) onto

(u1, u2, u3) ∈ R
3(u) using the following three linear combinations of the four basic quadratic

and cubic invariant polynomials

u1 = 1
2 (X2 − Y 2)

u2 = 1
2 (X2 + Y 2 − 2Z2)

u3 = XYZ.

(2)

Every point in R
3(u) has four inverse images in R

3(X). They are obtained from

X = ±
√

Z2 + u2 + u1

Y = ±
√

Z2 + u2 − u1.

(3)

The value of Z is determined from

u3 =
√

Z2 + u2 + u1

√
Z2 + u2 − u1Z.

This equation has a unique solution, as can easily be seen. If u3 > 0, the solution is in the
positive octant (X, Y,Z) = (+, +, +). If u3 < 0, the solution is in the octant (+, +, −). The
unique solution with u1 > 0, u2 > 0 is mapped into the three additional inverse images by the
three rotation operations

I RX(π) RY (π) RZ(π)

(+ + +) → (+ + +) (+ − −) (− + −) (− − +)

(+ + −) → (+ + −) (+ − +) (− + +) (− − −).

The four inverse images in R
3(X) in the top line map to the upper half (u3 > 0) of R

3(u).
The bottom line maps to the lower half of this space.

3.3. The Jacobian

The relation between the equations of motion that are invariant under V4 and the image
equations is given by a simple change of coordinate transformation. This transformation is
effected by a Jacobian.

The Jacobian of the 4 → 1 local diffeomorphism of R
3(X) onto R

3(u) is

∂u

∂X
=


 X −Y 0

X Y −2Z

YZ ZX XY


 det−→ 2(X2Y 2 + Y 2Z2 + Z2X2).

The determinant vanishes when any two of the three quadratic invariants X2, Y 2, Z2 are zero.
Specifically, the singular set of the determinant is

Y 2 + Z2 = 0 ∪ Z2 + X2 = 0 ∪ X2 + Y 2 = 0

RX(π) RY (π) RZ(π).

In short, it is the union of three rotation axes. The algebraic singularities reflect the geometric
symmetry of the group.
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3.4. Covering equations

The relation between the symmetric dynamical system Ẋ = F(X) and the image dynamical
system u̇ = f (u) is given by the chain rule:

du
dt

= f (u) = ∂u
∂X

dX
dt

= ∂u
∂X

F(X).

In particular, the invariant functions f (u) and equivariant functions F(X) are related by

f (u)


 X −Y 0

X Y −2Z

YZ ZX XY


F(X).

For G = V4, the inverse of this relation gives


Ẋ

Ẏ

Ż


 = 1

ρ2


 X(Y 2 + 2Z2) XY 2 YZ

−Y (X2 + 2Z2) X2Y ZX

Z(X2 − Y 2) −Z(X2 + Y 2) XY





u̇1

u̇2

u̇3


 ,

where ρ2 = X2Y 2 + Y 2Z2 + Z2X2.
A strange attractor in the image space can be lifted to a covering attractor in either of two

ways. An initial condition in R
3(u) can be chosen and the image equations u̇ = f (u) can be

integrated. The trajectory u(t) is then lifted into R
3(X) using equation (3). One trajectory in

R
3(u) lifts to four not necessarily different trajectories in R

3(X). On the other hand, an initial
condition in R

3(X) can be chosen and the symmetric equations Ẋ = F(X) integrated directly.

3.5. Topological index

A symmetric dynamical system can be mapped to an image dynamical system, and the image
is unique. This is not true in the reverse direction. An image dynamical system, and the
strange attractor it creates, can be lifted to many different symmetric dynamical systems
[1, 2]. The corresponding strange attractors can be topologically inequivalent, even though
they all possess the same symmetry. The different lifts, and strange attractors, are distinguished
by an index.

This index has three interpretations. At the topological level, the index is expressed in
terms of the properties of an important subset of orbits in the image attractor. These are the
period-1 orbits, one of which lies in each branch of the branched manifold that can be used
to characterize the image strange attractor. The index is a set of integers. These describe
how often each of the period-1 orbits circles around each of the rotation axes. For example,
if a period-1 orbit in the image attractor is labelled 0 and it lifts to an orbit in the cover that
encircles the X-axis once, then n0X = 1. The index of a lift is the set of integers, for all
period-1 orbits in the image, and all rotation axes of the symmetry group.

When the rotation axis or axes do not intersect the image, the lift is topologically
unchanged under perturbations (structurally stable). When the axis or axes do intersect
the image, the lifts are structurally unstable and undergo perestroikas. They are described
below in section 3.8 and in [11].

