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Topological analysis of chaos in neural spike train bursts
R. Gilmore
Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

Xing Pei and Frank Moss
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~Received 4 February 1999; accepted for publication 10 May 1999!

We show how a topological model which describes the stretching and squeezing mechanisms
responsible for creating chaotic behavior can be extracted from the neural spike train data. The
mechanism we have identified is the same one~‘‘gateau roulé,’’ or jelly-roll ! which has previously
been identified in the Duffing oscillator@Gilmore and McCallum, Phys. Rev. E51, 935~1995!# and
in a YAG laser@Boulant et al., Phys. Rev. E55, 5082 ~1997!#. © 1999 American Institute of
Physics.@S1054-1500~99!01903-5#
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A class of temperature sensitive neurons contain oscilla
tors or pacemakers. These neurons show bifurcations
among several regular firing patterns that can be selected
using temperature as the control parameter. Examples
include the multimodal electroreceptors of the dogfish,
catfish, and paddlefish, the warm and cold receptors of
the rat and cat and hypothalamic neurons in rat brain.
For certain conditions, these neurons show bursts from
two to several closely spaced action potentials followed b
longer silences. Indeed, bursting is one of the most com
monly observed neural responses. Bursting and regular
„together with several other… firing patterns can be mim-
icked by a simple Hodgkin–Huxley model modified by
the addition of a pair of slow Na1 and K1 conductances.
We show that all bursting patterns observed arise di-
rectly from the topology of the underlying chaotic attrac-
tor characteristic of this model and that this attractor
falls within the same topological class as the previously
analyzed YAG laser. Thus, familiar burst patterns ob-
served experimentally in a large class of neurons resul
from chaotic attractors of a single classifiable topology.

I. INTRODUCTION

In a beautiful series of experiments more than 40 ye
ago, Hodgkin, Huxley, and Katz determined a mechan
responsible for the propagation of electric pulses along
axon of a giant squid nerve cell.1 Hodgkin and Huxley also
proposed a simple model to describe the time evolution
the propagation of these electrical pulses.2 This model, and
variations on it, have been used to describe propagatio
nerve action potentials ever since.

Hodgkin and Huxley determined that changes in the
tential difference across the axon membrane are due pr
pally to the flow of ions through the membrane and along
axis of the nerve cell axon. The ionic species which contr
ute most substantially to the current flows are Na1, K1, and
Cl2. The cell membrane itself acts like a capacitor with c
pacitanceCM . Under rest conditions, the membrane is p
larized, so that the interior potential is less than the exte
8121054-1500/99/9(3)/812/6/$15.00
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potential by about 65 mV (Vinterior2Vexterior.265 mV!.
This potential difference is maintained by ion pumps. Und
rest conditions, the three species exhibit concentration gr
ents across the cell membrane. The concentration of K1 ions
within the axon is larger than the concentration outside b
large factor (@K1# inside/@K1#outside.20), while the reverse
is true for Na1 and Cl2:@Na1] inside/@Na1#outside

.1/9;@Cl2# inside/@Cl2#outside.1/6. These ratios depend o
the potential difference,V, and weakly on the temperature
T.

At rest, the membrane is negatively polarized. As t
sodium channel opens, a relatively fast influx of Na1 ions
takes place, and the membrane becomes depolarized (V in-
creases and subsequently becomes positive!. After a short
time ~;1 ms! this influx turns off and a fast efflux of K1

begins. While this takes place there is also a slow efflux
Na1 as the Na1 concentration gradient is restored. The fa
K1 efflux is also followed by a slower K1 influx to restore
the K1 concentration gradient. All flows in the Na1 cycle
~fast influx, slow efflux! and K1 cycle ~fast efflux, slow in-
flux! occur with different time scales.

Hodgkin and Huxley proposed the following equation
describe the current flow,I, into a Gaussian pillbox whose
walls consist of the axon membrane bounded by two circu
sections perpendicular to the axis,

I 5CM

dV

dt
1I Na11I K11I Cl2. ~1!

