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1. Introduction of the sphere map with application to spin-torque nano-oscillators 1

Keith Gilmore1 and Robert Gilmore2

We generalize the circle map S
1
→ S

1 to a nonlinear mapping of the sphere
to itself. The sphere map S

2
→ S

2 depends on the three parameters that de-
scribe the rotation operations in the group SO(3) and one nonlinear parame-
ter that describes the strength of a folding acting on the sphere surface. This
new map is used to study the properties of a spin valve that obeys equations
of the form Ẋi = −bijXj + cijkXjXk and satisfy the conservation condition
d

dt

∑
X

2

i = 0. With periodic driving, we find regions in the parameter space that
describe quasiperiodic, mode-locked, and chaotic behavior.

1. Introduction

In this work we formulate tools to study the spectrum of possible behaviors of

a magnetic nano-oscillator that is described by the Landau-Lifshitz-Slonczewski

(LLS) equations. These equations have a form introduced by Lorenz in his study

of truncations of the Navier-Stokes equations.

Within the LLS equations, the magnetization is a conserved quantity, so is

described by a point on the surface of a sphere S2. Under periodic forcing the

phase space is enlarged to S2 × S1. We introduce a mapping of the sphere surface

to itself, which is a generalization of the circle map, to study the dynamics of this

system.

In Sect. 2 we review the circle map, as defined by Kolmogorov and Arnold.

We also review the truncated form of the Navier-Stokes equations, as described by

1
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Lorenz. Sect. 3 discusses spin-transfer-torque and introduces the Landau-Lifshitz-

Slonczewski equations. In Sect. 4 we bring the LLS equations into the form pro-

posed by Lorenz. Sect. 5 defines the sphere map S2 → S2. In Sect. 6 we introduce

three large-scale scans for behavior under rotations about three coordinate axis.

Sect. 7 examines some appropriate bifurcation diagrams, and in Sect. 8 we in-

vestigate how some trajectories behave under variation of the nonlinear coupling

strength. Finally, we summarize our findings in Sect. 9.

2. Background

The circle map

θn+1 = ω0 + θn − k sin(θn) (1)

was originally introduced by Kolmogorov to describe the behavior of periodically

driven mechanical oscillators.1 Here θ represents the phase of the oscillator and θn
is its value stroboscopically recorded (i.e., at the same phase during each driving

period). The term −k sin(θn) describes the nonlinearity in the response of the

oscillator to the driving force. Arnold later used this map to study the breakup

of invariant tori under perturbations.2 The circle map exhibits behavior including

quasiperiodic orbits (regular but not closed), mode locked regions, Arnold tongues,

and period-doubling routes to chaotic behavior.3

A standard way to simplify the Navier-Stokes equations involves expanding the

various fields present (the velocity, temperature, and pressure fields) in Fourier

modes or empirical orthogonal modes, placing these representations in the Navier-

Stokes equations, and then integrating out the spatial dependence. Lorenz4 noted

that the resulting set of ordinary differential equations for the time-dependent mode

amplitudes assumes the form of a set of ordinary differential equations whose source

terms are polynomials of degree no greater than two:

dXi

dt
= ai − bijXj + cijkXjXk (2)

where the tensor c is symmetric in the last two indices: cijk = cikj and we use

the summation convention. Lorenz further observed that all initial conditions lead

to bounded solutions if bij is positive definite and the quadratic terms satisfy the

condition cijkXiXjXk = 0. These conditions are satisfied by the Lorenz equations.

The Lorenz equations exhibit a behavior that was very surprising for its time:

deterministic but nonperiodic flow.4 The Lorenz strange attractor has been a model

for understanding chaotic behavior and a test-case for tools developed to study this

behavior.5

Spintronics, the control of magnetic systems with spin-currents, holds great tech-

nological promise. Some of the interactions of spin-currents with magnetic systems

are described by the Landau-Lifshitz-Slonczewski equations. These equations have

the form of Eq.(2) with ai = 0, bij antisymmtric and cijk with mixed symmetry
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and cijkXiXjXk = 0. As a result, the phase space for the magnetic moment is the

sphere surface S2. The LLS equations for a periodically driven system involve flows

on a three-dimensional phase S2 × S1. Since the phase space is three-dimensional,

chaotic behavior is possible.3 A Poincaré section can be chosen as φ = cst., φ ∈ S1.

