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The van der Pol attractor exhibits a wide variety of behavior depending on the control
parameter values: limit cycles, quasiperiodic motion on a torus, mode locking, period-
doubling, banded chaos, boundary crises, torus wrinkling, breakup of a torus, toroidal
chaos. The organization of these phenomena with respect to each other is well described
by studying a partition of the control parameter plane of the Curry-Yorke map.

I. INTRODUCTION

The periodically driven van der Pol oscillator [1, 2]
can exhibit a large variety of complicated behavior,
ranging from simple limit cycles, mode locked limit
cycles, quasiperiodic motion, banded chaotic attrac-
tors, and chaotic toroidal attractors.

The transition from quasiperiodic motion on a torus
to chaotic behavior occurs by breakup of the torus.
The breakup of the torus manifests itself in several
different ways. One path to chaos involves a period-
doubling cascade that occurs within a mode-locked
tongue. This leads to a banded chaotic attractor,
which evolves into a wrinkled fractal toroidal attrac-
tor following one or more boundary crises. Another
path to a chaotic toroidal attractor involves wrinkling
of the torus until a structurally stable heteroclinic
invariant set is created. When this occurs inside a
mode-locked tongue the heteroclinic invariant set is
dynamically unstable and essentially invisible until
the edge of the tongue is crossed. Then the mode-
locked behavior suddenly disappears and is replaced
by a chaotic toroidal attractor in a “hard” transition
to chaos. This wrinkling can also take place outside
an Arnol’d tongue. In this case the transition to chaos
is “soft”.

We investigate the sequence of transitions among
these types of behaviors through intersections of the
attracting set with a Poincaré surface of section and
bifurcation diagrams of these attracting sets. This is
most easily done by studying the properties of return
maps onto the Poincaré section. Since it is not possi-
ble to compute an analytic form for the return map of
the van der Pol oscillator onto a Poincaré surface of
section, we use as a surrogate one of the standard well-
known maps, the Curry-Yorke map [3]. Both the pe-
riodically driven van der Pol oscillator and the Curry
Yorke map satisfy the conditions of the Afraimovich-
Shilnikov theorem [4-6], which describes the spectrum

of possible routes from quasiperiodicity through torus
breakup to toroidal chaos. Other maps, such as the
Zaslavsky map [7, 8], can be used. We have used the
Curry-Yorke map because it is among the simplest in-
vertible maps R? — R? that depends on two control
parameters, so that is it possible to follow nontrivial
paths through the control parameter plane. One con-
trol parameter is insufficient to illustrate this spec-
trum of behaviors, two are necessary and also suffi-
cient to exhibit all the phenomena that are observed
[4-6], while three or more (as in the van der Pol sys-
tem itself or the Zaslavsky map) simply complicate
this study.

In Sec. II we introduce a version of the van der
Pol dynamical system. The behavior of this system is
studied through a set of bifurcation diagrams in the
Poincaré section defined by wt = 0 mod 27. Sev-
eral types of behavior are illustrated for this system.
The organization of this behavior is clarified in Sec.
ITI. There we introduce the Curry-Yorke map, ex-
hibit the decomposition of its control parameter space
into various important regions (cf., Fig. 5), and re-
view the torus breakup theorem. As different paths
through the control parameter space are followed, dif-
ferent bifurcation processes are encountered. We fol-
low two different paths through the control space in
Sec. IV. Along each we describe the changes that
are encountered by showing phase space portraits
that occur along these paths. The phase space por-
traits of the Curry-Yorke map are to be compared
with intersections of the van der Pol attractor with a
Poincaré section. By inspection of the decomposition
of the control parameter space it is possible to devise
paths for scenarios involving transitions among differ-
ent types of behavior, including limit cycle, quasiperi-
odic, mode-locked, banded chaos, and toroidal chaos.
These relations, and the correspondence with behavior
encountered for the van der Pol flow, are summarized
in the Conclusion.



