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Topological analysis of chaos in neural spike train bursts
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We show how a topological model which describes the stretching and squeezing mechanisms
responsible for creating chaotic behavior can be extracted from the neural spike train data. The
mechanism we have identified is the same @tgateau roule” or jelly-roll ) which has previously

been identified in the Duffing oscillatpGilmore and McCallum, Phys. Rev.H, 935(1995] and

in a YAG laser[Boulantet al,, Phys. Rev. E55, 5082 (1997)].

Physics[S1054-15009)01903-3

A class of temperature sensitive neurons contain oscilla-
tors or pacemakers. These neurons show bifurcations
among several regular firing patterns that can be selected
using temperature as the control parameter. Examples
include the multimodal electroreceptors of the dogfish,
catfish, and paddlefish, the warm and cold receptors of
the rat and cat and hypothalamic neurons in rat brain.
For certain conditions, these neurons show bursts from
two to several closely spaced action potentials followed by
longer silences. Indeed, bursting is one of the most com-
monly observed neural responses. Bursting and regular
(together with several othe firing patterns can be mim-
icked by a simple Hodgkin-Huxley model modified by
the addition of a pair of slow Nat and K* conductances.
We show that all bursting patterns observed arise di-
rectly from the topology of the underlying chaotic attrac-
tor characteristic of this model and that this attractor
falls within the same topological class as the previously
analyzed YAG laser. Thus, familiar burst patterns ob-
served experimentally in a large class of neurons result
from chaotic attractors of a single classifiable topology.

I. INTRODUCTION
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potential by about 65 MV \interior— Vexterio= — 65 mMV).
This potential difference is maintained by ion pumps. Under
rest conditions, the three species exhibit concentration gradi-
ents across the cell membrane. The concentration’oioiks
within the axon is larger than the concentration outside by a
large factor [K™ Jinsige/[ Kt Joutsiae=20), while the reverse

is true for N& and CI:Na ]isice/[ Na" Joutsige
=1/9;[ CI™ Jinside/ [ CI” Joutsiae=1/6. These ratios depend on
the potential differencey, and weakly on the temperature,
T.

At rest, the membrane is negatively polarized. As the
sodium channel opens, a relatively fast influx of Nmns
takes place, and the membrane becomes depolarized-(
creases and subsequently becomes pokitikéier a short
time (~1 ms this influx turns off and a fast efflux of K
begins. While this takes place there is also a slow efflux of
Na' as the Na concentration gradient is restored. The fast
K* efflux is also followed by a slower Kinflux to restore
the K" concentration gradient. All flows in the Nacycle
(fast influx, slow effluy and K" cycle (fast efflux, slow in-
flux) occur with different time scales.

Hodgkin and Huxley proposed the following equation to
describe the current flow, into a Gaussian pillbox whose
walls consist of the axon membrane bounded by two circular
sections perpendicular to the axis,

In a beautiful series of experiments more than 40 years

ago, Hodgkin, Huxley, and Katz determined a mechanism
responsible for the propagation of electric pulses along the

axon of a giant squid nerve céliHodgkin and Huxley also

proposed a simple model to describe the time evolution an

the propagation of these electrical puld€Ehis model, and

@
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ﬁereCM is the capacitance of the membrane agg , I+,
nd |- are the ion current flows through the membrane.

variations on it, have been used to describe propagation .
. . : hese current flows are proportional to the conductance and
nerve action potentials ever since. the differences between the potentisl) (and the respective
Hodgkin and Huxley determined that changes in the po-. .. . . P P
. -~ equilibrium potentials,
tential difference across the axon membrane are due princi-
pally to the flow of ions through the membrane and along the
axis of the nerve cell axon. The ionic species which contrib-
ute most substantially to the current flows are'NK™*, and
CI™. The cell membrane itself acts like a capacitor with ca-
pacitanceC,, . Under rest conditions, the membrane is po-

larized, so that the interior potential is less than the exterior

I'Nat = Onat (V= Nat) s

lk+=0gk+(V—uk+), 2

le-=9c-(V—uc-)-
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The Na and K™ conductances are sensitively dependent orTABLE |. Parameter values for use with the modified Hodgkin—Huxley
the potentiaV. Hodgkin and Huxley proposed the following equations. These include chemical potengialmV), time decayr (ms),

71 . —
henomenological expressions for these conductances: ~ conductance (uS), parameters (mV™") (an effective temperatureand
P 9 P (mV) (an effective chemical potentjaihich define equilibrium probabili-

ties through (- exp(fs(Vf,Z)))’l, and other assorted parameters.

