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We review the steps taken during the development of topological analysis tools
for the analysis of chaotic data.
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1. Background

Feigenbaum’s startling and initially unappreciated discovery of the universality of

certain scaling ratios1–3 set off a chain of events that continues to this day. Before

this discovery it had been assumed that

All linear systems are the same.
Each nonlinear system is nonlinear in its own way.4,5

After this discovery it was realized that

It was a very happy and shocking discovery that there were structures
in nonlinear systems that are always the same if you looked at them in
the right way.4,6

Once a theory has been developed to the point where predictions are possible,

there is a rush to experiments to falsify or to confirm the theory. Such was the

case with Feigenbaum’s scaling predictions. Experiments were carried out on flu-

ids,7,8 chemical reactions,9–11 electrical circuits,12 and lasers.13–16 The experiments

differed in the physics involved and the time scales involved, ranging from months

(fluid experiments) to days (chemical reactions) to minutes (electrical circuits) to
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milleseconds (laser experiments). In the end, all confirmed Feigenbaum’s predic-

tions of the universality of scaling relations according to one-dimensional maps of

the interval.

On the one hand the return on the investment of time required to do these ex-

periments was magnificent: the experiments had shown that there were at least

three previously unknown constants of Nature — scaling ratios in state space

(α = −2.50290...), in the control parameter space (δ = +4.466920...), and in the

space of measured intensity ratios (−8.2 dB). On the other hand the results were

disappointing. In the logistic map of the interval, beyond the initial period-doubling

bifurcation where the scaling relations are predicted, as well as all subsequent win-

dows, there is a rigid organization of behavior — an organization of periodic win-

dows in a sea of chaotic behavior. Indications of the rigidity of this structure were

seen and reported in many of the experiments. But the nature and the structure of

this rigidity was yet to be determined.

2. A Challenge

At this point Prof. J. R. Tredicce offered a challenge — and an opportunity. He

had a great deal of data “left over” from his “Feigenbaum experiments” carried out

on a laser with modulated losses.16 Since data are always acquired at high cost

with pain and difficulty, it would be obscene not to make further use of them. He

asked if I could help him to further “understand” these data. This seemed like a

wonderful challenge at the time. And with the benefit of hindsight, it was even

more than that.

Fig. 1. Schematic diagram of a laser with modulated losses.16 A carbon dioxide gas tube (CO2,
P.S. is the power source) is inserted between two mirrors (M) that form a confocal resonant cavity.
A Kerr cell (K) is inserted in the cavity. This cell is periodically modulated by a signal (S),
inducing losses as the polarization of the cell deviates from that produced by the Brewster angle
windows. The intensity output is recorded by the detector (D). The input and output signals are
recorded in a computer (C).
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At the time there were only two types of tools available for the study of ex-

perimental data from a chaotic source. One type depended on metric measures:

fractal dimension estimates of all types.17–20 The other type depended on dynami-

cal measures: Lyapunov exponents and spectra of Lyapunov exponents.21–25 Both

required very long, very clean data sets, a great deal of computation, resulted in

real number estimates with no realistic error estimates,26 both were often dependent

on where and how to make certain crucial assumptions, and neither was generally

reproducible. Further, neither type of tool provided a way to distinguish among the

different types of strange attractors that could be seen to be different: for example

the mathematical strange attractors of Lorenz27 and Rössler,28 not to mention the

strange attractors associated with periodically driven nonlinear oscillators such as

the Duffing and van der Pol oscillators.

It was clear that a new type of analysis methodology was called for. It was

also clear that this new tool should not depend on metric invariants or dynamical

invariants. In fact, looking back to Poincaré,29 it was clear that this new tool

ought to be topological in nature. Listening more closely to Poincaré, it was clear

that this new tool ought to involve the periodic orbits “in” a chaotic attractor. A

chaotic trajectory winds around in phase space arbitrarily close to any unstable

periodic orbit, so it ought to be possible to use segments of a chaotic trajectory

as good approximations (surrogates) for unstable periodic orbits.30,31 The location

and identification of such orbits is sometimes simplified because many unstable

periodic orbits first appear in their stable avatars when created in saddle-node or

period-doubling bifurcations and don’t move too far from their original position in

phase space as control parameters are changed. It was clear that unstable periodic

orbits could not only be extracted from chaotic time series32 but also serve as the

“skeleton” of the strange attractor.30 This is illustrated in Fig. 2.

Fig. 2. (color online) The strange attractor (left) that describes the Belousov-Zhabotinskii reac-
tion is very well outlined by its skeleton, a superposition of unstable periodic orbits of low period
(right).
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3. Relative Rotation Rates

It was our hope that periodic orbits would somehow provide a key to understand-

ing the structure of chaotic attractors. With this idea in mind, Hernan G. So-

lari extracted a number of unstable periodic orbits from a mathematical model of

Tredicce’s laser with modulated losses and undertook to determine the topological

properties of these orbits.33 The simplest and most obvious tool for quantitatively

understanding the topological organization of these periodic orbits was to consider

them as oriented closed loops and compute their Gauss linking numbers. After all,

the origin of Gauss linking numbers came from two different branches of physics.

The linking number of two oriented closed loops, or periodic orbits A and B, is

defined by the Gauss integral

LN(A,B) =
1

4π

∮ ∮
(x(s)− y(t))·dx×dy

|x(s)− y(t)|3/2
(1)

In this expression x(s) are the coordinates of the periodic orbit A, the triple of

coordinates being parameterized by the scalar s, and similarly for y(t) and orbit B.

In three dimensions periodic orbits cannot “pass through” each other. The

simple reason is that if they could, two different orbits would at some stage have

a point in common. This point, being on two different orbits, would not have a

unique future. This violates the determinism property characteristic of all sets of

ordinary differential equations used by scientists to model physical processes.

The linking numbers of all pairs of periodic orbits (stable or unstable) in the

strange attractor are topological invariants so long as the orbits exist, since the flow

was in a three-dimensional phase space D2 × S1 ⊂ R3. As a result it was possible

to use the set of linking numbers for these orbits as a way to characterize/identify

the strange attractor of the laser with modulated losses (or at least the mathemat-

ical model that described this laser). A table of linking numbers for orbits up to

period eight that were extracted from the Belousov-Zhabotinskii strange attractor

is provided in Fig. 3

Since the attractor had “a hole in the middle” it was possible to construct

another and even more powerful set of topological invariants. Our first impulse

was to call these “winding numbers” but Tredicce strongly advised us against using

that already appropriated name. Instead, we named them relative rotation rates,

in recognition of their origin. These are fractions that indicate the average rotation

of orbits around each other per topological period.

To be explicit, we can construct a Poincaré section for the flow by hinging a half-

plane on an axis and passing the axis through the hole in the attractor. Then each

time the trajectory “goes around” it will intersect the half-plane, or Poincaré section,

once and from the same side. A period-p orbit A will intersect the Poincaré section

p times before repeating itself. Similarly, a different orbit B of minimum period

q will have q distinct intersections. All intersections must be distinct, otherwise
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Fig. 3. Orbits up to period eight were extracted from the experimental strange attractor of the
Belousov-Zhabotinskii chemical reaction. The orbits are labeled by a symbol sequence according
to where the successive iterations appear on the first return map. (M indicates that iterate occurs
at the critical point.) The linking numbers of pairs of orbits are provided in this symmetric table.
The linking numbers are orbit pair invariants. Self-linking numbers of the individual orbits are on
the diagonal.

determinism is violated: One point on the Poincaré surface of section would have

two distinct futures.