II. THE VAN DER POL SYSTEM
A The Equations

Ueda [1, 2] was among the first to study the chaotic
behavior generated by the van der Pol dynamical sys-
tem. He studied the following equation:

# — (1l —y2?)i + 2° = B cos(wt) (1)

This can be expressed as a nonautonomous dynamical
system in the form

o (2)

9 = p(l—vyx?)y — 2 + B cos(wt)
The phase space for this dynamical system is D2 x S1,
where D? C R? is a disk of finite diameter in R? and
S1 describes motion around the torus in terms of an
angle ¢ = wt mod 2n. The behavior exhibited by
this dynamical system depends on control parameters
(u,7y,B,w). This set of equations has a two-fold in-
ternal symmetry under (z,y,t) = (—z,—y,t + %T),
where wT = 2. This symmetry has the following
conseauence. If symmetry-related initial conditions
(z,y,t) and (—z,—y,t + $T) on a periodic orbit, ei-
ther they are on the same orbit (called a symmetric
orbit), or else they are on two different orbits that
form a symmetry-related pair of orbits.

The equation can also be rewritten as a set of

four first-order autonomous ordinary differential equa-
tions:

U=
0= —wu (3)

T=y

J=p(l—yz?)y—2°+u
This version of Eq. (1) depends on control param-
eters (u,7y,w) and initial conditions (u,v) = (B,0).
We point out here that when the van der Pol system
is expressed as an autonomous dynamical system, pa-
rameter B clearly appears as an initial condition and
not as a bifurcation parameter. This explains why
“bifurcation diagrams” parameterized in terms of B
are usually so difficult to interpret [9].

The van der Pol system (3) is equivariant under an
inversion symmetry (z,y,u,v) — (—z,—y,—u, —v).
The two-fold symmetry will present a slight complica-
tion in comparing the behavior in the return map on a
Poincaré section with the behavior of the Curry-Yorke
map.

This system is often used as a bench-mark model for
torus breakdown and for investigating some bifurca-
tion diagrams with mode-locking and period-doubling
cascades [10-13].

B Bifurcation Behavior & Phase Portraits

In the absence of periodic forcing (B = 0 or (u,v) =
(0,0)) the origin (x,y) = (0,0) is a fixed point. As

1 becomes positive, a Hopf bifurcation occurs that
creates a stable limit cycle as the fixed point at the
origin becomes unstable.

When the forcing is turned on (B # 0), the stable
fixed point at the origin of R* for x < 0 becomes
a stable period-one orbit. As p increases above zero
this period one orbit loses its stability, giving rise to
quasiperiodic motion on a torus that surrounds the
unstable limit cycle. Another way to view this is that
the unstable fixed point at the origin and the stable
limit cycle that exist in the z-y plane for u > 0,B =0
evolve, for B # 0, to an unstable limit cycle and a
torus on which the phase space trajectory moves in
D? x S'. While the torus exists, the motion on it
alternates between quasiperiodic and periodic (mode
locked) as the control parameters vary.

Fig. 1 shows a bifurcation diagram for Eq. (2).
The diagram is constructed by recording the value of
y at each intersection with a Poincaré section, defined
by wt = 0 mod 2w. Sweeps that were made for v
ascending and v descending show hysteresis because
of the multistability exhibited by this system. For
each change in the value of « the initial conditions
used for the new iteration were the final values for the
previous.

On the ascending sweep (black) there is a mixture
of chaotic and periodic behavior up to v = 11.0. From
v = 11.0 to v = 11.3 there is an attractor with two
bands. The intersections of these attractors with a
Poincaré section is shown in Fig. 2. For v = 10.97,
just below the merging crisis, the attractor exhibits
toroidal chaotic behavior (Fig. 2a). For v = 11.03,
just above this crisis, the bifurcation diagram shows
an attractor wth two bands. The bands are formed
after accumulation of a period-doubling cascade with
v decreasing through 11.3. The period-doubling cas-
cade shown in the bifrucation diagram occurs on one
of a pair of symmetry-related period-two orbits. Each
creates an attractor with two bands. The two-band at-
tractors associated with each of the symmetry-related
orbits are shown in Fig. 2b. A period-two orbit ap-
pears at v = 13.0 and coexists with other attractors
until it is destroyed in an inverse saddle-node bifur-
cation at v = 16.2. The attractor shown in the bi-
furcation diagram is quasiperiodic from v = 16.2 to
v = 16.4, where an inverse Hopf bifurcation destroys
quasiperiodicity and replaces it with a stable period
one orbit.