The V4-symmetric covers of the Rössler image attractor are distinguished by the linking
numbers of the period-1 orbits 0, 1 with the three rotation axes. The topological index in this
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X Y Z

0 0 0 1

1 0 1 1

Figure 1. Shown are a branched manifold for the Rössler attractor image and the X-, Y- and
Z-rotation axes for the symmetry group V4. The period-1 orbit in the orientation preserving branch
0 links the three rotation axes with linking numbers n0 = (0, 0, 1) and the period-1 orbit in the
orientation reversing branch 1 links the three rotation axes with linking numbers n1 = (0, 1, 1).

case is a six-component object:

n = [nx, ny, nz] = [(n0X, n1X), (n0Y , n1Y ), (n0Z, n1Z)].

Axis
Branch X Y Z

0 n0X n0Y n0Z

1 n1X n1Y n1Z.

In figure 1, we show a Rössler-like image chaotic attractor and three rotation axes of a V4

symmetry group. Both the orientation preserving (0) and orientation reversing (1) branches
encircle the Z-axis with a linking number 1 and the X-axis with a linking number 0. The
orientation reversing branch does not circle the Y-axis, while the orientation reversing branch
does. The topological index for this lift of the original Rössler-like image attractor is also
shown in figure 1.

The image contains one branch line, so the cover contains four branch lines, each labelled
by a group operation. In figure 2, we show how the branch lines in the cover are labelled.
Branch line I is the branch line of the image Rössler branched manifold, as seen from above
projected onto the X–Y plane. It lies below the plane in the third quadrant. The branch line
labelled X is obtained by applying the group operation RZ(π) to the branch line I. It lies in the
second quadrant above the X–Y plane. The other two branch lines are obtained similarly: Y in
quadrant IV above the Z = 0 plane and Z in quadrant I below the Z = 0 plane. Each branch
line in the cover has two parts: 0γ , 1γ , where γ ∈ V4. Initial conditions on the half-branch
lines labelled 0 map onto the orientation preserving branch labelled 0 in the image under the
4 → 1 local diffeomorphism of equation (2); those labelled 1γ map to orientation reversing
branch 1 in the image.

We illustrate how the flow in the cover is determined by an example for the lift shown in
figure 1. The period-1 orbit 0 in the image does not circle the X- or Y-axis, but does circle the
Z-axis. It lifts to a segment of an orbit starting at half-branch 0I and terminates on branch Z. As
a result, the image of the half-branch line 0I under the flow is the branch line in RZ : 0Z, 1Z .
Similarly, the images of the other symbols 0∗ under the flow are RZ0∗ = 0RZ∗ , 1RZ∗ . Here ∗
is some group operation and the group product RZ∗ is well defined. The period-1 orbit 1 does
not circle the X-axis but circles both the Y- and Z-axes. The image of the half-branch line 1I

under the flow is RY RZ1I = 0RY RZI, 1RY RZI = 0X, 1X. In a similar way, the images of the
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Figure 2. Labelling of the four different branch lines of the V4 cover of the Rössler system.
Branch line I is the branch line of the image attractor. The other three are obtained by applying
each of the three remaining group operations RX(π), RY (π), RZ(π) to I.

other three symbols are RY RZ1X = (0, 1)I, RY RZ1Y = (0, 1)Z, RY RZ1Z = (0, 1)Y . These
results are summarized as follows:

0I → 0Z, 1Z 1I → 0X, 1X

0X → 0Y , 1Y 1X → 0I, 1I

0Y → 0X, 1X 1Y → 0Z, 1Z

0Z → 0I, 1I 1Z → 0Y , 1Y .

(4)

3.6. Transition matrix

The index has an algebraic interpretation as well as a topological interpretation. The algebraic
interpretation provides a description of how the flow is distributed among the branch lines.
Specifically, each branch line can be divided into subsets (e.g., I → (0, 1)I), and each subset
can be considered as a source of initial conditions that flow to another branch line. This
geometric information can be encoded into a transition matrix. The transition matrix is the
algebraic interpretation of the index.

The transition matrix for the V4-symmetric cover described in the previous subsection is

I

RX

RY

RZ

I RX RY RZ

0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0.

(5)

This transition matrix is simply a transcription of the information contained in equation (4).
For this topological index the cover is connected. This can be seen at two levels: every

branch line is visited from an initial condition on any branch line, and the transition matrix
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cannot be put in a block-diagonal form by a similarity transformation of the form T ′ = PT P −1,
where P is a permutation matrix.

The eigenvalues of this transition matrix are (2, 0, 0, 0, 0, 0, 0, −2). The topological
entropy is log 2. More generally, the topological entropy of an image strange attractor is the
same as the topological entropy of any of its G-symmetric covers, independent of the finite
group G and the index chosen.