- dm
gNaJr:mgthaJr E: —(Mm—m,)/1q,

y Variable " T g S ;
9k 9+ Gt =) T2 2 K, ~90 2 20 025 -25
3 Na, 50 10 025  0.09 —40
— n 4 Kp -90 20 0.40
9c-=%c- g = ~(N—N)/7s. cl, ~60 0.1
The functionsm, h, andn were interpreted as probabilities. p=1.3T-To/o 7=0.012
Their steady state valuesy,., h,., andn,,, are strongly po- ¢=3.07 To/10 k=0.17
tential dependent. To=25 Cu=1uF

The concentration gradients across the membrane are
maintained by ion pumps. These are proteins which pump

K™ ions into the axon and Naand CI” ions in the opposite dified Hodakin—Hux del. including th ical
direction. These ion pumps maintain weakly temperature gehodriied Hodgkin—Huxi€y model, Inciuding the numerica
alues of all parameters as well as their temperature depen-

pendent chemical potentials. These pumps act with slow tim(é1e . . : .
constants. They are responsible for the second, slow part ncies, has been giveand will be su_mmanze(_j below. The_: .
fmodel we use here, however, contains no noise, though it is

the Na" and K" cycles. The fast responses in the first part o o ) o
these cycles are due to the opening and closing of respecti\f)éherv"Ise identical tq that of Ref. 8. Tr_]u_s ?” the variability
ion gates. These gates are proteins which open and close e observe here arises from deterministic chaos, and the
response to variations in the potential differende, When unstable periodic orbits are observed cleanly. In contrast, the
’ h aunstable periodic orbits observed in experiments on biologi-

open, they allow free flow of the respective ions thoug o
channel in the membrane. Although the flow may be tWO_cal sensory neurons are always obscured by the noise inher-

way, the concentration gradients insure that Nlows into enttr:n d'igose neurons and must be detected by statistical
the axon and K flows out of the axon to reduce these gra- methods.

dients. These processes occur on faster time scales than the The Hodgkin—Huxley equations were modified by ex-
DUMP Processes. pressing both the Naand K" currents as sums of two

terms; a fast term describing ion channels relating to spike

L. THE MODIFIED HODGKIN-HUXLEY MODEL activity .and a slov_v _ter_rg describing ion channels relating to

the oscillatory activity’
In order to mimic the action potential, or “spike” trains

experimentally observed in electroreceptor cells from both

sharks(dog fish® and catfisH, and from the facial cold re- e+ =lk_gTlk_p- @

ceptors of the rat,Braun and colleagues have modified the

Hodgkin—Huxley equations in order to account for a com-

mon feature of the aforemention_ed cells. The dynamical be_z- INafg:paNafgmdoo(V_MNa‘*‘)v

havior of these cells is characterized by a subthreshold oscil- o (5)

lator or pacemaket? Moreover, the oscillation frequency lk—g=PYK—gNKk—g(V—mk+).

and the _temporal patter_n_s of th(_a spikes, inc_luding bursting-he slow currents are assumed to satisfy

and multimodality of their interspike interval histograms, are .

strongly temperature dependent. These features were de- Iy, p=pGna-pMna—p(V— tnat),

scribed by Brauret al®~® in the modified model by includ- _ (6)

ing an additional pair of N&a and K" channels with slow Ik p= PGk pNk—p(V—puk+)-

characteristic response times while ignoring the €hannel.  The probabilitiesn, 4, Mya_p, andng_, are assumed to

In the notation used by Brauet al, the model is given by  satisfy the following relaxation equations;

CudV/idt=1,—14—1,—lgq— g, Wherely and I, are the

fast depolarizing and repolarizinga® and K') currents,

respectively, andg4 and I, represent the slow currents

which activate at lower membrane potentials. The slow cur-

rents account for the oscillatory behavior of thig class of Gt MNa-p= — (Mya p— Myap) Thap s (7)

neurons. They also account for the fact that this class of

neuron model is chaotic for certain parameter values, in this

case over ce'rtain Fempergture ranges. Thg presence of un- &nK,pz—qS(nlNa,er Kng - p)/ 7 p,

stable periodic orbits, a signature of chaotic dynamics, has

been detected in various sensory neurons, all of which arethere the temperature dependent scale factors re

characterized by oscillatofs:° A detailed description of the =1.3T"T9/10 gand =3.0T~T9"10 with T,=25 °C. These