The next step is to connect one of the intersections of one orbit with one of

the intersections of the other orbit by a directed line segment (an arrow) in the

Poincaré section. As time evolves this arrow will move. We can imagine this process

happening in the half plane as we sweep the half plane around its axis which goes

through the hole in the attractor. If we rotate the half plane through p × q full

rotations, the arrow will come back to its original orientation. This means that it

has rotated through an angle of 2πn radians, or undergone n full rotations in the

moving plane. The average number of rotations per period is n/(p×q). This fraction

is the relative rotation rate for the given initial conditions on orbits A and B.33 If

i = 1, 2, · · · , p and j = 1, 2, · · · , q specify the intersections of the orbits A and B

with the Poincaré section, a relative rotation rate RRRi,j(A,B) can be constructed

for each pair (i, j) of initial conditions. There is a simple relation between relative

rotation rates and linking numbers:

LN(A,B) =

p∑
i=1

q∑
j=1

RRRi,j(A,B) (2)

Relative rotation rates can even be computed for an orbit with itself. The self-

relative rotation rates possessed a very attractive feature: They could be used to

distinguish between orbits with nonzero topological entropy and “laminar” orbits

with zero topological entropy.33

This topological index was computed for a number of orbits extracted from the

model for a laser with modulated losses. The orbits in this set were identified by

a name consisting of a symbol string consisting of 0s and 1s. The symbols were
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determined from the location of the intersection of the orbit on the first return map

which looked basically like a logistic map. Tables of relative rotation rates are useful

complements to tables of linking numbers such as the table in Fig. 3: They provide

more information.

Periodic orbits in the Smale horseshoe were also located and identified with a

symbol name. The relative rotation rates of these orbits in a suspension of the flow

with no twisting (zero global torsion) were also computed.33 Not all of the orbits

predicted by Smale horseshoe dynamics were found in the model of the laser with

modulated losses. We compared the table of relative rotation rates (also tables of

linking numbers) of the orbits found in the laser model with tables for the appro-

priate subset of orbits in the Smale horseshoe flow suspension and found, to our

delight, complete agreement.33

With mounting self-confidence we proposed that relative rotation rates could be

used as fingerprints to identify strange attractors.34 In fact, this idea was taken one

step further: That the integers associated with relative rotation rates (or linking

numbers) could be used to classify strange attractors.35 We had already identified

flows that followed a “Smale horseshoe scenario”,33 a“ Duffing oscillator scenario”,34

and a “van der Pol scenario”, each with distinct sets of linking numbers and rela-

tive rotation rates. Why couldn’t these indices be used to classify/distinguish one

chaotic attractor from another? It seemed reasonable to hope so.

4. Branched Manifolds

At this point my first hope (it was mine: my colleagues Solari and Mindlin weren’t

nearly as loopy as me) was that we could create a dictionary of scenarios (or pro-

cesses, or mechanisms) and for each construct a table of linking numbers and/or

relative rotation rates for lots of low-period orbits. Then when confronted with

experimental data we could pull out the unstable periodic orbits from the data,

compute their topological invariants, and then thumb through the dictionary com-

paring tables until we found an agreement. This program represented a lot of work.

While we were mulling over implementing this program a better solution became

available. The beautiful work of Joan Birman and Robert Williams36,37 gradually

seeped into our consciousness. The time scales for implementing the “dictionary

program” and for understanding the Birman-Williams Theorem were comparable,

but the level of rewards for the latter far outweighed the former. The net result was

that we understood the Birman-Williams Theorem at a level sufficient to apply it

to our physical needs (“experimentalists’ level”).

What we understood is this. Suppose we have a dissipative flow in three di-

mensions whose trajectory “is a strange attractor.” There is one positive Lyapunov

exponent λ1 > 0, one negative Lyapunov exponent λ3 < 0, and one zero exponent

λ2 = 0 “along the direction of the flow”. The dissipative nature of the flow requires

λ1 + λ2 + λ3 < 0. Then it is possible to project points in the phase space “down”
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along the direction of the stable manifold. This is done by identifying all points

with the same future:

x ≃ y if lim
t→∞

|x(t) − y(t)| = 0 (3)

In this expression x(t) is the future in the phase space of the point x = x(0) under the

flow. This Birman-Williams identification effectively projects the three-dimensional

phase space down to a two-dimensional set that is a manifold almost everywhere.

The two dimensions that remain correspond to the flow direction (with λ2 = 0)

and the unstable or stretching direction (with λ1 > 0). The “almost everywhere”

refers to zero- and one-dimensional sets where the “manifold condition” is violated.

The points in the projection describe where the flow “splits” and the branch lines

describe where flows from two distinct parts of phase space are “squeezed together”.

These rigorous mathematical structures were prefigured at an intuitive level by

Lorenz27 and Rössler28 long ago. The Rössler attractor and its branched manifold

are shown in Fig. 4 and the Lorenz attractor and its branched manifold are shown

in Fig. 5.

Fig. 4. The Rössler attractor is shown on the left in its projection onto the x-y plane. Its branched
manifold is shown on the right. The two branches are labeled 0 and 1. The integer indicates the
torsion of the branch. The two branches split at the “splitting point” (near the arrowhead) and
join at the branch line.

Branched manifolds are useful constructions for distinguishing among different

mechanisms that generate strange attractors. Four of the most studied strange

attractors are those associated with the Lorenz, Rössler, Duffing, and van der Pol

dynamical systems. The branched manifolds that describe these strange attractors

are shown in Fig. 6.4 These four branched manifolds are topologically inequivalent.

“Equivalence” is by isotopy: Two things are isotopic if it is possible to mold one

into the other without tearing or gluing it. As a result, identifying the branched



October 18, 2011 11:42 World Scientific Review Volume - 9.75in x 6.5in GilmoreR

8 R. Gilmore

Fig. 5. The Lorenz attractor is shown on the left in its projection onto the x-z plane. Its branched
manifold is shown on the right. Neither branch exhibits a twist in this representation of the
branched manifold. The two branches split at the “splitting point” which is shown “in” the
branch line.

manifold that describes a strange attractor is a powerful tool for distinguishing one

(class of) strange attractors from another.

We should point out that branched manifolds can be constructed from ‘stretch-

ing’ and ‘squeezing’ units. These units are shown in Fig. 7. There are two simple

rules for this aufbau construction:

1. Outputs to inputs;

2. No free ends.

An enjoyable way to construct elegant branched manifolds is to dump a bushel of

stretch/squeeze units in front of an enthusiastic class of kindergarteners, along with

the instructions above. There is no guarantee that scientists can find a physical

system described by the resulting artworks.

There are technical aspects in the statement of the Birman-Williams Theorem

that we chose to ignore. There are three in fact. For the proof of the theorem, the

flow is assumed to be:
1. Hyperbolic

2. In R3

3. Dissipative.
We found it useful to ignore the hypothesis on which the theorem is based (at

our own peril) for the following reasons:

Hyperbolic: In physics, both in theory and experiment, we have never seen a hy-

perbolic attractor. Every experimental chaotic attractor that we have seen

is continually undergoing bifurcations as the external controls are varied.

For example, the logistic map x′ = λx(1 − x) is hyperbolic only for λ > 4.

It is stable (dynamically but not structurally) only at the knife edge λ = 4

and a strange repellor for λ > 4. If we were to insist on the assumptions

undergirding the theorem it would not be useful to us as physicists.

In R3: Three dimensional models (e.g., Lorenz27 and Rössler28) generate three
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Fig. 6. Branched manifolds for: (a) Rössler; (b) Duffing; (c) van der Pol, and: (d) Lorenz
attractors. It is clear that no topological move (stretching and folding are OK; tearing and gluing
are not) can transform any one of these to any of the others. Therefore it is not possible to find a
1:1 coordinate transformation that converts any of these dynamical systems to any of the others.