In a different case, we can choose topological index

X Y Z

0 0 0 1
1 0 0 0.

(6)

For this index, the transition matrix is

I

RX

RY

RZ

I RX RY RZ

0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0
1 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1.

(7)

This cover is disconnected. The branch lines I, Z are connected by the transition matrix.
They are mapped into each other by the subgroup (I, RZ). The branch lines X and Y are also
connected to each other under the flow, and mapped to each other under the same subgroup.
The two pairs of branch lines (I, RZ) and (RX,RY ) are disconnected from each other. Another
way to see that the cover is disconnected is to observe that the transition matrix T is fully
reducible into the direct sum of two irreducible transition matrices by a permutation group
operation.

3.7. Group index

The index can also be expressed in the language of group theory. In order to provide all the
connectivity information needed to describe the cover, it is sufficient to provide information
about the image of the flow starting from the branch line I. If the image branched manifold
has two branches, this information is provided by two group operations. For the index whose
topological representation is given in figure 1 and whose algebraic representation is given
by the transition matrix in equation (5), the group index is (g1, g2) = (RZ,RX) (cf also
equation (4)). This is to be interpreted as follows: the half-branch line I0 flows to branch line
Z = RZI and the half-branch line I1 flows to branch line X = RXI. For the index whose
topological representation is given in equation (6) and whose algebraic representation is given
by the transition matrix in equation (7), the group index is (g1, g2) = (RZ, I). In general, if
the image branched manifold has b branches, there are |G|b ways to choose the index.

The connectivity properties of a cover can be determined from the group representation
of the index. The group operations, g1 and g2 above, generate a subgroup H ⊂ G. All branch
lines that are mapped into each other under this subgroup H are connected under the flow,
and disconnected from other subsets. The disconnected subsets are identified by the coset
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representatives G/H. The |G|/|H| subsets can be identified by certain group elements in G
that are not in H. These are called coset representatives [2].

As a result, the connectivity of each component is labelled by a set of group operations
that generate a subgroup, and the set of different disconnected components is also labelled by
a set of group operations that identify a coset.

3.8. Spectrum of V4-symmetric covers

The Smale horseshoe branched manifold (cf figure 1 and [1, 2, 5, 6]) can be lifted to many
different V4 symmetric covers: |G|2 = 42 = 16 indices are possible. For several choices of
indices the following results occur:

Index Subgroup G/H Coset # Com−
(g1, g2) H Representatives ponents
(I, I ) I {I, Rx, RY , RZ} 4

(I, RX) {I, RX} {I, RY } 2
(RY , RY ) {I, RY } {I, RX} 2
(RX,RY ) {I, RX,RY , RZ} I 1

(8)

The 16 four-fold covers of the Smale horseshoe branched manifold with V4 symmetry
are partitioned as follows:

V4

Symbol Index
0 I I I I RX RY RZ RX RY RZ

1 I RX RY RZ I I I RX RY RZ

4-components 2-components

V4

Symbol Index
0 RX RY RZ RX RZ RY

1 RY RZ RX RZ RY RX

Connected covers

(9)

The cover (0, 1) → (I, I) consists of four disconnected components. The next nine,
(0, 1) → (I, RX) through (RZ,RZ), consist of two disconnected components. There are
three dual pairs: (I, RX) ↔ (RX, I), etc and three self-dual covers: (RX,RX), etc. For
example, the cover with index (0, 1) → (I, RZ) has one component containing branch lines
I and RZ , while the symmetry-related component (under either RX or RY ) contains branch
lines RX and RY . Similarly for the self-dual cover (0, 1) → (RZ,RZ). The three covers with
indices (I, RX), (I, RY ), (I, RZ) are related to each other by rotations about the (1, 1, 1) axis
by 2π/3 radians, i.e., by the group C3.

The remaining six covers consist of a single connected component. There is a path
in each of these branched manifolds from any branch line to any other branch line.
There are three dual pairs, such as (RX,RY ) ↔ (RY , RX). In addition, the first three
(RX,RY ), (RY , RZ), (RZ,RX) are mapped into each other under C3, as are the last three in
this list. If we regard the symmetry-related attractors (under C3) as essentially equivalent, the
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RZ

RZ

I
R

RY

X

Figure 3. Branched manifold of the V4 cover of the Rössler system with an index shown in
figure 1. This branched manifold is a planar projection of a V4-symmetric branched manfiold.

breakdown of distinct V4-invariant covers of Smale horseshoe dynamics is

	 Components 	 Dual pairs 	 Self-dual pairs
4 0 1(I, I)

2 1(I, RX) 1(RX,RX)

1 1(RX,RY ) 0.