In the bifurcation diagram the period-two orbits
are represented by two points for any value of y and
quasiperiodic behavior appears as a small range of in-
tersections around y,, = —0.35. In Fig. 3 we show
phase portraits of the attractors encountered along
the ascending path. Fig. 3a shows the period two or-
bit that is represented in the bifurcation diagram at
~v = 13.026 (plotted in black) as well as its symmetry-
related partner, plotted in red. This partner orbit
is not seen in the bifurcation diagram. Both orbits



are stable and each has associated with it an un-
stable period-two saddle. The phase portrait of the
quasiperiodic trajectory at v = 16.2 is shown in Fig.
3b. This shrinks down to a roughly circular period
one orbit (not shown) for v > 16.4.

On the descending sweep some differences are ap-
parent. For v = 17 there is a stable period-one orbit.
A Hopf bifurcation at v = 16.4 changes the stabil-
ity of this orbit and creates a stable quasiperiodic at-
tractor. This exists (alternating with mode locking)
and is followed in the bifurcation diagram down to
v = 13.9 where a saddle node bifurcation on the in-
variant torus creates a stable period two orbit that
is not related to the larger period two orbit followed
along the path of v increasing. The period-two orbit
undergoes a period-doubling cascade and eventually
produces a two-band attractor at v = 11.3. This is
different from the pair of two-band attractors seen in
the Poincaré section shown in Fig. 2b. At y =11.3 a
crisis creates a toroidal chaotic attractor. Hysteresis is
apparent in the range 11.0 < v < 16.2, where at least
three a basins of attraction coexist. The period-two
orbit on the invariant torus (red) and the other pair
of period-two orbits that are larger than the attractor
undergo period doubling bifurcations at values of ~y
that are not the same, despite appearances in Fig. 1.

Toroidal chaos can be reached without going
through the period-doubling cascade and the banded
attractor phase. This is shown in Fig. 4. As « in-
creases above 9.1 it enters a period-two mode-locked
tongue. A period doubling bifurcation occurs at
v = 9.3, followed by a period-halving bifurcation at
v = 11.2, a brief interval of quasiperiodicity around
v = 15.9, and a stable period-one limit cycle for
v > 16.0. The initiation and reversal of period-
doubling cascades is a common feature of nonlinear
oscillators, and is commonly referred to “period bub-
bling” [10, 14-16]. On decreasing through v = 9.1
there is a “hard” transition to chaos. The “hard”
transition is one of the three routes to toroidal chaos
predicted by the Afraimovich-Shilnikov theorem [4-6].

It should be emphasized that the van der Pol oscil-
lator supports coexisting basins of attraction [9, 17].

IIT. THE CURRY-YORKE MAP

The rich behavior seen in the van der Pol dynam-
ical system corresponds closely to the rich behavior
exhibited by the Curry-Yorke map. The principal dif-
ference between the two are that one is a flow and the
other is a map. We use this map as a model for the
return flow onto a Poincaré section. A second differ-
ence is that the flow exhibits a two-fold symmetry in
the phase space while the map does not.
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FIG. 1: Bifurcation diagram versus 7 for the van der
Pol system studied by Ueda. Dark, v increasing; light,
~ decreasing. Hysteresis reveals multistability. Other
parameter values: u = 0.2, B = 0.35 and w = 1.018.
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FIG. 2: Chaotic behavior of the van der Pol system
on a Poincaré section. (a) Toroidal chaotic behavior.
(b) Banded chaotic behavior. The two pairs of period-
2 points shown correspond to period-two stable limit
cycles at v = 13.026 (dark trace). A boundary crisis
separates banded chaos from toroidal chaos. Other
parameter values: = 0.2, B =0.35 and w = 1.018.
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FIG. 3: Phase space plots of solutions to the van der
Pol system. (a) Two co-existing stable period-two
limit cycles. They are symmetry-related, one being
mapped to the other under the inversion symmetry.
Only one is indicated in the bifurcation diagram of
Fig. 1 on the ascending path. (b) Quasi-periodic so-
lution. Other parameter values: p = 0.2, B = 0.35
and w = 1.018.
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FIG. 4: Bifurcation diagram versus parameter ~ for
the van der Pol system. For v decreasing the period-
doubling cascade begins and is reversed, followed by
a sudden (“hard”) transition to toroidal chaos. Other
parameter values: p = 0.2, B =0.35 and w = 1.014.