HereCM is the capacitance of the membrane andI Na1 , I K1 ,
and I Cl2 are the ion current flows through the membran
These current flows are proportional to the conductance
the differences between the potential (V) and the respective
equilibrium potentials,

I Na15gNa1~V2mNa1!,

I K15gK1~V2mK1!, ~2!

I Cl25gCl2~V2mCl2!.
© 1999 American Institute of Physics

icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



o
g

.

a
m

d
im
rt
o

ct
se

o

a-
n

s
ot

he
m
b
sc
y
tin
re
d

s
u
o

th
f
ha
a

al
pen-
e
it is
ty
the
the
gi-
her-
tical

x-

ike
to

e

ey

813Chaos, Vol. 9, No. 3, 1999 Topological analysis of chaos

Do
The Na1 and K1 conductances are sensitively dependent
the potentialV. Hodgkin and Huxley proposed the followin
phenomenological expressions for these conductances:

gNa15m3hḡNa1

dm

dt
52~m2m`!/t1 ,

gK15n4ḡK1

dh

dt
52~h2h`!/t2 , ~3!

gCl25ḡCl2
dn

dt
52~n2n`!/t3.

The functionsm, h, andn were interpreted as probabilities
Their steady state values,m` , h` , andn` , are strongly po-
tential dependent.

The concentration gradients across the membrane
maintained by ion pumps. These are proteins which pu
K1 ions into the axon and Na1 and Cl2 ions in the opposite
direction. These ion pumps maintain weakly temperature
pendent chemical potentials. These pumps act with slow t
constants. They are responsible for the second, slow pa
the Na1 and K1 cycles. The fast responses in the first part
these cycles are due to the opening and closing of respe
ion gates. These gates are proteins which open and clo
response to variations in the potential difference,V. When
open, they allow free flow of the respective ions though
channel in the membrane. Although the flow may be tw
way, the concentration gradients insure that Na1 flows into
the axon and K1 flows out of the axon to reduce these gr
dients. These processes occur on faster time scales tha
pump processes.

II. THE MODIFIED HODGKIN-HUXLEY MODEL

In order to mimic the action potential, or ‘‘spike’’ train
experimentally observed in electroreceptor cells from b
sharks~dog fish!3 and catfish,4 and from the facial cold re-
ceptors of the rat,5 Braun and colleagues have modified t
Hodgkin–Huxley equations in order to account for a co
mon feature of the aforementioned cells. The dynamical
havior of these cells is characterized by a subthreshold o
lator or pacemaker.3,4 Moreover, the oscillation frequenc
and the temporal patterns of the spikes, including burs
and multimodality of their interspike interval histograms, a
strongly temperature dependent. These features were
scribed by Braunet al.6–8 in the modified model by includ-
ing an additional pair of Na1 and K1 channels with slow
characteristic response times while ignoring the Cl2 channel.
In the notation used by Braunet al., the model is given by
CMdV/dt5I 12I d2I r2I sd2I sr , where I d and I r are the
fast depolarizing and repolarizing~Na1 and K1) currents,
respectively, andI sd and I sr represent the slow current
which activate at lower membrane potentials. The slow c
rents account for the oscillatory behavior of this class
neurons. They also account for the fact that this class
neuron model is chaotic for certain parameter values, in
case over certain temperature ranges. The presence o
stable periodic orbits, a signature of chaotic dynamics,
been detected in various sensory neurons, all of which
characterized by oscillators.4,5,9 A detailed description of the
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modified Hodgkin–Huxley model, including the numeric
values of all parameters as well as their temperature de
dencies, has been given8 and will be summarized below. Th
model we use here, however, contains no noise, though
otherwise identical to that of Ref. 8. Thus all the variabili
we observe here arises from deterministic chaos, and
unstable periodic orbits are observed cleanly. In contrast,
unstable periodic orbits observed in experiments on biolo
cal sensory neurons are always obscured by the noise in
ent in those neurons and must be detected by statis
methods.9

The Hodgkin–Huxley equations were modified by e
pressing both the Na1 and K1 currents as sums of two
terms; a fast term describing ion channels relating to sp
activity and a slow term describing ion channels relating
the oscillatory activity,6–8

I Na15I Na2g1I Na2p ,
~4!