In summary, there are six (= 2 × (0 + 1 + 1) + 1 × (1 + 1 + 0)) topologically distinct types of
covers of the basic Smale horseshoe branched manifold with V4 symmetry.

4. Systems with V4 symmetry

In this section, we describe how to create V4-symmetric lifts of the Rössler equations with
a previously specified index. We describe how periodic orbits in the Rössler attractor lift to
periodic orbits in the symmetric covers. Finally, we review two dynamical systems that have
V4-equivariant forcing terms.

4.1. V4 cover of the Rössler system

The Rössler attractor can be lifted to a cover with V4 symmetry and index given in figure 1.
The cover branched manifold has V4 symmetry. It is difficult to represent this branched
manifold in planar projection. For this reason, a topologically accurate distortion is presented
in figure 3.

We start from the modified Rössler system

ẋ = −z − y − µz − µy

ẏ = x + a(y + µy) + µx

ż = b(x + µx) + (z + µz)(x − c + µx),

(10)

where (a, b, c) are the usual parameter values and (µx, µy, µz) are used to located the rotation
axes properly.
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(b ) Two components (µx = 0.84)
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(c) Four components (µx = −1.297)

−

Figure 4. V4-symmetric covers of the Rössler attractor. The topology (connectedness) of the
cover changes with the index, which changes as the control parameter µx is varied. Parameter
values: (a, b, c) = (0.420, 2.0, 4.0).

The V4 cover is built using the dynamical equation

Ẋ = X(Y 2 + 2Z2)ẋ + XY 2ẏ + 2YZż

2ρ2

Ẏ = −Y (X2 + 2Z2)ẋ + X2Y ẏ + 2XZż

2ρ2

Ż = Z(X2 − Y 2)ẋ − Z(X2 + Y 2)ẏ + 2XY ż

2ρ2
,

(11)

where ρ2 = X2Y 2 + X2Z2 + Y 2Z2.
We vary µx and use (µy, µz) = (−1.0, 1.0). Covering attractors with three different

topological indices are shown in three different projections in figure 4. The attractor shown
in figure 4(a) is connected. It has only one component. This component is invariant under
the entire group V4. The attractor in figure 4(b) consists of two connected components.
Each is invariant under the subgroup {I, RY (π)} and each is mapped into its symmetric
partner by the two group operations {RX,RZ}. The two components are labelled by the
coset representatives I and RX (or RZ). The attractor shown in figure 4(c) consists of four
disconnected components, each invariant under the subgroup I. They are mapped into each



5608 C Letellier and R Gilmore

0 200 400 600 800
-3
-2
-1
0
1
2
3

X

0 200 400 600 800
-4

-2

0

2

4

Y

0 200 400 600 800
-4

-2

0

2

4

Z

Figure 5. The time series for the connected V4-symmetric cover of the Rössler attractor shown in
figure 4(b).

other by the full group G/H = V4/I. The coset representatives that identify each of the four
disconnected components are the group operations I, RX,RY , RZ .

The time series for the three coordinates X(t), Y (t), Z(t) are shown in figure 5 for the
connected attractor shown in figure 4(a). The connectivity of the attractor can be inferred
from the time series, assuming the time series of the image Rössler attractor is known. For the
image attractor, the u1(t) and u2(t) time series oscillate about a single fixed point. For the time
series shown in figure 5, the time series Y (t) oscillate about two symmetrically placed values
of Y0. The time series Z(t) also oscillates about two values of Z0. Further, these oscillations
are incoherent, so that the Y–Z coordinates of the fixed points are (±Y0,±Z0). As a result,
the phase-space trajectory visits four unstable foci, so the attractor must consist of a single
connected component.

4.2. Periodic orbits

Periodic orbits in the image can be lifted to the cover following the prescription provided
in figure 1 [2]. The two period-3 orbits 100 and 101 in the Rössler attractor are shown in
figure 6. This figure also shows the location of the u3 = Z rotation axis that is used to lift the
image to the cover with topological index given in figure 1. The lifts of these two period-3
orbits into the covering attractor with this topological index are shown in figure 7. In each
case, the period-3 orbits lift to a pair of symmetry-related period-6 orbits. The two lifts of 100
are invariant under {I, RY }, while the two lifts of 101 are invariant under a different symmetry
subgroup, {I, RZ}.

The symbolic name of the lifts can be determined systematically [2]. We do this for the
lift of 100. We first write out the three-symbol sequence 100 several times: 100 100 100 . . . .