Fig. 7. Stretching and squeezing units serve as the basic building blocks for constructing branched
manifolds.

dimensional data sets, or scalar data sets (e.g., x(t)) that can be embedded

in three-dimensional spaces. But physical processes are often described by

high dimensional sets of ordinary differential equations, or even by partial

differential equations. In short, having collected a scalar data set there is no
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guarantee at all that it is generated by a three-dimensional set of equations.

Even so, if we can find a three dimensional embedding the gods have smiled

at us, and there is every anticipation of further smiles allowing the theorem

to “work” even though the origin of the data set does not conform to the

assumptions underlying the proof of the theorem.

Dissipative: One of the motivating ideas for the theorem comes from classical

physics in a conservative manifestation. The magnetic field lines surround-

ing an infinitely long straight wire carrying a uniform current are closed

loops described by two continuous parameters: radius and position along

the axial direction of the wire. When the wire is bent most of the closed

loops break: typically only a countable measure-zero set remains closed.

This is true in particular when the wire is tied into a figure eight knot

(carrying a supercurrent). The unbroken magnetic field lines are rigidly

organized among themselves. The organization can be discerned by the

linking numbers that pairs of closed loops exhibit. Further, these closed

magnetic field lines can be isotoped down to the figure eight branched

manifold without in any way altering these linking numbers.4,36,37 In this

conservative case the thrust of the Birman-Williams Theorem is valid, even

though the proof doesn’t cover this case.

I think the Birman-Williams Theorem is more powerful than it appears. Two

of the three conditions discussed above are no longer an impediment to important

physical applications.

Hyperbolicity: We avoid this constraint by falling back on a pruning argument.

This will be explained in Section 7.

In R3: The theorem is true for strongly attracting dynamical systems with one

positive Lyapunov exponent. What does this mean? If the spectrum of

Lyapunov exponents for a flow in Rn satisfies λ1 > λ2 = 0 > λ3 ≥ λ4 · · · ≥

λn , the system is strongly attracting when λ1 + λ2 + λ3 < 0.38

As for the third (dissipativity), this is needed for the Birman-Williams projection

(Eq. (3)) to work. However, it may not be necessary to project the flow to a

branched manifold in order to describe the organization of the unstable periodic

orbits by the properties of a branched manifold. Indeed, the original inspiration

of the unbroken magnetic field lines and the figure-eight branched manifold shows

that there is at least one case where the theorem “works” despite the fact that the

underlying assumptions are not satisfied. I suspect there are many more such cases

(one for every oriented knot); perhaps even a theorem.
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5. Topological Analysis Program

Once we understood what information we wanted to extract from the data, it was

time to act. We acted first with data from Tredicce’s laser. Of course, analyzing

experimental stuff is not the same as analyzing computer generated data. Our at-

tempts to extract a topological understanding of the laser data failed. In retrospect

the reason was easy to see in the data. The laser acted somewhat like a relaxation

oscillator. A large percentage of the time (≃ 40%) the intensity output (this is the

observed variable) was very low. At such times the intensity was recorded in the

lowest channel of a multichannel analyzer. When it came time to determine the

topological organization of the unstable periodic orbits extracted from the data, we

found many crossings occurred in the “lowest channel”. Result: we were unable to

determine accurately or honestly the crossing properties in low intensity regions.

A request to redo the experiment was met with amused incredulity. It had long

since been dismantled and pieces sent to new experiments, returned to previous

owners, broken, or otherwise no longer available - a typical situation in a working

experimental laboratory.

Plan B involved placing an APB for experimental data at each of the Nonlinear

Dynamics meetings that we attended during this period. Lathrop and Kostelich

responded to this plea. They had used periodic orbits in order to characterize an

experimental strange attractor for the Belousov-Zhabotinskii reaction,31 and they

provided us with a sample of these data. The data had been taken by Swinney’s

group in Texas.9–11

The data were inordinately clean. Even so, we had a few problems attempting

to make our favored embedding. Ultimately, these problems were resolved.39

We took the following steps to create the first topological analysis of experimen-

tal data.

(1) A set of unstable periodic orbits was extracted directly from the scalar time

series before an embedding was created. This process is indicated in Fig. 8.

(2) A suitable embedding was found. We used an integral-differential embedding.

In this embedding each orbit was identified by a symbol string obtained from

a suitable return map. Only two symbols (0, 1) were sufficient since the return

map had two branches.

(3) A table of linking numbers was made. This involved all orbits found in the first

step, and the linking number was determined in the three-dimensional space

constructed in the second step.

(4) A branched manifold was identified that “explained” these linking numbers.

Our branched manifold had two branches since only two symbols were required

to represent the trajectory described by the data set.

A gloss on the last step is appropriate at this point. The branched manifold

supported more orbits of any period p than we actually extracted from the data.
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Fig. 8. (color online) These data were taken by Lefranc, Hennequin, and Glorieux,41 who redid
Tredicce’s laser experiment using a logarithmic amplifier-detector to climb out of the lowest-channel
bind. The different-period orbits are coded with different colors. The identification preceeds the
embedding step. These authors also showed that the fractal dimension computed with and without
the data processing differed substantially, ‘contradicting’ a theorem that fractal dimension is an
invariant.

We regarded this as a case of the absent orbits having been “pruned” from the

hyperbolic limit. We were able to make a 1:1 correspondence between the orbits

extracted from the data and an appropriate subset of orbits on the branched man-

ifold. The correspondence was by symbol name. A table of linking numbers was

constructed for the experimental orbits. This was done in two ways. Two orbits

were superposed, the signed number of crossings counted, and the result divided

by two.33 This counting-of-integers method was double checked by computing the

Gauss linking integral (Eq(1)). In the three-dimensional embedding each orbit was

defined by a vector (x(s), y(s), z(s)) of coordinates, where s is a useful parameter.

A code for computing the Gauss double integral was developed, extensively tested,

and then applied to the embedded experimental data.

On the branched manifold side things took a different turn. We began by de-

termining where each periodic orbit would fall on the branched manifold. This is

straightforward but tedious. We continued by superposing the linear crossing seg-

ments and counting signed crossings. This is also straightforward but even more

tedious up to period ≃ 4, after which it became error prone and almost impossi-

ble due to blurry eyeballs. In desperation we resorted to doing this by computer

(think Geiger counter!). A code was written to do these things faster and better

than a human could. The code did two things. It first located periodic orbits on a

branched manifold (applied kneading theory40). Then it counted crossings of orbit

pairs. Two inputs were required. One was the symbol names of the orbits under
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consideration. The second was a quantitative description of the branched manifold.

Part of this description was a square n×n matrix, where n is the number of distinct

symbols required to describe a trajectory in the experimental data as well as the

number of different branches in the branched manifold (n = 2 in our case). The

second was an n× 1 array defining how the two branches are joined at the branch

line.4,42

We later realized that these quantitative indices — square matrix and array —

initially introduced as an aide comptoir in our computer code, actually served as

an integer description of the branched manifold, which is itself a mathematically

rigorous characterization of the experimental chaotic attractor (up to pruning).

Lastly, we realized that the branched manifold could be identified using only

a very small number of unstable periodic orbits extracted from the data. This

branched manifold could then be used to predict the linking numbers or relative

rotation rates of all other orbits and orbit pairs extracted from the experimental

data. These predictions could then be compared with those constructed from the

experimental orbits. Either there was complete agreement, and we could conclude

our identification was correct, or else there wasn’t — that is, one or more integers

in the linking number tables were not the same — in which case we had to reject

the hypothesis that our identifications, of orbit labels and/or branched manifold

characteristics, was correct. The paper in which we reported the results of our

analysis of the Belousov-Zhabotinskii data is also the paper in which we announced

the Topological Analysis Program.39

At last there was a rejection criterion for the analysis of chaotic dynamical

systems that wasn’t subjective. No error bars are associated with integers!