INa*'ZINa—g'HNa—pr

The fast currents obey the following equations:

&nK—g: - (ﬁ(nK—g_nK—gw)/TK—g,
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FIG. 1. Bifurcation diagram for the modified Hodgkin—Huxley equations. The time intervals between spikgs$ afe plotted as a function of temperature
T. The diagram shows an alternation between periodic and chaotic behavior. The average number of spikes per burst decreases as the tempesature increas
(Inseh Spike train, in which each burst is labeled by a symiinf.

particular scalings represent the temperature dependenciessije spikes of/(t) vs T as the temperature is slowly scanned
the channel conductivities and were introduced in order tG;om T=10-25 °C. Within some chaotic regions we can

account for bifurcations between different types of spike pat'clearly see periodic windows followed by period doubling

terns observed in the physiological experiments using eMzascades into chaos. In the inset to Fig. 1 we show a series of

_plj_tralrature i’:l; Fhe bifulrcaticfm palzameter. Sk?ehRef. 8 for_detﬁilgpike train bursts, all of which are labeled by symbofs
e equilibrium values for all terms which appear in the . "ty notation will be explained below.

dynamical system Eqel), (7) and the constitutive Eqs4)— In order to study the type of chadsharacteristic of this

(6) are summarized in Table |. Assuming homogeneity alonghwodel, we generated strange attractors by integrating the

the axon,l =0 in (1) and the Eqgs(1) and(7) reduce to four . .
. . . : equations at many values ®ffor which chaos was observed.
ordinary differential equations forM,ng_q,Mya—p,Nk-p) . . .
= (Y12, Y3.Ya). The strange attractors were then projected into the six planes
Iz 73 which are formed from pairs of the four variables
Y1, Y2, Y3, Ya. In all cases the projection into thg—y,
plane was a slightly deformed circle. This means thaand
These modified Hodgkin—Huxley equations have beery, are in quadrature, witly, following y, by ~ /2 radians.
studied by numerical integration. We have used a standards a result, the modified Hodgkin—Huxley equations for
RK4 procedur® with a constant step size aft=0.05 ms. these parameter values describe a system which is effectively
Integrations were carried out for the parameter values showthree dimensional. This means that the topological methods

Ill. RESULTS: THE TOPOLOGY OF BURSTING

in Table I, for temperatures in the rangie-10-25 °C. developed to classify low(3) dimensional dynamical
.In this tempera'ture range the potentigt) exhibits a  system&"!?can be applied to these equations.
series of peaks“spike burst”) followed by a return to a The topological analysis procedure involves several

polarized state\(~—65 mV). The burst consists of one to steps:

six depolarization peaks, all sharp and of approximately the ) ) _ _
same height. The interspike interval increases monotonicall{l) The strange attractor is embedded in a three-dimensional
between peaks in a single burst. The last spike in a burst of ~ Phase space.

spikes is usually followed by a monotonic return to the re-(2) Unstable periodic orbits of low period are located by the
polarization minimum G f), although it is sometimes fol- method of close returns.

lowed by an incomplete depolarization rise, observed as &) The topological invariants of these orbits, their linking
broad maximum well below the typical sharp spike height, ~numbers and relative rotation ratésare computed.

and then a return to the repolarization minimunr). Burst-  (4) A knot holder or template is determined from these to-
ing is a common behavior observed in a wide variety of  pological invariants. The knot holder accounts for the
neurons. As the temperature ranges from10-25 °C, the organization of all the unstable periodic orbits in the
average number of spikes per burst decreases from six to strange attractor.

one. In Fig. 1 we record the time intervals between succes’) Finally, the validity of this template is tested by predict-
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TABLE Il. Template matrix and array for scroll template; outside to inside.

0.2 ~ ~, Branch Array 0 1 2 3 4 5 6 7 8 9

: f\ af
e st £ g 0 +N-0 O O O O O O O 0 0 O
5r, “w’ ] 1 -N+0 0 1 2 2 2 2 2 2 2 2
= . ° g 2 +#N-1 0 2 2 2 2 2 2 2 2 2
w 0.15 4 S 8 3 —-N+1 0 2 2 3 4 4 4 4 4 4
> 6f "o 8 g 4 +N-2 0 2 2 4 4 4 4 4 4 4
c X § : 5 -N+2 0 2 2 4 4 5 6 6 6 6
£ N 6 +N-3 0 2 2 4 4 6 6 6 6 6
f 7 -N+3 0 2 2 4 4 6 6 7 8 8
0.1 o S 8 +N-4 0 2 2 4 4 6 6 8 8 8
S 9 -N+4 0 2 2 4 4 6 6 8 8 9

L L | ]
0.1 0.15 0.2

] ) bal Poincaresection. The threshold was chosen to distinguish
minys, (i-1) between the minimum values g§ during the repolarizaiton
stage and the minimum values g between spikes in a
FIG. 2. First return map for the modified Hodgkin—Huxely equations for burst. A return map on this Poincasection is shown in Fig.