Then we initiate a flow from branch line I. This is done by assigning the subscript I to the
symbol 1: 1(I,∗). The flow from this part of the branch line I then goes to the branch line
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Figure 6. Period-3 orbits embedded within the Rössler attractor. The rotation axis (◦) is located
between them. Thus the lifts of the orbits are organized in a different way in the cover space
R

3(X, Y,Z).
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Figure 7. Covers of the period-3 orbits extracted from the Rössler system for a = 0.432. Pairs of
periodic orbits are shown in the Y–Z plane projection. The cover is shown in figure 4(a). Although
the covering attractor is connected, the lift of each period-3 orbit consists of a symmetry-related
pair of period-6 orbits.

RX, as seen from the transition matrix in equation (5). This provides us with the information
1(I,RX)0(RX,∗). The transition matrix shows that 0RX

flows to RY , so that the symbol sequence
is now 1(I,RX)0(RX,RY )0(RY ,∗). From the transition matrix, the symbol ∗ is RX. This does not
bring us back to the starting branch line I, so this iterative process continues for three more
symbols (at least). The algorithm ends when the second group label for the 3nth symbol is
the same as the first group label for the first symbol (starting point). For the orbit 100 and the
index chosen, this occurs at the 6th symbol, so one lift of 100 is an orbit of period 6. There is
a second lift of 100 that is obtained from the first by a group operation (γ = RY ). The symbol
names of the lifts of the period-3 pair 100, 101 in the image attractor are

100 → 1(I,RX)0(RX,RY )0(RY ,RX)1(RX,I)0(I,RZ)0(RZ,I)

1(RY ,RZ)0(RZ,I)0(I,RZ)1(RZ,RY )0(RY ,RX)0(RX,RY )
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101 → 1(I,RX)0(RX,RY )1(RY ,RZ)1(RZ,Ry)0(RY ,RX)1(RX,I)

1(RX,RY )0(RY ,RX)1(RX,RY )1(RY ,RZ)0(RZ,I)1(I,RX).

Each period-3 orbit in the image lifts to a pair of period-6 symmetry-related orbits in the cover.
The two pairs of lifts have different symmetry groups. The symmetry group of an orbit in the
cover can be determined simply and algorithmically.

4.3. Normal form equations for V4-equivariant systems

Dynamical systems invariant under V4 can be constructed systematically from the ring of
covariant polynomials. Every polynomial in X, Y,Z can be expressed in terms of invariant
functions (functions of the basic invariant polynomials X2, Y 2, Z2, XYZ), the invariant 1,
and the covariant polynomials X, Y,Z and XY, YZ,ZX [8]. The pair (X, YZ) of covariant
polynomials transform identically under all group actions. The same is true for (Y, ZX)

and (Z,XY). Therefore, a V4 invariant dynamical system can always be written in terms of
V4-equivariant functions as

Ẋ = F11X + F12YZ

Ẏ = F21Y + F22ZX

Ż = F31Z + F32XY.

(12)

The Fiα are functions of the four basic invariant polynomials.
Two V4-equivariant systems have previously been proposed. Both have this form, with

all functions Fiα constant. These are treated now.

4.4. Liu and Chen system

Liu and Chen proposed a system with V4 symmetry [12]:

Ẋ = aX + YZ

Ẏ = −bY − ZX

Ż = −cZ − XY.

(13)

We hold a = 0.5 and b = 12.0 fixed and treat c as a bifurcation parameter. It has one degenerate
fixed point located at the origin of the phase space. Its eigenvalues are λ1 = a, λ2 = −b and
λ3 = −c. It is a saddle. There are four other fixed points located at

X± = ±
√

bc

Y± = ±√
ac

Z± = ±
√

ab,

(14)

where the product of these three coordinates is negative. If a, b or c is negative, the fixed
points are imaginary. If a, b and c are positive, they are saddle foci with one negative real
eigenvalue. With c = 4, two attractors co-exist in the phase space (figure 8(a)). Their image
is shown in figure 8(b).

4.5. Lü, Chen and Cheng system

Lü, Chen and Cheng have proposed a similar system with V4 symmetry [13]:

Ẋ = − ab

a + b
X − YZ

Ẏ = aY + XY + ν

Ż = bZ + XY.

(15)
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Figure 8. (a) Chaotic attractor for the Liu–Chen system has V4 symmetry and two disconnected
components. (b) Both have the same image. Parameter values: (a, b, c) = (0.5, 12.0, 4.0).

-15 -10 -5 0 5 10 15
x

-15

-10

-5

0

5

10

15

z

(a) Four components (b = −2.4170)

-15 -10 -5 0 5 10 15
x

-15

-10

-5

0

5

10

15

z

(b ) Two components (b = −2.5305)

Figure 9. (a) Chaotic attractors for the Lü–Chen–Cheng system with (a) 4- and (b) 2-components.
Parameter values: (a, ν) = (−10, 0).