There were additional useful benefits from this program (Principal of Unex-

pected Beneficial Consequences). Noise usually degrades the analysis of data. In

the case of topological analyses, noise makes it more difficult to extract the longer

periodic orbits. The most important orbits for this analysis are the lowest period

orbits. The effect of decreasing S/N is to reduce the number of surplus orbits, so

that the rejection step is carried out with fewer orbits. In spite of this, even with a

moderate amount of noise there are more than enough orbits to make a branched

manifold identification and then to carry out the rejection tests using the remaining

orbits.42

Metric analysis methods call for very long, clean, stationary data sets. Any kind

of nonstationarity will destroy fractal dimension estimates and seriously degrade

dynamical estimates (e.g., Lyapunov exponent spectra). However, it is possible to

identify orbits with positive topological entropy in highly nonstationary data. Such

identification provides a clear statement that the underlying dynamics is chaotic.

Identifications of this nature have been carried out by Amon and Lefranc.43
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6. Chess Pieces on the Board

It was at this point that Prof. Ennio Arimondo sent us a gift in the form of Francesco

Papoff, laded with data. The data had been taken in Arimondo’s laboratory using

lasers with saturable absorbers.44 Several different absorbers had been used, and

for each saturable absorber the laser had been run under a large number (6 - 10) of

operating conditions. This provided us with a serendipitous chance to test another

of our favorite hunches.

The idea was this. Suppose you have a physical system operating in a chaotic

regime. A strange attractor is produced. The attractor can be investigated as de-

scribed above, yielding a spectrum of unstable periodic orbits and an underlying

branched manifold. This latest hunch was that as ‘perturbations’ are made, for

example changing the operating conditions, the underlying branched manifold re-

mains unchanged but the perturbations “push the flow around” on the branched

manifold. We hoped to find that all data sets, when analyzed, yielded the same

underlying branched manifold but the spectrum of orbits extracted from the var-

ious data sets changed from one set to the next. Indeed, this is exactly what we

found.45 Further, the underlying branched manifold was exactly the same as we

had previously found for data from the Belousov-Zhabotinskii chemical reaction.

This result, based on the analysis of experimental data, was important in re-

solving a somewhat philosophical debate on how branched manifolds should be used

in physics. This debate is summarized in Fig. 9. On the left in this figure is the

Lorenz attractor — its branched manifold is apparent. On the right is a different at-

tractor, the Shimizu-Morioka attractor.46 Its branched manifold can also be readily

inferred. By unwinding the loops on the left and right it bears a close resemblance

to the Lorenz branched manifold, but the unwound (writhing) loops now each have

a full twist and describe orbit segments of topological period two. Is it more useful

to use this as the branched manifold for the Shimizu-Morioka attractor, or rather

regard the periodic orbits in this attractor as a subset of the orbits in the Lorenz

branched manifold?

Some argued that the branched manifold used to describe a physical system

should be the one that contains only and exactly the periodic orbits in the attractor.

The implication is that as operating conditions change and the spectrum of orbits in

the attractor varies, the associated branched manifold would undergo mind-boggling

contortions. Contortions so complicated as to curtail the use of branched manifolds

as a nifty tool for understanding chaotic attractors.

On the opposite side of this opinion was our feeling that a branched manifold

should be introduced with one branch for each of the symbols required for a unique

description of an arbitrarily long trajectory — or at least of the length measured

in an experiment. Such a branched manifold would “contain” all the orbits seen in

an experiment as well as a lot more. It would be more useful, we maintained, to

regard the missing orbits as having been pruned from the original allowed spectrum
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Fig. 9. The Lorenz attractor27 and the Shimizu-Morioka attractor.46 It can be argued that the
two branched manifolds are different, or that the periodic orbits in the Shimizu-Morioka attractor
are simply a subset of those in the Lorenz attractor. In the latter case the Lorenz branched
manifold can be used to compute the topological indices of those orbits in the Shimizu-Morioka
attractor that are not pruned from the Lorenz attractor.

(technically, a “full shift on n branches”47). With this assumption, all the remaining

orbits are organized in exactly the same way as in the branched manifold with

unpruned spectrum. And perestroikas — experimentalists love to tweak knobs

connected to control parameters — would generally leave the branched manifold

untouched while changing the spectrum of orbits in the attractor. This is the

source of our idea that changing control parameters serves to push the flow around

on an unchanged underlying branched manifold. This simple view is very useful.

7. Forcing

While extracting periodic orbit surrogates from the 25 data sets that Papoff brought

to us, Mindlin, Papoff, and Ricardo Lopez-Ruiz noticed that orbits had a social

life of their own. In particular, they observed that when one particular orbit was

present it was invariably accompanied by a handful of other orbits — always the

same handful. Several different orbits possessed this property. The presence of

some orbits seemed to “force” the presence of other orbits. This observation cried

out for a more careful look.

We approached this problem from a topological perspective, since topology had

already been so kind to us. When orbits are created, they are created in saddle-node

pairs (neglect period-doubling for the moment). We computed the linking numbers

of the pair An, As (An is the node of the saddle node pair of orbits A) with the pair

Bn, Bs and arranged the results in a 2× 2 matrix (we like matrices):

Bn Bs

An L(An, Bn) L(An, Bs)

As L(As, Bn) L(As, Bs)

(4)

Depending on the equality or inequality of the four integers in this matrix, it was
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possible to determine if orbit B could exist before orbit A had been created, or vice

versa (see Fig. 10). In this way we were able to piece together an orbit forcing

diagram.48 We carried the calculations out up to period eight. We were also able

to develop the idea of a useful subset of orbits, which we called, because of our

background, a basis set of orbits.

Fig. 10. Orbit pair B must be created before orbit pair A. The two orbits An and As have
different linking numbers with the orbits Bn and Bs. Similarly, orbit pair C must be created
before orbit pair B. The existence of the pair A forces the presence of pair B, and B ⇒ C.

The idea is as follows. Organize all the periodic orbits extracted from an exper-

imental data set. Organize them according to their two-dimensional entropy, using

the one-dimensional entropy as a tie-breaker.4,42,48 For example, we found these

orbits in one set of experimental data:

21, 41, 81, 61, 82, 71, 51, 83, 31, 62, 63, 75, 42, 89, 84, 87, 76, 72, 73, 74, 85, 86, 88, 52

These orbits are identified by their order of creation in the logistic map. Then,

starting with the “highest” orbit (52) with the largest entropies, we remove that

orbit and “kill off” all the orbits that it forces (these are underlined). If there are any

orbits left (yes unless the two-dimensional entropy is equal to the one-dimensional

entropy), we continue the process:

63, 75, 42, 89, 87, 76, 74, 86, 88

And again, until no orbits are left. Then the small set of orbits that have been re-

moved (as opposed to “killed off”) consists of the basis set of orbits on the branched

manifold that describes the chaotic attractor. These are the orbits

87, 76, 74, 86, 88, 52 (5)

In truth, this argument works up to whatever finite period forcing information is

available.
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A lower bound on the topological entropy of the flow can be obtained by com-

puting the topological entropy of the braid containing the basis set of orbits.

‘Forcing’ is a very difficult problem, and in truth our approach is probably

the least effective that has been found to work. Other approaches49–54 are more

effective, but much more complicated. The problem of forcing, even on the two

branch manifold describing Smale horseshoe dynamics, is still open.

8. Branched Manifold Perestroikas

Normally, small perturbations produce changes in the spectrum of orbits that a

branched manifold can support. But sometimes perturbations are not small. Under

these conditions the branched manifold will change. What this amounts to is that

more symbols are required to uniquely label a chaotic trajectory. Or perhaps fewer

symbols are required. Yet more generally, the spectrum of symbols requires changes.