T=12 °C. The Poincarsection is defined by the minima g during the 2 for T=12 °C. This return map shows that

repolarization stage. Local torsion increases systematically from branch to . . . . .
branch, as shown by the branch labels. (1) The modified Hodgkin-Huxley equations are highly dis-

sipative.
(2) It is possible to locate many distinct period one orbits in
ing the linking numbers of additional periodic orbits, and some strange attractors.

comparing these predictions against additional orbitd3) The period one orbits are organized in a very specific

found in the attractor. way with respect to each other.

We studied the attractors of the modified Hodgkin—(4) Branches labelechf describe bursts withn spikes.
Huxley model in three different embeddings. These were the Branches labeledr describe bursts with spikes and an
phase spacex(,X,,X3) with the identifications X;=y3,X, extra incomplete spike.
=Yy..Xg=Y;) and the differential X;=Yy3,X,=X;,X3=X,) (5) The period_one orbits_lf are orienFation reversingli.p
and integral (<1,X2=5<1ZY3,X3=5<2) embeddings. In the lat- saddles while the period one orbiter are orientation

ter two embeddings the three variables are differentially re- preserylng(rggular saddle)s .
lated to each othex,—X,—%,. The latter two embeddings (6) The orientation reversing orbitsf are less unstable than
3T A2T AL

L . the orientation preserving orbits.
are useful because linking numbers are particularly easy to

. . 2 . .
compute in these embeddings:®* We will describe our By following perturbations around the period one orbits, we

analysis for the differential embeddings based on the varigetermined that the local torsion about is X 2n radians
able y;. Identical results were found for all three embed-ypile the local torsion abounf is mx(2n—1) radians.

dings. _ _ _ Thus, the local torsion increases systematically from branch
Each strange attractor has a “hole” in the middle. Thisiq pranch in the return map of Fig. 2.
enabled us to construct a global Poincaeetion. This sec- This information is sufficient to reveal that the template

tion was chosen at the repolarization minimum. Specificallyyhich describes the strange attractors generated by the modi-

we chosedy;/dt=0,y;< some threshold, to define the glo- fieq Hodgkin-Huxley equations is a spiral template, also
called a “gateau rouleor “jelly-roll.” There are two such
templates; one rolls up “from outside to inside,” while the

(b) other rolls up “from inside to outside.” These are shown in

TABLE Ill. Template matrix and array for scroll template; inside to outside.

Branch Array O 1 2 3 4 5 6 7 8 9

0 0 O 0 2 2 4 4 6 6 8 8

1 -1 0 1 2 2 4 4 6 6 8 8

2 +1 2 2 2 2 4 4 6 6 8 8

3 -2 2 2 2 3 4 4 6 6 8 8

4 +2 4 4 4 4 4 4 6 6 8 8

( ' , ) ) 5 -3 4 4 4 4 4 5 6 6 8 8

6 +3 6 6 6 6 6 6 6 6 8 8

Outside to Inside Inside to Outside 7 -4 6 6 6 6 6 6 6 7 8 8
8 +4 8 8 8 8 8 8 8 8 8 8

FIG. 3. Scroll template rolling uga) from outside to inside(b) from inside 9 -5 8 8 8 8 8 8 8 8 8 9

to outside.
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(a) (b) (a) (b)

©

( 16y

. o -1 0 0 0 0 +1
orbit (d) (4f,5f) extracted from the strange attractorTat 12 °C. +8 +8 48 +8 48 48
+7 +8 +8 +8 +8 +9

FIG. 4. Three period one orbits) 4f; (b) 4r; (c) 5f; and one period two

) ) B . FIG. 5. Computation of the linking numbers of the period two orbit,64)
Fig. 3. One of these, the one which rolls up “from outside towith the period one orbits #5r,5f on the two scroll templates. The “out-

inside,” has been identified in the Duffing oscillajt‘band side to inside” scroll templatéa) is compatible with the Hodgkin—Huxley
has been observed in experiments performed on a vy AcStrange attractor of the modified Hodgkin—Huxley equations.
laser?®

We provide the algebraic descriptions for these two tem-
plates in Tables Il and Ill. In these tables, the branches ar
labeled by integers 0,1,2,... which describe the local torsio
of the period one orbits in these branch&éi,i)=i. The
off-diagonal matrix elements are twice the linking numbers
of the period one orbits in the two branches(i,j)
=2L(i,j). The array information identifies the order in
which the branches are joined at the bottom; smaller intege
identify closer branches.