A The Map

A homeomorphism on R? is a function that is con-
tinuous and has a continuous inverse. The mapping
¥ proposed by Curry and Yorke is the composition of
two simple homeomorphisms ¥; and ¥5. The home-
omorphism ¥, is defined in polar coordinates by

Pnt1 = €log(l + pn)

U, = 4
! ‘0n+1=0n+0o )

where € > 0 and 6y are control parameters to be cho-
sen. The homeomorphism Vs is defined in Cartesian
coordinates by

Tnt1l = Tn (5)

‘I’Q =
Ynt+1 = JE% + Yn

The Curry-Yorke map is the composition of these two
maps: U = \1’20\1’1.

This map can be expressed in simpler form in Carte-
sian coordinates as follows

z _ € n | cosfy —sinby z
|:y:|n+1 - o log(1+p) |:sin90 cos 8y :| [y+m2:|n

(6)
where p'? = 22 + (y + 2?)2.

For all values of the control parameters there is a
period-one orbit (fixed point) at the origin. This fixed
point is stable for € < ¢ = 1 and unstable for € > 1.
The origin becomes an unstable focus for € > €; via
a Hopf bifurcation. Immediately after the Hopf bi-
furcation the iterates of an arbitrary initial condition
follow a roughly circular quasiperiodic trajectory af-
ter the transients have died out. The radius p, of this
trajectory is approximated by ps = elog(1l + ps). The
radius grows linearly with the difference € — €; like
ps ~ 2(e — €1) /€ for small € — ;.

Another stable period-one orbit (and partner sad-
dle) is created in a saddle-node bifurcation for suffi-
ciently large values of €. Its location is determined
by fixing 6y and looking for a real doubly degener-
ate solution for the fixed point equation arising from
the first return map Eq. (6). This defines a curve
€2 = f(fo) in the control parameter plane. Above this
curve there is only one stable attractor of period one.

B The Control Parameter Space

Fig. 5 provides an overview of the dynamical be-
havior over an important part of the control parameter
space. The figure shows that the parameter space is
divided into three important regions: two boundary
regions defined by € < €1 and € > €5 in which only one
stable period-one orbit is observed and an intermedi-
ate region showing very complicated behavior. This



behavior includes: quasiperiodic motion, mode-locked
periodic motion, and chaotic motion. The chaotic be-
havior can be either banded or toroidal. Multista-
bility occurs in this region of the control parameter
plane. The partition of the control plane was created
by scanning 8y from left to right, and for fixed value
of 6y, scanning e from below €; to above €2, using final
values of the previous scan as initial conditions for the
next.
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FIG. 5: Parameter space for the Curry-Yorke map.
Arnol’d tongues associated with mode locking are at-
tached to the 6y /27 axis at p/q and are clearly vis-
ible for p = 1,9 = 3,4,5,6. Tongues are gener-
ally three-sided, bounded by saddlenode bifurcation
curves along their outer edges that are joined at a
vertex on the line € = ¢; and by the beginnings of
period-doubling cascades opposite the vertex.

It is a simple matter to distinguish periodic from
quasiperiodic behavior. In the former case the limit

1 7
— lim —= = rotation number (7
2T n—oo n

is a rational fraction, p/q, where p and g are relatively
prime integers. This signifies that the trajectory goes
around the meridian (short circle in the Poincaré sur-
face) of the torus p times and the longitude (long cir-
cle) of the torus g times before closing up. This type
of behavior is called mode locking. If the rotation
number is irrational the trajectory is quasiperiodic.