Since symbols correspond to branches, such perturbations lead to changes in the

structure of the branched manifold underlying the description of a chaotic attractor

and its perestroikas.

Such changes were studied extensively for the periodically driven Duffing oscil-

lator as a function of changing driving frequency.55,56 The modifications that occur

in the dynamics, the spectrum of stable and unstable periodic orbits, and the num-

ber, nature, and organization of the branched manifolds that describe the attractor,

and the topological indices that are observable occur with regular predictability. In

short, each time the external driving frequency passes through a 1/n subharmonic of

the natural frequency of the undriven nonlinear oscillator, the underlying branched

manifold undergoes another full twist. The global torsion changes systematically

by ±1 in each subharmonic window.

It seems almost as if there is a “branched manifold” that assumes the form of an

enormous scroll with branches labelled by successive integers 0, 1, 2, ..., and the flow

is constrained to travel in only a small number of adjacent branches for any value

of the control parameters. As the controls are changed the flow is directed over a

limited number of contiguous branches, for example (0, 1) → (0, 1, 2) → (1, 2) →

(1, 2, 3) → (1, 2, 3, 4) → (2, 3, 4) · · · . This systematic behavior is a consequence of

continuity. This behavior has variously been called the “jelly roll scroll” (in the US)

and the “gateau roulé” (in France). One important question is whether the scroll

rolls up from outside to inside (yes in the cases we have investigated) or from inside

to outside. These two cases can be distinguished by computing linking numbers of

appropriate orbits.4,42,55,56

Shortly after this study, scrolling behavior was observed in experiments per-

formed on a periodically driven Nd-doped fiber optic laser58 As the external

drive frequency descended through the subharmonics of the natural resonance the

branched manifold describing the chaotic behavior became more and more wound

up. The systematics of this behavior is indicated in Fig. 11. This winding-up
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Fig. 11. As the ratio between the natural frequency (period) of an oscillator and the frequency
(period) of an external driver decreases (increases), the strange attractor that may exist becomes
increasingly wound up. The global torsion increases systematically as the ratio Tnatural/Tdrive

increases through integer values.

phenomenon is a typical feature when there is a competition between some natural

resonance frequency and an externally imposed driving frequency.57 It has been

seen in the analysis of chaotic signals from dogfish, catfish, and paddlefish59,60 and

many laser experiments.61,62

Instead of winding up in a gateau roulé structure, it is possible that three contin-

uous branches of a branched manifold could fold in an S-shaped structure. This has

finally been found in one of the subharmonic domains studied by Javier Used and

Juan Carlos Martin in their periodically driven Erbium doped fiber optic laser.62

This work is summarized in another contribution to these Proceedings.

9. Branched Manifolds Describe Mechanism

Branched manifolds are exactly the right tool for describing the mechanism that

acts to create a strange attractor and at the same time to organize all the unstable

periodic orbits in it. By mechanism we mean the stretching and folding and/or the

tearing and squeezing processes that occur repetitively the the phase space.4,42

We illustrate two different mechanisms in Figs. 12 (Rössler mechanism) and

13 (Lorenz mechanism). In Fig. 12 a blob of points in the phase space at (a) is

stretched along one direction (with λ1 > 0) and flattened in another (with λ3 < 0)

while being displaced in a third direction (with λ2 = 0). When the flow exists in a

bounded region of the phase space, some mechanism must exist to return this set

of points to its initial neighborhood. One mechanism involves a simple fold, shown

beginning at (c) in this figure. Eventually the folded-over set of points returns to its

initial neighborhood as (c) → (d) → (a). This process repeats indefinitely, building

up a flakey structure in the squeezing (λ3 direction) known as a fractal. In the case
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depected in Fig. 12 the mechanism is a simple stretch and fold. This is represented

by a simple branched manifold with two branches.

Fig. 12. A set of initial conditions at (a) is deformed by stretching in one direction and squashing
in another. As the flow progresses, folding begins to occur at (c) and continues on through (d).
This deformed set of initial conditions finally returns to its initial neighborhood (a), where the
processes is repeated ad infinitem.

Another mechanism is illustrated in Fig. 13. In this case a set of initial condi-

tions (the cubes) begin to flow but run into a “buzz saw” that cuts the set into two

or more pieces. These pieces move off into different directions in the phase space,

where they encounter and are squeezed together into other blobs of points, some

with different initial conditions. Eventually these sets of points encounter their

initial neighborhoods, and the process continues over and over again.

Branched manifolds summarize in a simple and visual way the mechanisms that

exist and occur repetitively to build up each strange attractor.63,64

10. Bounding Tori

Branched manifolds place constraints on the periodic orbits that can be created

or destroyed during a perestroika. At some point we began to wonder if there

were larger structures that placed analogous constraints on branched manifolds

themselves during a perestroika.

In fact, there are. We began by asking about the topological properties of a

“smoothed out” version of a messy fractal chaotic attractor. We could smooth a

strange attractor by surrounding each point in the attractor by a ball of ǫ radius (ǫ is

“small enough”) and constructing the union of all such three-dimensional balls.65,66
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Fig. 13. Sets of initial conditions (cubes) are “sliced”, by running into an axis with a stable and
an unstable direction (the z-axis for Lorenz-like systems), for example. The different parts flow
off in different directions in the phase space, where they may encounter other sliced parts from
different regions of phase space. These are squeezed together and eventually return to regions they
originated from (recursion).

When done correctly, the union was a three dimensional manifold. Since we were

looking for some structure to enclose or surround the attractor and its branched

manifold, we were naturally led to consider the boundary of this manifold. Once

again, we wound up talking to topologists. These boundaries were two-dimensional,

orientable, and bounded— therefore uniquely tori. A torus is shown in Fig. 14 along

with some of the important closed loops on it. A topological torus is characterized

by one number, its genus g. Our torus surfaces were “dressed” with the flow that

generated the chaotic attractor inside the torus, restricted to the surface. The

immediate result was that a strange attractor could be described by an integer,

g, the genus of the torus surrounding it, together with another more complicated

discrete index that describes the flow on the surface. The second index is not an

integer but a transition matrix related to the permutation group Pg−1.
65–67

On the surface the flow has some stagnant points, or fixed points. All fixed points

on the surface arise when the tangent vector (recall, λ2 = 0) of the flow generating

the attractor is perpendicular to the surface. At such points the stability of the

restricted vector field is governed by the two remaining eigenvalues, λ1 > 0 and

λ3 < 0. As a result, the index of each fixed point on the surface is −1 and the sum

of these indices is related to the genus of the torus by
∑

all f.p.(−1)1 = −2(g − 1).

A lot of elegant topology due to Euler and Poincaré goes into this result.68
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Fig. 14. A torus in R3 is completely identified by the number of holes in it. This integer index
is called its genus. A normal tire tube is a genus-one torus and a sphere has genus zero. A torus
of genus g has two useful sets of closed loops on it. These form the generators of its homotopy
group. The meridians (M1,M2, · · · ,Mg) can be chosen to bound a disk that lies entirely within
the torus. The longitudes (L1, L2, · · · , Lg) bound disks that lie entirely outside the torus in the
case shown. This isn’t always true: to see how this can fail, see Fig. 17. It is always possible to
choose g meridians and g longitudes so that they are independent, meridians have no intersections
with other meridians and similarly for longitudes, and each meridian intersects only one longitude
at one point. The tori bounding strange attractors are “dressed” on their surfaces with the flow
that generates the attractor.