The Poincaré first return map is the map S2 → S2. The sphere map is a general-

ization of the circle map. We report some of the properties of the sphere map in

this work.

3. Landau-Lifshitz-Slonczewski Equations

Ferromagnetism is a state of matter in which strong Coulomb exchange interactions

align the spins of electrons, producing a net magnetization in the absence of any ap-

plied external field. The exchange interaction is short range. On longer length scales

the magnetostatic dipole interaction favors antiparallel alignment of spins, leading

to the formation of magnetic domains. The electron spins within a given domain are

essentially uniformly aligned. Neighboring domains are typically oriented so as to

minimize the magnetostatic dipole energy. Between two domains the magnetization

rotates smoothly from one domain orientation to the orientation of the neighboring

domain producing a magnetic domain wall. The characteristic length scale of do-

mains depends on material parameters and sample geometry, but is large enough

for many materials, such as the transition metals, that nanoscale samples can be

comprised of a single domain and thought of as having one macroscopic magnetic

moment.

It is energetically favorable for the magnetization to align with the effective

magnetic field, which consists of the combination of internal and external fields.

Because the magnetization carries angular momentum, the effective field applies a

torque to the magnetization, which causes the magnetization to precess about the

effective field according to

∂tm̂ = −γm̂×Heff (3)

where m̂ is a unit vector designating the direction of the magnetization, Heff is the

effective magnetic field, and γ is the gyromagnetic ratio. If Heff is constant in time

then |γHeff | is the precession frequency.

In reality, some loss mechanism damps the precession of the magnetization,

causing it to align in the low energy direction specified by the effective field. This

damping is a phenomenological observation that is typically accounted for by the

inclusion of another torque, −(λ/|m|) m̂×
[

m̂×Heff
]

, that is orthogonal to both the

magnetization direction and the precession direction. Together, these two torques

form the Landau-Lifshitz (LL) equation6

∂tm̂ = −γm̂×Heff − λ

|m| × m̂×Heff . (4)

The parameter λ is a sample dependent dissipation rate. The damping term is often
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rewritten in the equivalent Gilbert form7–9 as αm̂× ∂tm̂ and the resulting equation

referred to as the Landau-Lifshitz-Gilbert equation (LLG equation). In the present

work we use the Landau-Lifshitz form.

The magnetization of a material may also be manipulated by an electrical cur-

rent.10–13 Due to the inequivalent density of states of each spin type at the Fermi

level, a current flowing through a magnetic material will be spin-polarized – it will

carry angular momentum in addition to charge. If the magnetization direction of

a material is spatially non-uniform along the direction of current flow the spin-

polarized current will apply a torque to the magnetization. This torque is known as

the spin-transfer torque. The spin-transfer torque shows promise for use in magnetic

random access memories14,15 and telecommunication applications.16,17

The spin-transfer torque can have different forms depending on the physical

circumstances under consideration.18 If the magnetization changes very slowly in

space, such as in a wide domain wall, then the spin-orientation of the transport

electrons will be able to track the local magnetization adiabatically as the electrons

flow through the system. In this case, the torque due to the spin current is referred

to as the adiabatic spin torque.10 If the spatial variation of the magnetization is

abrupt, the spin orientation of the transport electrons will not be able to respond

adiabatically to the local magnetization and the resulting torque is the non-adiabatic

spin torque.13 In this paper we will consider the non-adiabatic spin torque such as

occurs in a nano-pillar magnetic multilayer.

The nano-pillar magnetic multilayer system consists of a multilayer nano-pillar

connected on both ends to non-magnetic electrodes. The multilayer stack has a

physical cross-section of a few tens of nanometers and two (or more) magnetic

layers separated by non-magnetic spacer layers. The magnetization of one of the

magnetic layers will be fixed (either through exchange biasing or simply by being

much thicker than the second magnetic layer); this is referred to as the fixed layer

or polarizer. The magnetization of the other magnetic layer will be free to rotate;

this layer is referred to as the free layer.