I K15I K2g1I K2p .

The fast currents obey the following equations:

I Na2g5rḡNa2gmd`~V2mNa1!,
~5!

I K2g5rḡK2gnK2g~V2mK1!.

The slow currents are assumed to satisfy

I Na2p5rḡNa2pmNa2p~V2mNa1!,
~6!

I K2p5rḡK2pnK2p~V2mK1!.

The probabilitiesnK2g , mNa2p , and nK2p are assumed to
satisfy the following relaxation equations;

d

dt
nK2g52f~nK2g2nK2g`!/tK2g ,

d

dt
mNa2p52f~mNa2p2mNa2p`!/tNa2p , ~7!

d

dt
nK2p52f~hI Na2p1knK2p!/tK2p ,

where the temperature dependent scale factors arr
51.3(T2To)/10 and f53.0(T2To)/10 with T0525 °C. These

TABLE I. Parameter values for use with the modified Hodgkin–Huxl
equations. These include chemical potentialm ~mV!, time decayt ~ms!,

conductanceg ~mS!, parametersS~mV21) ~an effective temperature!, andm̄
~mV! ~an effective chemical potential! which define equilibrium probabili-

ties through (11exp(2S(V2m̄)))21, and other assorted parameters.

y Variable m t g S m̄

1 V;Nag 50 1.5 0.25 225
2 Kg 290 2 2.0 0.25 225
3 Nap 50 10 0.25 0.09 240
4 Kp 290 20 0.40

Clp 260 0.1

r51.3(T2T0)/10 h50.012
f53.0(T2T0)/10 k50.17
T0525 CM51mF
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 1. Bifurcation diagram for the modified Hodgkin–Huxley equations. The time intervals between spikes ofV(t) are plotted as a function of temperatur
T. The diagram shows an alternation between periodic and chaotic behavior. The average number of spikes per burst decreases as the temperates.
~Inset! Spike train, in which each burst is labeled by a symbolnr, n f .
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particular scalings represent the temperature dependenci
the channel conductivities and were introduced in order
account for bifurcations between different types of spike p
terns observed in the physiological experiments using t
perature as the bifurcation parameter. See Ref. 8 for det
The equilibrium values for all terms which appear in t
dynamical system Eqs.~1!, ~7! and the constitutive Eqs.~4!–
~6! are summarized in Table I. Assuming homogeneity alo
the axon,I 50 in ~1! and the Eqs.~1! and~7! reduce to four
ordinary differential equations for (V,nK2g ,mNa2p ,nK2p)
5(y1 ,y2 ,y3 ,y4).

III. RESULTS: THE TOPOLOGY OF BURSTING

These modified Hodgkin–Huxley equations have be
studied by numerical integration. We have used a stand
RK4 procedure10 with a constant step size ofdt50.05 ms.
Integrations were carried out for the parameter values sh
in Table I, for temperatures in the rangeT510–25 °C.

In this temperature range the potentialV(t) exhibits a
series of peaks~‘‘spike burst’’! followed by a return to a
polarized state (V;265 mV!. The burst consists of one t
six depolarization peaks, all sharp and of approximately
same height. The interspike interval increases monotonic
between peaks in a single burst. The last spike in a burstn
spikes is usually followed by a monotonic return to the
polarization minimum (n f), although it is sometimes fol
lowed by an incomplete depolarization rise, observed a
broad maximum well below the typical sharp spike heig
and then a return to the repolarization minimum (nr). Burst-
ing is a common behavior observed in a wide variety
neurons. As the temperature ranges fromT510–25 °C, the
average number of spikes per burst decreases from s
one. In Fig. 1 we record the time intervals between succ
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sive spikes ofV(t) vs T as the temperature is slowly scann
from T510–25 °C. Within some chaotic regions we ca
clearly see periodic windows followed by period doublin
cascades into chaos. In the inset to Fig. 1 we show a serie
spike train bursts, all of which are labeled by symbolsn f ,
nr. The notation will be explained below.