Working by analogy again, we asked if there is an “aufbau principal” for bound-

ing tori the way there is one for branched manifolds. In the latter case a branched

manifold can be built up by joining together stretching and squeezing units (c.f.,

Fig. 7. We didn’t have to look too far (not beyond string theory) to find what

we needed. The building units we needed were called variously “pairs of pants” or

“trinions”. These come in two varieties, as do the basic building blocks of branched

manifolds. The two building blocks are shown in Fig. 15. Stretching trinions have

one input port and two output ports. These contain the branched manifold stretch-

ing units (c.f., Fig. 7). Joining trinions have two input ports and one output port.

These contain the branched manifold squeezing units.

We found that it is possible to build up any genus-g torus (g > 1) using g − 1

pairs of these units. Each pair contains one stretching unit and one joining unit.

These units must be connected together following the usual rules:

(1) Outputs connect to inputs.

(2) No free ends.

Two pairs of stretching/squeezing units can be used to build up the genus-three

torus that bounds the Lorenz attractor, as shown in Fig. 16

An added benefit of this decomposition is that it is now possible to describe the

global Poincaré surface of section for a low-dimensional chaotic attractor. Determine

its bounding torus. Partition it into g − 1 pairs of stretching/joining units. The

output port of each joining unit (equivalently, the input port of each splitting unit)

is a disk that is one component of the Poincaré surface of section. The section itself

is the union of these g − 1 disks. A topological period (as opposed to a temporal

period, measured in seconds) is a transition from the section to itself: this means

from any one of the disks to the next, under the flow. The Poincaré section of the
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Fig. 15. (color online) The basic building blocks of bounding tori are stretching (left) and squeez-
ing (right) trinions. A genus-g torus is built up via the aufbau principal using g − 1 pairs of
stretching/squeezing trinions, g > 1. The construction is: Inputs to outputs; with no free ends at
the end of the construction. Each join is colorless. The global Poincaré surface of section is the
union of g − 1 disks. The disks can be taken as the input ports of the splitting trinions or the
output ports of the joining trinions.

Fig. 16. Two pairs of stretching and squeezing trionions are used to build up the genus-three
torus that encloses the Lorenz attractor. Output ports of squeezing trinions flow to the input
ports of stretching trinions, etc. All connections are colorless. The global Poincaré surface of
section is the union of disks. The disks can be taken as either the input ports of the stretching
trinions or the output ports of joining trinions.

Lorenz attractor is the union of two disks, as seen in Fig. 16.

All of the experimental attractors that we have analyzed that have a “hole in

the middle” live in genus-one tori. The mathematical attractors with this feature

include the Rössler, Duffing, and van der Pol attractors. The latter is bounded by

two genus-one tori, one outside and one inside the attractor. The Lorenz attractor

lives inside a genus-three torus. A number attractors studied by Aziz-Alaoui69 live

in higher genus tori.
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The closed magnetic field lines surrounding a knot tied into the shape of a figure

eight knot have the topological organization defined by the figure eight branched

manifold. This lives inside a bounding torus of genus g = 9. It seems an interesting

idea to relate closed magnetic field lines generated by supercurrents in wires tied

into the form of various knots with the associated knotholder and relate the genus

of the knotholder with the original knot.

We point out that tori can be embedded into R3 in a multitude of bizarre ways,

as indicated in Fig. 17.

Fig. 17. Tori may be embedded into R3 in a variety of different ways. For this genus-four torus
all meridians bound disks that lie entirely within the torus. However, each of the four simplest
longitudes links one other longitude.

11. Four Levels of Structure

We now can address the levels of structure available to describe a strange attractor.

We regard attractors that can be deformed into each other smoothly — no cutting

or tearing, no creating or annihilating orbits — as isotopic or equivalent. We ask:

how do we distinguish (topologically) inequivalent attractors.

At present, there are four levels of structure. Each level is discrete. We describe

these levels in some semblance of order.

At the lowest level there is a basis set of orbits (to any finite period). This set

determines all orbits that are present in the attractor, up to some period.

At the next level are branched manifolds. These serve as a rigorous caricature

for the strange attractor. Branched manifolds constrain the evolution of basis sets

of orbits under perestroikas.
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Above branched manifolds in this hierarchy are bounding tori. Bounding tori

constrain the evolution of branched manifolds under perestroikas.

Bounding tori live in R3. A torus (g = 1) can be embedded in R3 in many

inequivalent ways. To determine how many, imagine shrinking the torus surface

down to an oriented curve in R3. Then there as many ways to embed a torus into

R3 as there are oriented knots in R3. Each such knot defines a torus and within

each such torus we can construct a strange attractor. We can do better: we can

embed a g = 1 strange attractor in each knotted torus in such a way that all the

embedded strange attractors are diffeomorphic. They are not isotopic, since the

knots cannot be deformed into each other.70

For a genus one torus containing a strange attractor there are as many em-

beddings as there are oriented knot types. Although we cannot yet distinguish

inequivalent knots by any known index, the number of knot types is discrete.

Similar arguments apply to tori of genus-g. Each genus-g bounding torus can be

embedded in many different ways in R3 (c.f., Fig. 17). This discrete index we call,

for want of a better name, the generalized knot index. Constructing a generalized

knot index is an even more difficult problem than constructing a knot index for the

simpler case of the genus-one torus.71

12. Symmetry

We were always on the lookout for new strange attractors. So when Christophe

Letellier asked about the relation between symmetry and chaos an immediate bond

was formed between us. The first question we asked is: “How does Cartan’s theorem

about the relation between covering groups and their images play out in dynamical

systems theory?”72 Of course, at that time we had no clue..., and for this reason

the chase was exciting.

We were first motivated by the way we could identify symmetric points in the

Lorenz attractor and make it “look like” the Rössler attractor. Eventually these

visceral feelings gave ground to a more quantitative approach.73–75

In one direction (image direction) things are relatively simple. The Lorenz

equations are unchanged (equivariant) under the transformation (X,Y, Z) →

(−X,−Y,+Z). By identifying a point with cordinates (−X,−Y, Z) with its partner

(X,Y, Z) in the Lorenz attractor we were able to map the original Lorenz attractor

into something with one hole in the middle — very much like the Rössler attractor,

as shown in Fig. 18. This mapping extends from points to orbits, both closed

periodic orbits as well as chaotic trajectories, and eventually to branches of the

underlying branched manifold. In the general case, suppose we have a chaotic at-

tractor described by a branched manifold with 2n branches and an obvious two-fold

symmetry. The Lorenz attractor with four branches springs to mind (c.f., Fig. 5). A

two-to-one image is constructed by identifying the symmetrically related branches

pairwise. The number of branches is halved, as is the number of branch lines and
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splitting points. An orbit of minimum period p in the original (cover) attractor is

mapped to an orbit of period p in the image system. The image orbit “goes around”

either once or twice before closing up. To say this another way, the image orbit

has minimum period either p or p/2, depending on whether the cover orbit was

symmetric or not.

Fig. 18. The Lorenz attractor (left) and its two-to-one image (right). The image is obtained by
identifying pairs of points (X, Y,Z) ↔ (−X,−Y,+Z) in the Lorenz attractor. One convenient way
to do this is by introducing a new phase space with coordinates (u, v, w) related to the coordinates
(X, Y,Z) through u = X2

− Y 2, v = 2XY,w = Z.

Going in the other direction was yet more exciting. Starting with an image

attractor, suppose we wanted to create a two-fold cover with rotational symmetry.

Then we have to “lift” the image. The lift can be carried out in many inequiva-

lent ways, depending where we place the rotation axis.74 For example, suppose we

wanted to create a two-fold cover of the Rössler attractor (2 branches) with rota-

tional symmetry. We could put the rotational axis through the hole in the middle.