As a current flows through the multilayer stack it becomes spin-polarized by

the polarizer layer. The spin-polarized current then impinges upon the free layer,

applying a non-adiabatic spin-torque, Ωm̂ × [m̂× m̂P], to the magnetization. The

prefactor Ω is a constant with dimensions of frequency that depends on the current

density, material parameters, and fundamental constants. The unit vector m̂P is

the direction of magnetization of the fixed layer, which dictates the polarization

axis for the spin current. Adding this spin-torque to the LL equation gives gives

the Landau-Lifshitz-Slonczewski (LLS) equation

∂tm̂ = −γm̂×Heff − λ

|m|m̂× m̂×Heff +Ωm̂× m̂× m̂P . (5)

All three torques in this equation are perpendicular to the magnetization and act

only to rotate the magnetization, not change its magnitude. Therefore, the tra-

jectory of m(t) evolves on the surface of a sphere S2. Since the sphere is two-
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dimensional the asymptotic behavior can only be stationary or periodic, corre-

sponding to the the only behaviors allowed by the Poincaré-Bendixon theorem.3

The dynamic responses allowed by Eq. (5) have been studied both experimen-

tally19 and theoretically.20 Three types of behavior are observed. Either the mag-

netization of the free layer will remain largely unperturbed, will reverse, or will

be driven into a stable precession orbit. The particular response depends on the

current density, degree of polarization, strength and direction of external and in-

ternal fields, and the strength of the damping. For low spin-current driving, the

damping torque keeps the magnetization oriented in the low energy direction. Very

large spin-currents will cause the direction of the magnetization of the free layer

to reverse and align in the oppositely oriented low energy direction. Intermediate

spin-current driving can establish stable precession orbits. The frequency of these

precession orbits may be tuned by adjusting the current density. This observa-

tion suggests an application for the spin-torque multi-layer as a voltage-controlled

tunable-frequency oscillator.16,17 These observations assume a dc-current. In this

work we investigate what dynamic responses may be induced by an ac-current.

4. Connection with Lorenz Equations

The Landau-Lifshitz-Slonczewski equations (4) have the form of the Lorenz equa-

tions (2) under the identification m1 = X1 = X , m2 = X2 = Y , and m3 = X3 = Z.

In this form ai = 0, bij = −bji, and cijk is of mixed symmetry with cijkXiXjXk =

0.4

If any one of the terms in Eq.(4) is periodically driven, the phase space is enlarged

to S2 × S1. This occurs in the same way and for the same reasons that the phase

space for nonlinear two-dimensional oscillators (e.g., R2 for the Duffing and van der

Pol oscillators) is enlarged to R2×S1 when they are periodically driven.21,22 In this

three-dimensional phase space more exciting behaviors can occur.3 These include

quasiperiodic behavior, periodic behavior due to mode locking, and chaotic behav-

ior. All these types of behavior have been seen in simulations23–25 and discussed in

a recent review article.26 At the present time there is no systematic understanding

of the parameter ranges under which these three types of behavior can be exhibited

by the solutions of the periodically driven LLS equations or the nano-oscillators

that they model. It would be extremely useful to have a systematic understanding,

comparable to that provided by the circle map, for a large class of nonlinear dy-

namical systems. The purpose of the present contribution is to provided the tools

for such a systematic understanding of the parameter space describing the behavior

of the solutions of Eq.(5).

Since the phase space is S2 × S1, it is useful to study dynamics by studying the

first return map on the Poincaré section. The Poincaré section can be chosen as a

stroboscopic section 2πt/T = cst. mod 2π. This is a sphere. We call the first return

map S2 → S2 the sphere map in analogy with maps S1 → S1, the widely studied
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circle maps.1–3 These maps have been enormously useful for the study of nonlinear

oscillators in the plane that have undergone a Hopf bifurcation and are periodically

driven (e.g., van der Pol oscillator). We expect sphere maps to be equally useful for

studying the properties of nonlinear spherical oscillators such as spin valves.