The parts of the control parameter space that sup-
port periodic behavior are color coded in Fig. 5 up to
g = 14. These regions form Arnol’d tongues [18] that
are attached to the curve e = ¢ = 1 at 6y/27 = p/q.
The two boundaries of the Arnol’d tongues that touch
the curve € = €; = 1 define the locus of saddle node
bifurcations. Tongues show a third boundary “oppo-
site” the contact point on the e = 1 axis. This curve
is a boundary that defines the beginning of a period-
doubling cascade.

The Curry-Yorke map possesses coexisting basins
of attraction, in the same way that the van der Pol
oscillator exhibits multistability (cf. Figs. 1 and 3).
This is shown clearly in Fig. 6. This figure shows the
intertwined basins of attraction for coexisting stable
period-three (green) and period-four (blue) orbits for
a control parameter value (€,6p/2m) = (1.7,0.334) in
the intersection of the period three and period four
windows. Multistability (coexisting basins) is a gen-
eral feature of overlapping windows in invertible maps.
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FIG. 6: Multistability in the Curry-Yorke map. Co-
existing intertwined basins of attraction of the stable
period-three (green) and period-four (blue) orbits for
control parameters (€,6p) = (1.7,2.1) in the intersec-
tion of the period three and period four windows.

C Summary of the Torus Breakdown Theorem

Both the van der Pol flow and the Curry-Yorke map
satisfy the conditions of the Afraimovich-Shilnikov
theorem [4-6]. That is, there exists a smooth invari-
ant torus (an invariant set homeomorphic with a circle
for the Curry-Yorke map) for some control parameter
values, and for others the torus (circle) has been de-
stroyed. When these conditions are satisfied there are
three routes to toroidal chaos: by period-doubling bi-
furcations, by torus wrinkling, and by creation of a
homoclinic connection of a saddle cycle.

Mode locked regions are organized by Arnol’d
tongues. Within each tongue there are two curves
that describe heteroclinic tangencies between the sta-
ble and unstable manifolds of the saddle partner orbit
from different sides. These two curves connect the
first period-doubling curve within a tongue and each
of the two saddle-node boundary curves. The invari-
ant torus exists within the pentagonal shaped region
bounded by these five curve segments. In this re-
gion it is structurally stable and dynamically unstable.
It breaks down on crossing either of the heteroclinic
curves or the first period-doubling curve. A path in



control parameter space that leaves a tongue through
the “third side” leads, after the period-doubling cas-
cade, to banded chaotic behavior followed by toroidal
chaotic behavior after a series of inverse noisy period-
halving bifurcations, as in Fig. 1 at v = 11.0. A
path leaving the tongue through a saddle-node edge
leads to different types of attractors depending on
whether it leaves (a) below or (b) above the intersec-
tion point of the heteroclinic curve with the saddle-
node curve (shown by x for the 1/3 tongue in Fig. 5):
(a) quasiperiodic behavior if it exits below, as in Fig.
1 at v = 13.9; (b) or directly to toroidal chaotic be-
havior in a “hard” transition to chaos, as in Fig. 4 at
v = 9.1. Outside a tongue the invariant torus is de-
stroyed when it loses its smoothness with increasing
€. This is the “soft” transition to chaos.

The boundaries of a p/q tongue are determined by
searching for g doubly degenerate real solutions of the
gth iterate of the first return map Eq. (6). Just in-
side the boundary of a tongue each doubly degener-
ate solution splits into two nearby nondegenerate real
solutions. One g¢-tuple of solutions describes a sta-
ble period-q orbit while the other describes its saddle
partner. Just outside the boundary of a tongue each
doubly degenerate solution splits into two complex
conjugate solutions. These are “ghost” fixed points.
They play a significant role in the dynamics. The
ghost fixed points are responsible for creating a large
invariant density on the attractor in the neighborhood
of their real parts, with the density narrowing and
increasing as the imaginary part of the solution de-
creases [19, 20].