In order to study the type of chaos11 characteristic of this
model, we generated strange attractors by integrating
equations at many values ofT for which chaos was observed
The strange attractors were then projected into the six pla
which are formed from pairs of the four variable
y1 , y2 , y3 , y4. In all cases the projection into they1–y2

plane was a slightly deformed circle. This means thaty1 and
y2 are in quadrature, withy2 following y1 by ;p/2 radians.
As a result, the modified Hodgkin–Huxley equations f
these parameter values describe a system which is effect
three dimensional. This means that the topological meth
developed to classify low~3! dimensional dynamica
systems11,12 can be applied to these equations.

The topological analysis procedure involves seve
steps:

~1! The strange attractor is embedded in a three-dimensi
phase space.

~2! Unstable periodic orbits of low period are located by t
method of close returns.

~3! The topological invariants of these orbits, their linkin
numbers and relative rotation rates,13 are computed.

~4! A knot holder or template is determined from these
pological invariants. The knot holder accounts for t
organization of all the unstable periodic orbits in th
strange attractor.

~5! Finally, the validity of this template is tested by predic
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ing the linking numbers of additional periodic orbits, an
comparing these predictions against additional orb
found in the attractor.
We studied the attractors of the modified Hodgkin

Huxley model in three different embeddings. These were
phase spaces (x1 ,x2 ,x3) with the identifications (x15y3 ,x2

5y4 ,x35y1) and the differential (x15y3 ,x25 ẋ1 ,x35 ẋ2)
and integral (x1 ,x25 ẋ15y3 ,x35 ẋ2) embeddings. In the lat
ter two embeddings the three variables are differentially
lated to each other,x35 ẋ25 ẍ1. The latter two embedding
are useful because linking numbers are particularly eas
compute in these embeddings.11,12 We will describe our
analysis for the differential embeddings based on the v
able y3. Identical results were found for all three embe
dings.

Each strange attractor has a ‘‘hole’’ in the middle. Th
enabled us to construct a global Poincare´ section. This sec-
tion was chosen at the repolarization minimum. Specifica
we chosedy3 /dt50,y3, some threshold, to define the glo

FIG. 2. First return map for the modified Hodgkin–Huxely equations
T512 °C. The Poincare´ section is defined by the minima ofy3 during the
repolarization stage. Local torsion increases systematically from branc
branch, as shown by the branch labels.

FIG. 3. Scroll template rolling up~a! from outside to inside,~b! from inside
to outside.
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bal Poincare´ section. The threshold was chosen to distingu
between the minimum values ofy3 during the repolarizaiton
stage and the minimum values ofy3 between spikes in a
burst. A return map on this Poincare´ section is shown in Fig.
2 for T512 °C. This return map shows that

~1! The modified Hodgkin-Huxley equations are highly di
sipative.

~2! It is possible to locate many distinct period one orbits
some strange attractors.

~3! The period one orbits are organized in a very spec
way with respect to each other.

~4! Branches labeledn f describe bursts withn spikes.
Branches labelednr describe bursts withn spikes and an
extra incomplete spike.

~5! The period one orbitsn f are orientation reversing~flip
saddles! while the period one orbitsnr are orientation
preserving~regular saddles!.

~6! The orientation reversing orbitsn f are less unstable tha
the orientation preserving orbitsnr.

By following perturbations around the period one orbits, w
determined that the local torsion aboutnr is p32n radians
while the local torsion aboutn f is p3(2n21) radians.
Thus, the local torsion increases systematically from bra
to branch in the return map of Fig. 2.