This system has V4 symmetry when ν = 0. In this case, the system has five fixed points.
One is located at the origin of the phase space R

3(X, Y,Z). The four other fixed points are
symmetry related and are

F1,±X =

∣∣∣∣∣∣∣∣∣

X = ±√
ab

Y = ±|b|√ a
a+b

Z = ±a

√
b

a+b

(16)

subject to the condition that the product of the three coordinates is XYZ = −a2b|b|/(a + b).
One parameter a is fixed at a = −10 and b is varied over the interval [−2.34,−5.604]. When
b = −2.4170, four components are observed (figure 9(a)). Each of the four components of the
chaotic attractor is topologically equivalent to a Burke and Shaw attractor with two branches
before the attractor-merging crisis [3]. When b is decreased, an attractor-merging crisis
occurs and symmetry-related pair of attractors remains in the phase space when b = −2.5305
(figure 9(b)). Each is topologically equivalent to the Burke and Shaw attractor characterized
by a four-branch return map.
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Figure 10. (a) Chaotic attractor with V4 symmetry for the Lü–Chen–Cheng system has two
components and (b) one component when the symmetry is broken (ν �= 0). Parameter values:
(a, b) = (−10, −4.417).

When parameter b is further decreased, the attractor continues to grow, as observed for
the Burke and Shaw system. Note that the trajectory never crosses the plane defined by Z = 0
(figure 10(a)). This is only permitted when a perturbation is added. For instance, when
ν = 1.0, the trajectory crosses the plane Z = 0 and a one-component attractor is observed
(figure 10(b)).

5. S4 symmetry

At the abstract level, there are two groups of order 4. One has a single generator A that
satisfies the single relation: A4 = I . The four group operations are {I, A,A2, A3}. The other
group (four-group, or viergruppe) has two generators A and B that satisfy three relations:
A2 = I, B2 = I and AB = BA. The four group operations are {I, A,B,AB}. We
have discussed one representation of the four group in R

3 extensively in the previous two
sections.

The cyclic group has two different representations in R
3. The matrix representatives of

the generator A in these two representations are

C4 S4 = σZC4
 0 1 0

−1 0 0
0 0 1





 0 1 0

−1 0 0
0 0 −1


 .

(17)

The group C4 with the generator C4 consists of rotations about the Z-axis through multiples
of π/2 radians. The generator S4 describes a rotation about the Z-axis through π/2 radians
followed by a reflection in the Z = 0 plane. The groups with generator C4 and S4 are called
C4 and S4, respectively.

5.1. Leipnik and Newton system

Leipnik and Newton proposed a system with three quadratic interactions arising from Euler’s
rigid body equations modified by the addition of linear feedback [14]. The equations are
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Figure 11. The Leipnik and Newton system has attractors with (a) four and (b) three disconnected
components and RZ(π) symmetry. Some components are chaotic, others are stable limit cycles.
Parameter values: (a, b) = (0.73, 5).

Ẋ = −aX + Y + 2bYZ

Ẏ = −X − aY + bZX

Ż = −bXY + cZ.

(18)

This system has a RZ(π) rotation symmetry. There are five fixed points. One is located at the
origin of the phase space and the four others are

F±± =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X± = ±
√

2ac (A ± B)

b (±3 + B)

Y± = ±
√

2ac (A ± B)

4ab

Z± = ±
√

2ac (A ± B)

bc (±3 + B)
,

(19)

where A = 3 + 4a2 and B =
√

9 + 8a2. For certain parameter values, four attractors co-
exist in the phase space as shown in figure 11(a). The two disconnected attractors observed
mainly with positive Z values are topologically equivalent to the Burke and Shaw strange
attractor observed before the first attractor-merging crisis. When the initial conditions are
changed, two limit cycles also co-exist in the phase space for mostly negative Z values.
These two cycles remain roughly unchanged when the c parameter is increased to 0.152.
During this process, the two disconnected attractors with mostly positive Z values merge
into a single strange attractor (figure 11(b)). The total attractor has three disconnected
components.

The two attractors with negative Z values are different from the two attractors with
positive Z values, because a higher (S4) symmetry is broken by the factor 2 in the term 2bYZ

in the first equation of system (18). The S4 symmetry can be imposed by replacing the
coefficient 2 in the first part of equations (13) by 1. Thus, for (a, b, c) = (0.60, 5, 0.1428),
four disconnected symmetry-related attractors are obtained. Their projections on the X–Z and
X–Y planes are shown in figure 12. For values of c greater than 0.1428, the attractors
merge and two disconnected attractors remain in the phase space. Both are symmetry
related.
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Figure 12. The modified (2 → 1) Leipnik and Newton system exhibits four disconnected chaotic
attractors for parameter values (a, b, c) = (0.60, 5, 0.1428).
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Figure 13. The Chechin and Ryabov equations exhibit S4 invariant strange attractors with (a) two
disconnected components and (b) a single component. Parameter value: b = 1.