Fig. 1. (color online) Behavior of the sphere map for rotations about the z-axis (0, 0, 1). Color
coding: number of distinct points in a long trajectory. Cool colors (blues) indicate low period
orbits that exist because of mode locking. Hot colors (reds) indicate either high period orbits
or quasiperiodic trajectories. Below k = 1 quasiperiodic regions are interrupted by mode-locked
regions which generally increase in width as k increases. Evidence of period-doubling cascades can
be seen above k = 1.

5. Definition of Sphere Map

The circle map is the composition of two simpler maps. The first is a rigid rotation

of the circle through the angle ω0: θ → θ′ = θ + ω0. This is a linear map. The

second map is a nonlinear, sometimes noninvertible deformation of the circle: θ →
θ′ = θ−k sin(θ). This nonlinear map involves a folding centered on the angle θ = 0.

It is noninvertible for |k| > 1.

We construct a nonlinear map of the sphere to itself by generalizing these two

transformations. The linear step applies a rigid rotation of the sphere onto itself:

(X,Y, Z) → (X,Y, Z)′, where the sum of the squares of the coordinates is +1. It
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consists of a rigid rotation through an angle ω about an axis of unit length n:

ωn = (ωx, ωy, ωz).

The nonlinear step folds the sphere about the half of a great circle through

the poles and the point (1, 0, 0) (“Greenwich meridian”). The cut point for this

map is the negative X axis, so that the azimuthal angle φ satisfies −π ≤ φ =

tan−1(Y/X) ≤ +π. This angle is stretched according to φ → φ′ = φ−k sin(φ). The

image coordinates on the sphere are Z ′ = Z,X ′ = R cos(φ′), Y ′ = R sin(φ′), where

R =
√
X2 + Y 2. This simple two-step map (rigid rotation + fold) is an extension

of the circle map from S1 to S2. In this case the wrinkling exhibited in the circle

map occurs as a folding centered on the half great circle described above.

The sphere map depends on 3 + 1 parameters. Three identify an element in

the rotation (Lie) group SO(3), which acts through a linear representation on the

coordinates (X,Y, Z) ∈ S2. The fourth identifies the strength of a certain type of

nonlinearity acting on the sphere surface S2.

Fig. 2. (color online) Behavior of the sphere map for rotations about the: x-axis (1, 0, 0) (left) and
the y-axis (0, 1, 0) (right). Color coding as in Fig. 1. Mode-locked regions can be seen somewhere
for many values of k.

6. Scanning Procedure

To explore the sphere map we choose a rotation axis and describe the trajectories

as the rotation angle ω and the nonlinear strength k are varied. The trajectory is

characterized by the value of the azimuthal angle φ. For a period-p orbit there will

be p distinct angular values. Each successive value of this angle is recorded in a

trajectory and the angular values of these coordinates are binned. The number of
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Fig. 3. Bifurcation diagram taken along ω = π × 99/100 in Fig. 1. Quasiperiodic behavior
(0 ≤ k < 0.6) is followed by mode locking (0.57 ≤ k ≤ 1.3), which is followed by period-doubling
(k ≤ 1.3 ≤ 1.6) which is followed by chaotic behavior intermingled with periodic windows (1.6 ≤

k ≤ 2.0).

bins visited by a trajectory is determined and color coded in Figs. 1 and 2. Mode-

locked orbits of period one and two are coded dark and light blue. Orbits of high

period are generally indistinguishable from quasiperiodic orbits in this color plot.

They can be distinguished by the structure of the bifurcation diagrams presented in

Figs. 3-9. Further, chaotic behavior cannot occur unless the map is noninvertible,

that is, for |k| > 1.

The results are shown in Fig. 1 for rotations around the z axis n = (0, 0, 1).

For k < 1 the motion is either quasiperiodic or mode-locked, with the mode-locked

regions indicated by the dark blue color. These windows (tongues) generally increase

in width with increasing k. Above k = 1 period doubling begins to occur (shades of

lighter blue) leading to chaotic behavior. The chaotic regions are intermixed with

mode locked regions, and the chaotic region has diminishing measure as k continues

to increase.