This information is sufficient to reveal that the templa
which describes the strange attractors generated by the m
fied Hodgkin-Huxley equations is a spiral template, a
called a ‘‘gateau roule´’’ or ‘‘jelly-roll.’’ There are two such
templates; one rolls up ‘‘from outside to inside,’’ while th
other rolls up ‘‘from inside to outside.’’ These are shown

r

to

TABLE II. Template matrix and array for scroll template; outside to insid

Branch Array 0 1 2 3 4 5 6 7 8 9

0 1N20 0 0 0 0 0 0 0 0 0 0
1 2N10 0 1 2 2 2 2 2 2 2 2
2 1N21 0 2 2 2 2 2 2 2 2 2
3 2N11 0 2 2 3 4 4 4 4 4 4
4 1N22 0 2 2 4 4 4 4 4 4 4
5 2N12 0 2 2 4 4 5 6 6 6 6
6 1N23 0 2 2 4 4 6 6 6 6 6
7 2N13 0 2 2 4 4 6 6 7 8 8
8 1N24 0 2 2 4 4 6 6 8 8 8
9 2N14 0 2 2 4 4 6 6 8 8 9

TABLE III. Template matrix and array for scroll template; inside to outsid

Branch Array 0 1 2 3 4 5 6 7 8 9

0 0 0 0 2 2 4 4 6 6 8 8
1 21 0 1 2 2 4 4 6 6 8 8
2 11 2 2 2 2 4 4 6 6 8 8
3 22 2 2 2 3 4 4 6 6 8 8
4 12 4 4 4 4 4 4 6 6 8 8
5 23 4 4 4 4 4 5 6 6 8 8
6 13 6 6 6 6 6 6 6 6 8 8
7 24 6 6 6 6 6 6 6 7 8 8
8 14 8 8 8 8 8 8 8 8 8 8
9 25 8 8 8 8 8 8 8 8 8 9
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Fig. 3. One of these, the one which rolls up ‘‘from outside
inside,’’ has been identified in the Duffing oscillator14 and
has been observed in experiments performed on a Y
laser.15

We provide the algebraic descriptions for these two te
plates in Tables II and III. In these tables, the branches
labeled by integers 0,1,2,... which describe the local tors
of the period one orbits in these branches,T( i ,i )5 i . The
off-diagonal matrix elements are twice the linking numbe
of the period one orbits in the two branches,T( i , j )
52L( i , j ). The array information identifies the order
which the branches are joined at the bottom; smaller integ
identify closer branches.

For both templates, adjacent branches with local tors
2n,2n11 form a ~direct! smale horseshoe with global to
sion n, and those with local torsion 2n11,2n12 form a
reverse smale horseshoe with global torsionn.11,13,14It is not
possible to distinguish between the two types of scroll te
plates by studying strange attractors confined to only
adjacent branches of a scroll template. The distinction
only be made by studying strange attractors which ext
over three or more branches.

Accordingly, we located period one orbits 4f , 4r , and
5 f and the period two orbit (4f ,5f ) in the strange attracto
for T512 °C. They were located using the first and seco
return maps on the Poincare´ section. These orbits are show
in Fig. 4, in the differential embedding. The linking numbe
for these orbits are

L~4 f ;4r !54, L~4 f ;~4 f ,5f !!57,

L~4 f ;5 f !54, L~4r ;~4 f ,5f !!58, ~8!

L~4r ;5 f !54, L~5 f ;~4 f ,5f !!58.

These linking numbers are consistent with the outside to
side scroll template13 and rule out the other scroll templat
The linking numbers for the period two orbit in the ‘‘insid
to outside’’ scroll are L(4 f ;(4 f ,5f ))58,L(4r ;(4 f ,5f ))
58, andL(5 f ;(4 f ,5f ))59.

In Fig. 5 we illustrate how the linking numbers are com
puted on the two templates. The three branches on which
three period one orbits 4f , 4r , and 5f live are shown. Each
period one orbit is represented by a vertical line in the c
responding branch. The period two orbit (4f ,5f ) is shown