On crossing the boundary there is no hysteresis
between the attractor inside the tongue (a period-q
orbit) and the attractor outside (a quasiperiodic or
toroidal chaotic attractor). However, there are re-
markable differences in the dynamics. On entering the
tongue above the heteroclinic point an initial transient
will follow the path of the heteroclinic tangle for a long
time before settling down to the stable periodic orbit
(metastable chaos). On entering the tongue below
the heteroclinic point an initial transient will outline
the quasiperiodic attractor that exists just outside the
boundary before settling down to the stable periodic
orbit (metastable quasiperiodicity). On leaving the
tongue above the heteroclinic point an initial condi-
tion will evolve in the neighborhood of the ghost pe-
riod ¢ orbit for a long time before exhibiting chaotic
behavior, and then returning to nearly periodic be-
havior (chaotic intermittency, [21]). On leaving the
tongue below the heteroclinic point the chaotic bursts
are replaced by quasiperiodic bursts to account for
phase slippage. Intermittency and metastability are
opposite sides of the same coin.

It should be pointed out that the Afraimovich-
Shilnikov theorem is local in the sense that it describes
torus breakdown associated with a single Arnol’d
tongue. It does not deal at all with coexisting at-

tractors and multiple tongues. These features are in-
trinsic to the van der Pol flow and the Curry-Yorke
map. While the Afraimovich-Shilnikov theorem is use-
ful in interpreting the behavior seen in these systems,
it does not provide a complete description of these
phenomena.

IV. BIFURCATIONS DIAGRAMS & PHASE
PORTRAITS

In this section we construct two bifurcation dia-
grams along vertical lines that straddle the point at
which the Arnol’d tongue with p/q = 1/3 intersects
the line € = 1 in Fig. 5. We choose 6/2r =
1/3 £ 0.015. For each bifurcation diagram we also
plot the rotation number in the region between the
two boundary curves € = ¢; and €3 = f(6p).

Fig. 7 presents the bifurcation diagram along a path
obtained by fixing 9 = 2, so that 6p/27 = 0.318 =
1/3 — 0.015, varying €, and plotting y, as a func-
tion of e. Also presented in this figure is a plot of
rotation number along this path. For ¢ < 1 there
is a fixed point with y, = 0. As € increases above
1 the path enters the white region of Fig. 5 above
6o /2w = 0.318. This white region describes quasiperi-
odic behavior. The path enters the Arnol’d tongue
that describes the 1/3 locked mode and remains in
this tongue for € € [1.273 ;1.396]. This is shown by
the period-3 window in Fig. 7. On entering this tongue
a saddle-node bifurcation creates a stable node and its
partner saddle, both of period three. On leaving this
tongue these two orbits self-destruct through an in-
verse saddle-node bifurcation. The path enters the
tongue below the point of intersection with the hete-
roclinic connection curve and leaves above this point.
The sequence quasiperiodicity — mode-locked period
three — toroidal chaos is observed.

In the range ¢ € [1.396; 2.00] the path in pa-
rameter space enters and leaves many other Arnol’d
tongues. In particular, the path transits a number of
larger-q tongues before entering a period-four tongue
at € ~ 1.56. The path enters this tongue through
its right-hand edge but leaves through the boundary
on the “third side”. This boundary separates period-4
behavior from period-eight behavior, and indicates the
beginning of a period-doubling cascade to chaos. Sim-
ilar behavior is subsequently seen for period-five be-
havior, period-six behavior, ... Mode-locking is clearly
shown in the bifurcation diagram and by the horizon-
tal steps in this devil-like staircase that appears in the
rotation number diagram. We point out that the rota-
tion number reaches its maximum value in the period-
three mode-locked window and decreases along this
path as the two period-one regions are approached.
At the left edge the rotation number approaches 6
as € = €; and at the right edge the rotation number
approaches 0 as € — €.
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FIG. 7: Bifurcation diagram and rotation number di-
agram versus € for the Curry-Yorke map. After the
Hopf bifurcation, the torus grows in size. Then a
period-3 window is observed. It is created and de-
stroyed in saddle-node bifurcations. Other parameter
value: 6y/2m = 2.0/2r =1/3 — 0.015.