5.2. Chechin and Ryabov system

In investigating discrete symmetries, Chechin and Ryabov [15] introduced a new system with
a S4 symmetry. The equations are

Ẋ = aX + bY − XZ − YZ

Ẏ = −bX + aY − XZ + YZ

Ż = Z + XY.

(20)

This system has five fixed points. One is located at the origin of the phase space and
the four others are symmetry related. When a = −2.0 and b = 1, there are two
disconnected components (figure 13(a)) which are topologically equivalent to the Lorenz
attractor (a cusp return map can be easily obtained). When the a parameter is slightly
decreased, an attractor-merging crisis occurs and a single attractor remains in the phase space
(figure 13(b)).
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In their investigation, Chechin and Ryabov proposed another set of equations with a S4

symmetry. They are

Ẋ = aX + Y − XZ

Ẏ = −X − aY + YZ

Ż = Z + (X2 − Y 2) + XY.

(21)

These equations behave similarly to system (20).

6. S6 symmetry

The group S6 consists of rotations by 2π/6 radians about a symmetry axis, followed by
reflection in a plane perpendicular to that axis. In R

3, this can be implemented in a very
symmetric way by choosing the axis in the (1, 1, 1) direction. The group generator γ has the
simple form (x, y, z) → (−y,−z,−x), with γ 3 = −I and γ 6 = I.

6.1. Covering equations

Equations that are equivariant under this group have the form

ẋi = cij xj + cijkxjxk + cijklxj xkxl + · · · , (22)

where 1 � i, j, . . . � 3. Invariance of the equations requires ci+1,j+1 = +ci,j , ci+1,j+1,k+1 =
−ci,j,k, ci+1,j+1,k+1,.l+1 = +ci,j,k,l , etc. In short, coefficients of the linear and cubic (and odd)
terms are constrained, and those of the quadratic and quartic (and even) terms are zero.

6.2. Thomas system

A system with an S6 symmetry has been proposed by Thomas [16]

ẋ = −bx + ay − y3

ẏ = −by + az − z3

ż = −bz + ax − x3.

(23)

For this system, c11 = c22 = c33 = −b, c12 = a, c123 = −1 and the remaining nonzero
coefficients are obtained by cyclic permutation of the indices.

6.3. Fixed points

For all values of (a, b), the origin (x, y, z) = (0, 0, 0) is a fixed point. It is six-fold degenerate.
The Jacobian is the cyclic matrix

J =

−b a 0

0 −b a

a 0 −b


 . (24)

with eigenvalues −b +aεj , where ε = e2π i/3 and j = 0, 1, 2. There are two fixed points along
the (1, 1, 1) rotation axis at x = y = z = ±√

a − b. The eigenvalues at these fixed points are
−b + (3b − 2a)εj .

In general, this system has 36 fixed points, counting degeneracy. For b = 0.3 and a = 1.1,
they are all real and tabulated below. The fixed point F0 at the origin is six-fold degenerate.
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The two fixed points FI on the axis (1, 1, 1) are each three-fold degenerate. The sets FII –FV

each consist of six symmetry-related points.

x y z

F0 0.0000 0.0000 0.0000

FI ±0.8944 ±0.8944 ±0.8944

±1.0370 ±0.3098 ±0.0850
FII ±0.0850 ±1.0370 ±0.3098

±0.3098 ±0.0850 ±1.0370

±1.0128 ±0.8653 ±0.2502
FIII ±0.2502 ±1.0128 ±0.8653

±0.8653 ±0.2502 ±1.0128

±1.0953 ∓1.1746 ∓0.3643
FIV ∓0.3643 ±1.0953 ∓1.1746

∓1.1746 ∓0.3643 ±1.0953

±1.1796 ±0.8164 ∓1.1461
FV ∓1.1461 ±1.1796 ±0.8164

±0.8164 ∓1.1461 ±1.1796.

The eigenvalues for these fixed points are

FI λ1,2 = +0.35 ± 1.1258I

λ3 = −1.6

FII λ1,2 = +0.31506 ± 1.0653I

λ3 = −1.5301

FIII λ1,2 = −.93704 ± 1.1034I

λ3 = +0.97409

FIV λ1,2 = −1.1734 ± 1.5128I

λ3 = +1.4469

FV λ1,2 = +0.69404 ± 1.7217I

λ3 = −2.2880.

All of these fixed points are either stable foci with an unstable perpendicular direction or
unstable foci with a stable perpendicular direction.