FIG. 4. Three period one orbits~a! 4f ; ~b! 4r ; ~c! 5f ; and one period two
orbit ~d! (4f ,5f ) extracted from the strange attractor atT512 °C.
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propagating through the two outer branches. Each time
period two orbit crosses a period one orbit, an integer61 is
assigned. The integer is11 if the crossing is right handed
21 if left handed. The handedness is determined by
standard convention. Rotate the tangent vector to the flow
the upper filament into the tangent vector to the flow on
lower filament through the smaller angle. The rotation is
ther right handed or left handed, as per the usual conven
The period two orbit crosses a period one orbit a numbe
times. Two crossings are shown explicitly, along with t
signs for each of the crossings. The template for these th
branches has eight additional half-twists, in which the per
two orbit crosses each of the period one orbits116 times.
The linking number is half the signed number of crossin
Specifically, it is 8 plus half the sum of the two crossin
shown explicitly for each of the period one orbits. In th
template shown in Fig. 5~a! the linking numbers are 7, 8, an
8 for the three orbits with local torsions 7, 8, and 9. The
integers are compatible with those computed from the
stable periodic orbits extracted from the strange attractor
the template shown in Fig. 5~b! ~‘‘inside to outside’’! the
linking numbers for the corresponding period one orbits
8, 8, and 9. These integers are incompatible with the da

IV. DISCUSSION, CONCLUSION, AND SUMMARY

Apart from simple firings at irregular time intervals an
oscillatory behavior,bursting is the most common pattern o
action potential sequences observed in a wide variety of n
rons. Bursts are frequently composed of two to several ac
potentials occurring with sequentially increasing intersp
time intervals. We emphasize that this behavior is so f
quently encountered as to be generic to several classe
neurons. It is well described by the Hodgkin–Huxley mod
modified to include the slow oscillator as used here. W
show that the bursts are indeed the result of a chaotic dyn
ics and that the characteristic firing patterns arise dire
from the topology of the chaotic attractor. Thus, in the vie
presented here, the very familiar burst pattern of sens

FIG. 5. Computation of the linking numbers of the period two orbit (4f ,5f )
with the period one orbits 4f ,5r ,5f on the two scroll templates. The ‘‘out
side to inside’’ scroll template~a! is compatible with the Hodgkin–Huxley
strange attractor of the modified Hodgkin–Huxley equations.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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neurons is fundamentally a topological object. It is rema
able that only a small number~about four, plus variants! of
different topologies are sufficient to describe a wide range
chaotic systems observed in physical systems.11 Chaos in the
present model resides in the same class as that of the Y
laser.

The Hodgkin–Huxley equations have been modified
describe neural spike train data observed in three diffe
temperature dependent neurons with oscillators. As the t
perature is gradually increased from 10 to 25 °C the num
of spikes per burst decreases from 6 to 1, with an alterna
between periodic and chaotic behavior. In chaotic regio
there is an unpredictabe alternation between bursts win
spikes per burst and those withn61 spikes per burst. We
have shown that in the chaotic regime the strange attrac
are effectively three dimensional. We have constructe
number of three-dimensional embeddings and stud
strange attractors in each. The results are independent o
embedding used. It is always possible to construct a glo
Poincare´ section. The first return map on the Poincare´ sec-
tion reveals that the dynamics is highly dissipative. Furth
the distinct branches of the return map are organized
very specific way. That is, the local torsion of the period o
orbit in a branch increases systematically between adja
branches. As a result the template, which provides a car
ture for the dynamics, and which also classifies the type
stretching and squeezing mechanisms which generate
strange attractor and organize all the unstable periodic o
in it in a unique way, is a scroll. We have extracted unsta
period one and period two orbits from the strange attrac
and computed their linking numbers to identify the scr
mechanism. The scroll winds up from outside to inside. S
scrolls have previously been identified in the Duffin
attractor14 and have been observed in the YAG laser.15

As the temperature is increased, the first return m
shown in Fig. 2, moves to the left. When the map reac
tangency with the diagonal, a saddle node bifurcation occ
a stable period one orbit is created on a template branch
wnloaded 26 Jun 2007 to 134.124.123.228. Redistribution subject to AIP l
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previously occupied, and periodic behavior is observed.
the temperature increases further, the stable period one
loses its stability in the usual way, and a new strange att
tor develops. This systematic behavior has also previou
been observed in the Duffing attractor14 and the YAG laser.15
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