Phase portraits of the attractor in phase space along
this parameter path are shown in Fig. 8. In the
quasiperiodic region for 1.0 < e < 1.27 the trajec-
tory is an ellipse that becomes increasingly deformed
as e approaches the 1/3 Arnol’d tongue. Just before
reaching the tongue a ghost period three orbit makes
its presence felt, as indicated in Fig. 8a. The loca-
tion of the impending saddle-node bifurcation is indi-
cated by the three large points in this figure. These
are responsible for deforming the ellipse into a “tri-
angle”. After the saddle-node bifurcation and the
metastable quasiperiodic transients have died out, the
phase space portrait is boring: consisting of only three
points that remain in place, moving only slightly as
the path traverses the Arnol’d tongue. Unseen in this
figure is the transition of the path past the hetero-
clinic tangency curve. The inverse saddle-node bifur-
cation at € = 1.396 leaves a heteroclinic structure that
looks like a wrinkled torus as the only local attracting
set. It is no longer smooth. This represents a “hard”
transition to chaos (cf. Fig. 4 at v = 9.1). This
wrinkled torus is shown in Fig. 8b for e = 1.40. In
this figure we approximate the location of the ghost
period three orbit by the location of the stable period
three orbit (circles) for nearby control parameter val-
ues. The generally triangular trajectory is now wrin-
kled, especially in the neighborhood of these phantom
fixed points. This is shown clearly in the enlargements
in this figure. Temporal evolution on this attracting
set exhibits intermittency. As e continues to increase
the attractor becomes increasingly distorted, while it

exists. Such increasing distortions are shown in Fig.
8c for € = 1.52.

We encounter remarkably different behavior by fol-
lowing a path on the other side of the contact point
for the mode-locked region with p/q¢ = 1/3. Fig.
9 presents a bifurcation diagram and rotation num-
ber diagram obtained by fixing y/27 = 1/3 + 0.015.
As € increases above 1 the behavior is quasiperiodic
with small values of y. The path enters the Arnol’d
tongue that describes the 1/3 locked mode, but this
time through the right hand saddle-node boundary
and below the heteroclinic curve. The path now ex-
its the period-three mode locked region through the
“third side” of the Arnol’d tongue. A period-doubling
cascade is initiated at € & 1.64, producing a period-
6 limit cycle. The period-doubling cascade reaches
the accumulation point at € ~ 1.722. For larger
values of € chaotic behavior is seen, interrupted by
crossings of Arnol’d tongues of the form 1/n, with
n = 4,5,.... The first tongues encountered exhibit a
period-doubling cascade to chaos.

Phase portraits along this path are shown in Fig.
10. Before the period-three window is encountered
the behavior is quasiperiodic with small radius. Asthe
period-three saddle node bifurcation is approached the
quasiperiodic orbit is deformed into the shape of a tri-
angle (¢ = 3), shown in Fig. 10a along with the ghost
saddle-node orbit pair. Beyond the accumulation at
€ ~ 1.722, there is a unimodal fold in the neighbor-
hood of each ghost period-3 point, shown in Fig. 10b
(cf. Fig. 2b). This is similar to what is observed af-
ter a period-doubling cascade in a Rossler-like system.
The chaotic attractor in R® can thus be visualized as
a chaotic band with three successive stretching-and-
squeezing processes. It is only for € ~ 1.76 that a
crisis occurs, leading to a bifurcation from a banded
chaotic attractor to a toroidal chaotic attractor (Fig.
10c). At this stage, the chaotic attractor is similar
to the toroidal chaotic attractor obtained along the
curve 8y /2m = 1/3—0.015 (compare Fig. 10c with Fig.
8c). The attractor becomes increasingly deformed as
€ continues to increase.

The bifurcation diagram obtained for 6/27 =
1/3 + 0.015 is roughly similar, beyond the period-
3 window, to the bifurcation diagram obtained for
6o/2m = 1/3 — 0.015. The minor differences concern
the lengths of the periodic windows, which are slightly
larger for the former value of 8y because of the shape of
the deformed mode-locked region. The rotation num-
ber diagram in Fig. 9 shows one difference from that
shown for € = £ —0.015 in Fig. 7. The left hand edge,
at € = 1, limits on #y. For this reason, on approaching
the period-three window, the rotation number rises to
é in Fig. 7 and decreases to % in Fig. 9. In all cases
the rotation number approaches zero as the path ap-
proaches the upper boundary ez = f(6y).