6.4. A projection with high symmetry

In order to have a better representation of the symmetry properties, we use the coordinate
transformation

X =
√

3

2
(y − x)

Y = z − x + y

2
Z = x + y + z.

(25)
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Figure 14. A single attractor generated by the Thomas system for a = 1.1. The 27 fixed points
are shown in the plane projection R

2(X, Y ). Note that points FI cannot be distinguished from the
point located at the origin of the projection R

2(X, Y ).
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Figure 15. Image of the single attractor generated by the Thomas system for a = 1.1.

The Z-axis is the (1, 1, 1) rotation axis while the (X, Y ) coordinates parametrize the plane
through the origin perpendicular to the rotation axis. Projection of the attractor onto the X–Y
plane clearly shows the six-fold symmetry of the dynamical system. For example, a single
connected attractor for (a, b) = (1.1, 0.3) is shown in the x–y projection in figure 14(a) and
X–Y plane in figure 14(b). The locations of all the fixed points are shown in the latter projection
where their symmetry is apparent.

A projection of the 6 �→ 1 image (figure 15) is obtained using the coordinate
transformation

u = (X + iY )6

= X6 − 15X4Y 2 + 15X2Y 4 − Y 6

v = �(X + iY )6

= 6X5Y − 20X3Y 3 + 6XY 5.

(26)

This projection is shown in figure 15.
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Figure 16. Bifurcation diagram for the Thomas system versus a for b = 0.3. The diagram is
actually constructed for the image attractor.
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(b) 2 period-2 limit cycles for a = 1.044193
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(c) 2 period-6 limit cycles for a = 1.044300

Figure 17. Thomas dynamical system. Different pairs of limit cycles co-exist in the phase space.

6.5. Bifurcation studies

We study the bifurcations of the dynamical system along the line b = 0.3, 1.01 � a � 1.22
in the control parameter plane. The bifurcation diagram for the equivariant system (23) is
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(c) First-return map of an attractor for a = 1.0623

Figure 18. Thomas dynamical system. (a) Six period-1 limit cycles produce six simultaneous
period-doubling cascades leading to (b) six co-existing attractors. (c) First return map for the
image dynamical system shows a complete symbolic dynamics on two symbols.

complicated and difficult to understand. The bifurcation properties of the 6 �→ 1 image are
much simpler to visualize and interpret. The two systems are locally diffeomorphic; therefore,
very little information is lost in studying the simpler bifurcation diagram. The bifurcation
diagram for the image system is given in figure 16.

This bifurcation diagram shows that the image attractor has a period-1 orbit at a = 1.03,
a period-2 orbit at a = 1.044 193, a period-6 orbit at a = 1.044 300 (see inset in figure 16).
Another period-1 orbit at a = 1.0550, and a chaotic attractor at a = 1.0623. These are covered
by two or six attractors in the S6-equivariant system. The first three limit cycles are shown in
figures 17(a)–(c). The six period-1 limit cycles at a = 1.0550 and the six disconnected strange
attractors they create through a period-doubling cascade are shown in figures 18(a) and (b).
The first return map on the image coordinate u is shown in figure 18(c). This unimodal map
shows that the image attractor exhibits a complete symbolic dynamics on two symbols, that
is, it is a horseshoe.

7. Conclusion

We have presented a systematic way to construct dynamical systems with a particular symmetry
group. This procedure involves construction of polynomials invariant under the action of the
group, and functions of these invariant polynomials. The complementary polynomials, called
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covariant polynomials, are used to construct the equivariant functions in the invariant equations
of motion. Invariant coordinates are introduced. These are linear combinations of the invariant
polynomials. The invariant dynamical system is obtained from the equivariant system by this
simple change of coordinates. The Jacobian of this transformation (chain rule) has singularities
that reflect the singularities (the rotation axes) of the symmetry group.

Mapping an equivariant dynamical system to its image is straightforward. The image is
unique. An image can be lifted to a symmetric cover. The lift is not unique, but identified
by an index. This index has three related interpretations: topological, algebraic and group
theoretical. Each interpretation provides different information about the cover, its properties,
and the properties of the lifts of periodic orbits from the image dynamical system. An algorithm
has been described and used to construct the symbolic name of the lifts into any cover (with
any symmetry group) of periodic orbits in the image. This has been done explicitly for lifts
of the two period-3 orbits 100 and 101 of the Rössler system into a covering system with the
symmetry group V4 with a specified index.

These procedures have been used to describe the properties of equivariant dynamical
systems with symmetry groups V4, S4 and S6. These include the structure of the equivariant
functions for the symmetric equations and their image equations. We show that bifurcation
diagrams for image dynamical systems are much simpler to construct than for their symmetric
covers.
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