This gives us a cover with a hole in the middle and four branches organized as a

double fold. We could put the rotation axis outside the Rössler attractor. The

lift would create two disconnected attractors, each with a hole in the middle and

two branches, each of the two identical to the original attractor. We could put the

rotation axis between branches 0 and 1 in the Rossler attractor: One way to do

this results in a four branch lift that is topologically similar to the Lorenz attractor.

Another way of placing the rotation axis between branches 0 and 1 results in an

attractor quite different from a Lorenz-like attractor.76

All these lifts have four branches. They are structurally stable under perturba-

tion in the location/orientation of the rotation axis. However, if the rotation axis

is located in such a way that it intersects the attractor, structurally unstable lifts

with six-branches result.76

We have used one of these structurally stable lifts to relate sunspot number data

N (all positive), which has an approximately 11 year cyclic variation, to the under-
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lying magnetic field B, which exhibits an approximately 22 year variation through

both positive and negative values.75 The usual attempts to relate the two involve

making a sign change (by hand) at sunspot minima. We made a planar projection

of the data onto the (N, Ṅ) plane, constructed a lift with two-fold rotational sym-

metry, and identified one of the cover variables as a surrogate for the underlying

magnetic field. The zero-crossings of the magnetic field appeared in a natural way.75

The results are shown in Fig. 19. The transformations of the original sunspot data

to the time variations of the underlying magnetic field are shown in Fig. 20.

Fig. 19. Top row: Smoothed sunspot data N(t), plotted in the (N, Ṅ) plane. Bottom row: double
covers created with different rotation axis. When the axis is outside the attractor (left column)
the cover consists of two separate pieces that do not interact. When the axis intersects with the
attractor (center) the cover consists of a single attractor, but regions of positive values are not
always succeeded by regions of negative values. When the axis is inside the attractor the double
cover has a hole in the middle, but there is a deterministic oscillation between positive values and
negative values.75

Lifts using larger symmetry groups than the two-fold rotation group can be

constructed. The description of many of the exciting things that can happen is a

long story that is laid out in a work that brought great joy to us.76

Many of the lifts that we considered leave one or more points fixed (rotations

around an axis, inversions in a point, reflections in a plane). These point group

symmetries act easily on branched manifolds. If i = 1, 2, 3, · · · label the branches in

the image, the branches in the cover are labeled i = 1α, 2β, 3γ, · · · , where α, β, γ, · · ·

are the operations in the group. A structurally stable lift of an image with b branches

by a point group with g group operations has b× g branches.

Covers of an image attractor with topological entropy hT have the same topo-

logical entropy. The argument is easy — we provide it for a two-fold cover with
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Fig. 20. (Left) Original sunspot data and processed time series, showing an attractor with a hole
in the middle. (Right) Time series resulting from a projection of a trajectory in the double cover
(c.f. Fig. 19, right column) onto an axis that serves as a surrogate for the underlying magnetic
field. This result indicates the strength and polarity of the magnetic field underlying sunspot
number variabbility, one with a 22 year cycle, the other (image) with an 11 year cycle.75

rotational symmetry. The lift of a period-p orbit in the image is a symmetric orbit

of period 2p or two distinct orbits of period p related to each other by symmetry.

Assume that the number of orbits of period p grows exponentially in both the cover

(NC(p) ≃ eγp) and the image (NI(p) ≃ ehT p). The number of odd period orbits in

the cover is

NC(2p+ 1) ≃ eγ(2p+1) = 2× ehT (2p+1) ≃ 2NI(2p+ 1) (6)

It is a simple exercise to conclude that γ = hT in the limit 2p+1 → ∞. An argument

using orbits of both even and odd period in the cover is slightly less simple but leads

to the same place: hCover = hImage = hT . This argument extends without difficulty

to covers created using other finite groups.

In addition to symmetries involving point groups, there are symmetries anal-

ogous to nonsymmorphic space groups in solid state physics. The simplest such

group is the symmetry present when a nonlinear two-dimensional oscillator with

inversion symmetry (ẋi = fi(x, y), fi(−x,−y) = −fi(x, y)) is periodically driven:

fi(x, y) → fi(x, y) + ai cos(ωt + φi). In this case the dynamics is invariant under

the transformation (x, y, t) → (−x,−y, t + 1
2T ), where T = 2π/ω is the period of

the drive. The periodically driven Duffing and van der Pol oscillators share this

symmetry.4 In these cases it is possible to mod out the order-two symmetry and

construct a smaller chaotic attractor that is simpler to analyze.4,42 This is done by

viewing the attractor from a rotating frame of reference. This frame is called the

“van der Pol” frame. In fact, there are two such frames: they counterrotate with

angular frequencies ± 1
2ω. There is then a natural question: which to use? Since

we are physicists we choose the frame in which the kinetic energy is minimum. The
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concepts of average kinetic energy, average rotational energy, and their variation in

a series of rotating frames that satisfy simple boundary conditions, is well-defined

and natural. These frames are defined by an integer.4,78 The results can be seen in

Fig. 21.

Fig. 21. It is possible to define an average kinetic energy and an average orbital angular momen-
tum for a dynamical system whose phase space is a torus.78 These real numbers depend on the
representation of the dynamical system: its global torsion n. As the global torsion increases in
magnitude, so also do these classical averages. The preferred frame for physicists is the minimum
energy frame.

Fig. 22. If a lift is given a fraction (n/p) of a twist per period, then p of these “units” fitted in
sequence provide a p-fold cover with global torsion n. The classical integrals depend “smoothly”
on the rational fraction n/p.

In the reverse direction, it is possible to lift the image attractor to double cov-

ers and p-fold covers, in a very large variety of ways. The multiplicity of possible

lifts are distinguished by two integers. The mean energy and mean orbital angular

momentum depend on the ratio of these integers, as shown in Fig. 22. Their reg-

ularity properties were described in a paper originally entitled “Quantum numbers

for strange attractors.” But the referee(s) objected to this title, so it was reluc-

tantly changed to something more prosaic.78 An animated lift of the periodically

driven van der Pol attractor with three-fold rotational symmetry was constructed
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by Timothy Jones and can be enjoyed (“eye-candy”) at his web site.79

We were delighted with the results of our cover-image studies. It was possible to

answer our original question (about Cartan’s theorem) in a way that spoke directly

to the close relation between group theory and symmetric dynamical systems. This

connection is shown in Fig. 23.

Fig. 23. (top) For Lie groups there is a 1:1 correspondence between Lie algebras and simply
connected Lie groups. Each such Lie group is a covering group for all Lie groups with the same
Lie algebra. These other groups are obtained by “modding out the symmetry”. (bottom) For
dynamical systems the relation goes the other way. For each universal image there are many
covering dynamical systems. These are distinguished from each other by: the symmetry group G
and; the topological index T of the lift.76

13. Representation Theory

The first step that needs to be taken for the successful analysis of data taken from a

dynamical system behaving chaotically is that a suitable visualization of the system
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should be created. If the dynamical system is a set of three ordinary differential

equations (viz.: Lorenz or Rössler equations) this is a no-brainer. One only has

to watch how the trajectory evolves in the natural three dimensional phase space

of coordinates: (x(t), y(t), z(t)) ∈ R3. If the data are generated in the course of

an experiment the situation becomes more exciting. Often the data consists of a

single scalar time series xi = x(ti). One then hopes to construct a D-dimensional

phase space and visualize the trajectory in that phase space. One must construct

an embedding of the data. Fortunately, this is always possible (in principal) if the

original system is finite dimensional (d <∞). This is due to a theorem by Takens80

that was exploited by Packard, Crutchfield, Farmer and Shaw81 and that goes back

to Whitney.82 The theorem states that if the data are generated by a dynamical

system of dimension d an embedding can always be found (is “generic”) in RD for

D ≥ 2d+ 1.