The behavior along paths near other tongues is sim-
ilar. In the neighborhood of a saddle node bound-
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FIG. 8: Phase portraits of the Curry-Yorke map along
a path with 6y = 2/27. (a) Quasiperiodic behavior
along a triangular trajectory just before entering the
1/3 Arnol’d tongue below the heteroclinic tangency
point; (b) Toroidal chaotic behavior in a “hard” tran-
sition to chaos just after leaving the tongue above
the heteroclinic tangency point; (¢) Increased folding
of the toroidal attractor with increasing nonlinearity.
The period-3 points are shown for (a) € = 1.273 and
(b) e =1.39.
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FIG. 9: Bifurcation diagram versus e for the Curry-
Yorke map. After the Hopf bifurcation, the torus
grows in size. Then a period-3 window is observed
before the first foldings occur on the torus. Other
parameter value: §y = %’r + 0.1

ary below the heteroclinic intersection the attractor
is quasiperiodic and approximates a g-gon for a p/q
tongue. Above the heteroclinic intersection the torus
is no longer smooth: the invariant set is a toroidal
chaotic attractor. Inside a tongue the attractor is a
limit cycle of period g.

V. CONCLUSION

In this paper we showed how the complexity inher-
ent in behavior exhibited by the van der Pol dynam-
ical system can be interpreted in terms of the Curry-
Yorke map. We have used this map as a surrogate for
the return map of the van der Pol attractor onto a
Poincaré surface of section. The correspondence here
is not one to one because we have not removed the
two-fold internal symmetry of the van der Pol attrac-
tor by a standard “modding out” process. If this is
done, at the cost of making this paper slightly more
complicated, the correspondence is yet closer.

When € < 1 and g < 0 the return maps exhibit
a simple fixed point. As the respective thresholds
are crossed the fixed point becomes unstable and, for
€ — € < 1,4 < 1, the unstable fixed point is sur-
rounded by a roughly circular trajectory in the plane.
As the ratio of the natural to the driving frequency is
changed for the van der Pol system, or the angle 6, is
swept in the Curry-Yorke map, this roughly circular
trajectory is deformed. As the path in the control pa-
rameter space approaches a p/q Arnol’d tongue below
the heteroclinic intersection the quasiperiodic trajec-
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FIG. 10: Phase portraits of the Curry-Yorke map
along a path with 6y/27 = 1/340.015. (a) Quasiperi-
odic behavior along a triangular trajectory just be-
fore entering the 1/3 Arnol’d tongue below the hete-
roclinic tangency point; (b) Banded chaotic attractor
after passing out of the period-doubling cascade on
the “third side” of the Arnol’d tongue; (¢) Chaotic
toroidal attractor after a crisis. The period-3 points
are shown for (a) e = 1.140 and (b) € = 1.63.

tory approaches the shape of a “g-gon” (cf., Figs. 8a
and 10a). On entering a tongue, the attractor is a
stable limit cycle of period g. If the tongue is ex-
ited through either of the saddle-node edges below
the heteroclinic intersection point the periodic behav-
ior is terminated in a saddle-node bifurcation and
the attractor assumes its roughly g¢-sided shape and
quasiperiodic nature. If the path leaves the tongue
above the heteroclinic intersection there is a “hard”
transition to toroidal chaos when the period-q limit
cycle is destroyed. If the path in the control param-
eter space exits the tongue through the “third side”
a period-doubling cascade begins. If the cascade pro-
ceeds past accumulation a banded chaotic attractor
with rotation number p/q will be formed. After a
series of noisy period-halving bifurcations a chaotic
toroidal attractor will be formed. On the other hand,
if the path reenters the tongue through the “third
side”, period-bubbling will be seen in the bifurcation
diagram. Many vertical paths in Fig. 5 exhibit both
these types of behavior.

If a path with € in the control space follows a
saddle node edge just outside a p/q Arnol’d tongue,
the phase space trajectory will be a smooth “g-gon”
that becomes increasingly deformed, and finally loses
its smoothness in a “soft” transition from quasiperi-
odicity to toroidal chaos. The curve defining such
transitions can be constructed by “connecting the
dots” describing the heteroclinic intersections along
the tongues.
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