For rotations around the x- and y-axes the result is substantially different. In

Fig. 2a we show the results for rotations around the x-axis. In this case mode-

locking occurs for k < 1.5. As k increases above 1.5 locking to higher period orbits

occurs, leading eventually to quasiperiodic and chaotic behavior. Figure 2b shows a

similar plot for rotations around the y-axis. Just as for rotations around the x-axis,

mode-locking occurs for k < 1.5 and appears in isolated regions for larger values of

k.



November 3, 2011 18:50 World Scientific Review Volume - 9.75in x 6.5in GilmoreK

Spin valves and sphere maps 9

7. Bifurcation Cuts

We construct bifurcation diagrams for the results presented in Fig. 1 along various

cuts. The first cut (Fig. 3), along k in the range 0 ≤ k ≤ 2, at constant rotation

angle ω = π ∗ (99/100), shows that the motion is quasiperiodic up to k = 0.6. Af-

ter this point the invariant density increases to the point where a period-two orbit

emerges. This continues until k ≃ 1.3 where a period-doubling cascade begins. The

evolution along this cut terminates in a chaotic attractor for k ≃ 1.6. The chaotic

regions show windows of mode locking intermingled with the chaotic behavior, typ-

ical of the logistic map. The largest window, at k ≃ 1.7, has period 2× 3. It is the

period-three window in the chaotic attractor based on the period-two orbit.

Figure 4 shows a cut at k = 1, below the range in which chaos is observed in

Fig. 3. This figure shows in detail the behavior indicated in Fig. 1. There is an

intermingling of mode-locked and quasiperiodic behavior as ωz is scanned from −π

to +π. Mode locking to a period-one orbit occurs around ωz = 0. Mode locking to

a period-two orbit occurs around ωz = π = 2π
2
. Mode locking to orbits of period

d = 3, 4, . . . occurs around ωz = 2π
d
.

Another cut, at k = 1.8, is shown in Fig. 5. This figure only shows 0 ≤ ωz ≤ π

because of two-fold rotational symmetry about the origin. As ωz increases from

0 to π mode locking is replaced by quasiperiodicity and then by mode-locking at

Fig. 4. Bifurcation diagram taken along k = 1 in Fig. 1. This bifurcation diagram shows
intermingling of quasiperiodic behavior with mode locking. The largest mode-locked region occurs
in the range −1.2π < ωz < +1.2π. Period-two mode locking occurs around π radians, mode-
locking of period three around ± 2π

3
, period-four around ± 2π

4
, etc.
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Fig. 5. Bifurcation diagram taken along k = 1.8 in Fig. 1 in the restricted range 0 ≤ ωz ≤ π.
This bifurcation diagram shows (left to right) how mode-locking gives way to quasiperiodicity
which then gives way to period-doubling and then to chaos intermingled with periodic windows.
This bifurcation diagram exhibits a two-fold rotational symmetry around the origin.

twice the period. A period-doubling cascade to chaos follows. As is typical, there

are periodic windows in the chaotic region.

Figure 6 shows a bifurcation diagram for the scan in Fig. 2 at k = 2.2 as a

function of the rotation angle ωx. Only the first half of this bifurcation diagram

is shown since the diagram is symmetric under ωx → 2π − ωx. The windows that

appear in Fig. 6 generally undergo a period-doubling route to chaos. A region of

period-doubling is magnified in Fig. 7.

A bifurcation diagram taken along the symmetry axis ωy = π is shown in Fig. 8.

A mode-locked period-one orbit undergoes period-doubling to chaos. At k ≃ 2.85,

the chaotic attractor begins to wind around itself in the sense that its boundaries

begin to overlap.