Many embeddings of a scalar time series are possible. The first choice of many

is the time delay embedding.80,81 This is useful because the signal-to-noise ratio in

each component of the embedding is the same. It is less useful because it is not

always easy to determine the signs of crossings in two-dimensional projections of

time delay embeddings into R3. My preferred embedding is the differential embed-

ding. In this case x → y = (y1, y2, y3), with y1 = x, y2 = ẋ, y3 = ẍ. It is useful

because the signs of crossings in projections to the (y1, y2) plane are very simple

to determine.42 It is not useful because the S/N ratio decreases by an order of

magnitude (or more) for each higher component of the embedding.

Many inequivalent embeddings of an experimental scalar time series are possible.

We emphasize this point by introducing an interesting class of embeddings for the

simplest type of dynamical system: a chaotic attractor with a hole in the middle

(genus-one strange attractor). Assume we have the scalar time series x(t) and from

it we construct the projection into R2: (x(t), y(t) = ẋ(t)). This cannot be an

embedding but it could have a hole in the middle. Assume it not only has a hole

in the middle, but that a straight line segment attached to a fixed point somewhere

inside the hole has the property that the projected flow (x(t), y(t)) always strikes

the segment from the same side as it is rotated through 2π radians around the fixed

point inside the hole. It is then possible to reparameterize the projected trajectory

in terms of a rotation angle θ in place of time t: (x(t), y(t)) → (x(θ), y(θ)).

Now introduce the three coordinates (ξ, η, ζ) for a harmonic knot:83

X(θ) = (ξ(θ), η(θ), ζ(θ)) where

ξ(θ) =
∑

j=1 Aj sin(jθ + φj)

η(θ) =
∑

j=1 Bj sin(jθ + ψj)

ζ(θ) =
∑

j=1 Cj sin(jθ + χj)

(7)

Harmonic knots have periodicity 2π under the parameterization given. Any knot

can be given a harmonic parameterization.

Introduce a repere mobile for the harmonic knot by constructing the unit tan-

gent, normal, and binormal vectors (t(θ),n(θ),b(θ)).84 Under suitable not very
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restrictive assumptions the data from a chaotic attractor can be embedding using

any harmonic knot as a “carrier knot” by

x(t) → x(θ) → X(θ) + x(θ)n(θ) + x′(θ)b(θ) (8)

with ′ = d/dθ. For each knot type there is an embedding of data generated by

genus-one dynamics. The embeddings are topologically inequivalent (nonisotopic)

because inequivalent knots, the cores of the tori that “carry” the embedding, are

not isotopic.

We now come back to the jackpot question that was raised when the topological

analysis program was being formulated:39

When you analyze embedded data, what do you learn about the em-

bedding and what do you learn about the dynamical system?

This question struck a chord with me. In Quantum Physics, groups act through

their representations. One group can have many inequivalent representations

(equivalence is with respect to a change of basis, or similarity transformation).

The corresponding question would be: How much can you learn about a group

from some/all of its representations.

It seemed reasonable to think that a representation theory of dynamical sys-

tems (or their strange attractors) ought to exist4 which is spiritually similar to the

representation theory of groups/algebras that has found so much use in physics. I

discussed this problem with Daniel J. Cross, my graduate student at the time. And

presto! After two years of hard work we had a representation theory for strange

attractors - at least their low-dimensional varieties.85–88

This theory starts from the natural question: What are the labels for inequiva-

lent representations of a (low-dimensional) strange attractor. By representation

labels we mean labels that identify distinct, nonisotopic embeddings of a low-

dimensional strange attractor into R3. This isn’t exactly an easy question (most

questions, asked for the first time, aren’t easy). So we began with genus-one at-

tractors as a warm-up exercise. In this case we were able to show that there are

only three indices. One is parity. The mirror image of a strange attractor in R3 is

diffeomorphic with the original but not isotopic to the original. A second index is

knot type. This has been described above in the context of harmonic knots. The

third index is global torsion, known very early on from the initial work with Solari.33

These three indices serve to distinguish all topologically inequivalent (nonisotopic)

embeddings of a genus-one dynamics into R3.70

Now we ask the question: If we raise the embedding dimension by one, mapping

R3 → R4, do some of the formerly nonisotopic embeddings into R3 become equiv-

alent? After all, the representation labels are in some natural sense obstructions to

isotopy in R3. The answer is: Yes, embeddings with different knot types in R3 all

become equivalent in R4. Embeddings that are reflected images of each other also
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become isotopic in R4. Only the global torsion remains an obstruction to isotopy —

barely. Embeddings that differ only by a global torsion of 2 become isotopic in R4.

This means that there are only two inequivalent embeddings into R4: Those with

even global torsion and those with odd global torsion. In R5 every embedding is

equivalent. The following table85,88 shows the progressive extinction of obstructions

to isotopy:

Index R3 R4 R5

Parity Z2 − −

Knot Type K − −

Global Torsion n Z2 −

(9)

In this table K is an index describing knot type (we still haven’t a complete handle

on this index), Z2 for parity is ±1, and Z2 for global torsion is (0, 1) or n mod 2.

A similar result holds for embeddings of genus-g dynamical systems into R3.

Three indices are required to distinguish among inequivalent embeddings.71 Raise

the embedding dimension by one and only one index remains to describe the residual

obstructions to isotopy. In R5 all embeddings become equivalent.85,88

To answer the jackpot question posed above: Anything learned from analyzing

the embedding of a “low-dimensional” dynamical system into R5 is uniquely about

the dynamical system, since all embeddings are equivalent in this space.

14. Pointers to the Future

Topological tools have greatly expanded our understanding of low (=3) -dimensional

strange attractors. These attractors are on the borderline of our visual comprehen-

sion. They live in three-space but are visualized in 2-space: On the screens of

computers, for example. A powerful theorem by Birman and Williams allows us to

project attractors down to mostly two-dimensional subspaces. Perhaps more can

be said about three-dimensional attractors, but I think the most important things

have now been said (I hope I’m wrong!). The one remaining piece of information

that would be useful has one foot in R3 and the other in R5. In R5 there must be

some topological signature that exists that can distinguish inequivalent attractors

(as opposed to inequivalent embeddings of a single attractor). What is this index

and how does it work? This index identifies mechanism (c.f. Sec. 9 and Figs. 12

and 13).

A piece of it identifies genus; another piece identifies components of the global

Poincaré surface of section; yet another identifies the transition matrix that de-

scribes the flow; and yet another describes the stretching-squeezing process that

builds up the strange attractor by infinite repetition of the S & S processes. This

topological index is the final piece we need for a complete accounting of three-

dimensional strange attractors.
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Beyond three there is four, and then five, · · · . All my attempts in the last

15 years to extend the topological analysis program to higher dimensions have

foundered on one detail. The detail is that Gauss apparently did not extend his

knotting thoughts about closed loops for more than a millesecond to more than three

dimensions. The Gauss linking number is at the heart of the topological analysis

method. It does not extend beyond R3. Our analysis methodology therefore does

not extend beyond R3. We are stuck at the starting line!

It almost seems to me that we may be trying too hard for too much. In low

dimensions our goal has evolved to one of determining mechanism. Linking numbers

have been a tool to this end. Perhaps we should concentrate more on ends and less on

means. This means learn how to classify the stretching and squeezing mechanisms

that can operator in RD (D > 3) rather than identifing all the orbits in the attractor,

and using them to determine mechanism.

The slides presented at the Birthday Party can be found at.89
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28. O. E. Rössler, An equation for continuous chaos, Phys. Lett. A57(5), 397-398 (1976).
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