For both templates, adjacent branches with local torsio
2n,2n+1 form a(direct smale horseshoe with global tor-
sion n, and those with local torsion2-1,2n+2 form a
reverse smale horseshoe with global torsidd %It is not

ropagating through the two outer branches. Each time the
eriod two orbit crosses a period one orbit, an intefjéris
ssigned. The integer is 1 if the crossing is right handed,
—1 if left handed. The handedness is determined by the
standard convention. Rotate the tangent vector to the flow on
the upper filament into the tangent vector to the flow on the
lower filament through the smaller angle. The rotation is ei-
"ther right handed or left handed, as per the usual convention.
The period two orbit crosses a period one orbit a number of
Yimes. Two crossings are shown explicitly, along with the
signs for each of the crossings. The template for these three
branches has eight additional half-twists, in which the period

ible to distinauish bet the two t " It two orbit crosses each of the period one orbit$6 times.
POSSIDIE fo AISUNGUISh LEIWEEN the tWO Types o SCrofl teM-ry,q linking number is half the signed number of crossings.

plates by studying strange attractors confined to only thépecifically it is 8 plus half the sum of the two crossings
adjacent branches of a scroll template. The distinction ca hown expl,icitly for each of the period one orbits. In the
only be made by studying strange attractors which eXten%emplate shown in Fig.(8) the linking numbers are 7, 8, and
over three or more branches. . . 8 for the three orbits with local torsions 7, 8, and 9. These

Accordmgly, we Iocate_d penoc_i one orbitd Mr, and integers are compatible with those computed from the un-
5f and the period two orbit (#5r) n the strange attractor table periodic orbits extracted from the strange attractor. In
for T=12 °C. They were located using the first and secon he template shown in Fig.(§) (“inside to outside”) the

retIL:J_rn Tgpsr:)n(;f;? P0|nc?secgloga.The§ri O:.b'tks. are shct))wn linking numbers for the corresponding period one orbits are
In Fig. 4, n the differential embedding. The linking num erss, 8, and 9. These integers are incompatible with the data.

for these orbits are

L(4f;4r)=4, L(4f,(4f,5f))=7, IV. DISCUSSION, CONCLUSION, AND SUMMARY

L(4f;5f)=4, L(4r;(4f5f))=8, (8) Apart from simple firings at irregular time intervals and

) ) oscillatory behaviorburstingis the most common pattern of
L(4r;5f)=4, L(5F;(41,50))=8. action potential sequences observed in a wide variety of neu-
These linking numbers are consistent with the outside to inrons. Bursts are frequently composed of two to several action
side scroll templaté and rule out the other scroll template. potentials occurring with sequentially increasing interspike
The linking numbers for the period two orbit in the “inside time intervals. We emphasize that this behavior is so fre-
to outside” scroll are L(4f;(4f,5f))=8,L(4r;(4f,5f)) quently encountered as to be generic to several classes of
=8, andL(5f;(4f,5f))=9. neurons. It is well described by the Hodgkin—Huxley model

In Fig. 5 we illustrate how the linking numbers are com- modified to include the slow oscillator as used here. We
puted on the two templates. The three branches on which trehow that the bursts are indeed the result of a chaotic dynam-
three period one orbitsf44r, and 5 live are shown. Each ics and that the characteristic firing patterns arise directly
period one orbit is represented by a vertical line in the corfrom the topology of the chaotic attractor. Thus, in the view
responding branch. The period two orbitf(8f) is shown presented here, the very familiar burst pattern of sensory
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neurons is fundamentally a topological object. It is remark-previously occupied, and periodic behavior is observed. As
able that only a small numbéabout four, plus varianisof  the temperature increases further, the stable period one orbit
different topologies are sufficient to describe a wide range ofoses its stability in the usual way, and a new strange attrac-
chaotic systems observed in physical systéh@haos in the tor develops. This systematic behavior has also previously
present model resides in the same class as that of the YABeen observed in the Duffing attractband the YAG laset®
laser.
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