8. Trajectories

A trajectory consists of an iterated sequence of points (Xi, Yi, Zi) on the sphere

surface. The nonlinear transformation maps points from a given latitude (Z value)

to the same latitude, as do rigid rotations around the Z-axis. Composition of

these two operations maps points into points with the same latitude. Projecting

trajectories onto the equatorial plane maps them to a circle with fixed radius. As

the strength of the nonlinearity k is varied, the invariant density on this circle varies

but its radius does not. These projections provide a simple visual method to classify
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Fig. 6. A cut along k = 2.2 in Fig. 2 in the restricted range 0 ≤ ωx ≤ π. This bifurcation diagram
shows (left to right) how quasiperiodicity gives way to mode-locking and then to period-doubling
to chaos.

trajectories. An ensemble of trajectories for k values in the range 0.5 ≤ k ≤ 2.0

is shown in Fig. 9. Since the latitude is invariant under these transformations all

trajectories lie on the same circle. For visual clarity we scale the projection by a

k-dependent factor (1 + k). The resulting projections are organized into concentric

rings. For small values of k (interior region) quasiperiodic orbits predominate. For

larger values of k mode locking begins to occur. The first evident mode locking

occurs for p = 5, followed by a period-doubling route to chaos. The next mode

locking occurs for p = 3, again followed by a period-doubling cascade. The outside

ring shows a period-two mode locking, also followed by a period-doubling route

to chaos. For larger values of k a period-one mode locking occurs. This behavior

contrasts with the behavior of the circle map.

9. Summary and Discussion

Spin-torque oscillators are nanodevices with important technological promise. Iso-

lated oscillators are described by the Landau-Lifshitz-Slonczewski equations. Since

the magnitude of the magnetic moment is assumed constant within the LLS equa-

tions, the phase space for a spin valve is the surface of the sphere S2. If a spin valve

is periodically driven the phase space expands to S2 × S1, so that chaotic behavior

is possible. It is useful to study the dynamical properties of a periodically driven

spin valve by investigating the first return map on a Poincaré surface of section —

the sphere under stroboscopic measurements at φ = cst., φ ∈ S1.
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Fig. 7. This blow-up shows clearly how the mode-locked state goes through a period-doubling
cascade to chaos, which then exhibits a crisis back to quasiperiodicity.

To accomplish this, we have generalized the circle map S1 → S1 to a sphere

map S2 → S2. This sphere map is the composition of two maps. The first is a rigid

rotation of the sphere to itself which is parametrized by three variables: the Euler

angles or a rotation angle ω together with a rotation axis n, or (ωx, ωy, ωz). The

second map is a deformation of the density on the sphere surface. We choose this

nonlinear map as a fold around the Greenwich meridian, using exactly the same

form as occurs in the circle map. The strength of this nonlinearity is defined by a

parameter k.

Three scans have been made showing behavior in an ω − k plane. The first

scan is for rigid rotations around the z axis, and the results are similar to those

encountered for the circle map. The other two scans involve rotations around the

x- and y-axes. In these cases there is a mixture of quasiperiodicity, mode-locking,

and chaos. However, the organization of these types of behavior is not yet well-

understood.

Several bifurcation plots were made to better understand the information in the

initial scans. The bifurcation plots show a systematic organization of the quasiperi-

odic, mode-locked, and chaotic regions.

Finally, we calculated trajectories under iterates of the sphere map. For rotations

around the z axis all iterates lie on a fixed latitude circle. These trajectories have

been projected down to the equatorial plane and scaled by a k-dependent factor for

visual clarity. These projections (c.f., Fig. 9) emphasize the intermingling of the

quasiperiodic (dark) and mode-locked (mostly white) regions.

The sphere map depends on four parameters. Three identify an element in the
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Fig. 8. Bifurcation diagram taken along the scan of Fig. 2 along the symmetry axis. This diagram
exhibits the classic period-doubling scenario with a twist: the attractor begins to wind around
itself for k > 2.85 when the boundaries of the basin of attraction begin to overlap.

rotation (Lie) group SO(3). The fourth identifies the strength of a certain type of

nonlinearity.

This paper developed out of a long series of discussions during which my father

and I attempted to explain our research topics to one another. While we are both

physicists, we pursue substantially different subtopics within physics. My father

has constructed a career around non-linear dynamics and chaos theory while my

initial research direction centered on magnetism in condensed matter systems. For-

tunately, magnetic systems display a rich dynamic range, particularly because they

can be driven both by magnetic fields and electric currents. This provided a nat-

ural opportunity for us to explore the possibility of chaotic dynamics in magnetic

systems. We were pleasantly surprised by the wealth of behavior we found.

This work was supported in part by NSF Grant PHY 0754081.
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