
Chapter 7

Circle Maps

7.1 A New Global Topology

The global topology of phase space can have dramatic consequences: A period-3
orbit forces orbits of every period if it belongs to a map of an interval into itself,
none if the state space is two-dimensional or is the unit circle. This indicates
that qualitatively different behaviors can appear when phase space topology is
changed. Accordingly, this section is devoted to a brief review of dynamical
properties of maps from the unit circle S1 into itself. If S1 is parameterized
with an angular variable θ ∈ [0, 1], these maps can be written as θn+1 = f(θn)
(mod 1).

Physically, the study of circle maps is motivated by the problem of coupled
oscillators. Assume that we have two systems oscillating on periodic cycles at
frequencies ν and ν′, respectively. The state of each oscillator can be described
by an angular variable θ(t) = νt (mod 1). In the spirit of Poincaré sections,
let us sample these angles stroboscopically at the frequency ν′ so that we need
only measure the successive samples θn = θ(t0 + n/ν′) of the first angle, given
by

θn+1 = (θn + w) (mod 1) (7.1)

where w = ν/ν′. The map 7.1 describes a rotation by a fraction w of a full turn
per sampling period and is denoted R(w) in the following.

Two different qualitative behaviors can occur depending on the value of w. If
w is a rational, p/q with p, q ∈ Z, we have that θn+q = θn + qw (mod 1) = θn:
The dynamical regime is a periodic orbit, and θn takes only a finite number of
different values. If w is irrational, the sequence {θn} densely fills the interval
[0, 1]. This is a quasiperiodic regime and corresponds to the superposition of
two incommensurate frequencies.
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7.2 Frequency Locking and Arnol’d Tongues

It is known that the set of rational numbers is dense in [0, 1] but that it has zero
measure: The frequency ratio of two uncoupled oscillators is irrational with a
probability of 1, even if one can find rational values arbitrarily close. However,
this changes as soon as a coupling is introduced. One then observes frequency
locking: The frequency ratio of the two oscillators remains fixed at a rational
value p/q in a finite range w ∈ [p/q −∆ρ1, p/q +∆ρ2].

To study this phenomenon, the following circle map was introduced by
Arnol’d [?]:

θn+1 = [θn + w +
K

2π
sin(2πθn)] (mod 1) (7.2)

which features a nonlinear coupling characterized by its strength K. Figure 7.1
displays the graph of the map obtained for (w,K) = (0.47, 0.8).
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Figure 7.1: Graph of the circle map 7.2 for w = 0.47 and K = 0.8. A period-2
orbit is also represented.

To describe the asymptotic regimes of 7.2, one introduces the rotation num-

ber [?, ?, ?]

ρ = lim
N→∞

1

N

N−1∑

n=0

∆θn with ∆θn = [w +K/2π sin(2πθn)] (7.3)

Note that ρ = w in the limit K = 0. The structure of the function ρ(w,K)
thus provides insight into the phenomenon of frequency locking as the nonlinear
coupling is increased.

When the circle map 7.2 is a homeomorphism of S1 into itself (i.e., for K ≤
1), the following properties of the rotation number ρ(w,K) can be established:
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• The rotation number 7.3 does not depend on the orbit used to compute
it.

• If ρ(w,K) is irrational, the circle map is equivalent to the pure rotation
R(ρ); the motion is quasiperiodic.

• If ρ(w,K) = p/q with p and q relatively prime integers, the asymptotic
regime is a periodic orbit of period q. The periodic points of this orbit are
ordered along the unit circle as with the pure rotation R(p/q).

Thus, the classification of dynamical behaviors of the Arnol’d map for K ≤
1 amounts to determining the parameter regions in the (w,K) plane where
ρ(w,K) is rational.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x n
+

1

xn

(a)

(b)

(c)

Figure 7.2: Graph of the circle map for K = 0.8 and (a) w = 0.8/2π; (b) w = 0;
(c) w = −0.8/2π.

As a simple example, let us consider the region ρ(w,K) = 0, where the
oscillator frequencies are locked to each other in a 1:1 ratio. The corresponding
asymptotic regime is a fixed point θn+1 = θn whose location, according to
7.2, is given by the equation w = −(K/2π) sin θ. It is easy to see that for
w ∈ [−K/2π,+K/2π], there are two solutions, one of which is stable in the
whole domain 0 ≤ K ≤ 1, at least (Fig. 7.2). Indeed, the slope of the graph
at the two intersections is positive (the function is monotonic) and must be
lower than 1 at one of the intersections. Hence, there is a periodic orbit having
multiplier 0 ≤ µ ≤ 1. For w = ±K/2π, the graph of the map is tangent to
the diagonal, indicating that the stable and unstable periodic orbits are created
and destroyed through saddle-node bifurcations. Note that the width of the
frequency-locking interval ρ = 0 increases linearly with K and corresponds at
K = 1 to almost one-third of the possible values of w.
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By determining which regions of the (w,K) plane correspond to rotation
numbers ρ(w,K) = p/q with a small denominator q, the diagram shown in
Fig. 7.3 is obtained for q ≤ 8. The regions of frequency locking are called
Arnol’d tongues. Each of them corresponds to a different rational p/q, which
governs the order in which they are encountered as w is increased at fixed K,
since ρ(w,K) is a monotonic function of w. As discussed above, tongues are
bounded on both sides by saddle-node bifurcations where periodic orbits of the
corresponding rotation number are created or destroyed.

It is interesting to note that the rotation numbers corresponding to the
most important tongues can be classified according to a hierarchy based on
an arithmetic operation on fractions. Indeed, it turns out that the principal
tongue located between two tongues of rotation numbers p1/q1 and p2/q2 that
satisfy p1q2 − p2q1 = ±1 is the one associated with the Farey sum of these two
fractions, defined as follows: p1/q1 ⊕ p2/q2 = (p1 + p2)/(q1 + q2). Starting from
the fundamental tongues 0/1 and 1/1, one first obtains the 1/2 tongue. The
latter is then separated from 0/1 by 1/3 and from 1/1 by 2/3. At the third
level, one obtains 1/4, 2/5, 3/5, 3/4, and so on. Tongues at a given level are
wider than those at the next level, as can be checked by visual inspection of
Fig. 7.3.
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Figure 7.3: Arnol’d tongues for the circle map (7.2) corresponding to rational
rotation numbers ρ(w,K) = p/q with q ≤ 8.
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As K is increased from 0 to 1, the relative proportions of the quasiperiodic
and periodic regimes are exchanged. At K = 0, quasiperiodic regimes have
a probability of 1, as mentioned above. Since there are an infinite number of
tongues, it might not be obvious that the total length in w of the frequency-
locked intervals goes to zero as K → 0. That this is the case is due to the width
∆w(p/q) of the ρ = p/q tongue decreasing sufficiently fast as K → 0, more
precisely as ∆w(p/q) ∼ Kq or ∆w(p/q) ∼ Kq−1, depending on p/q.

AtK = 1, values of w yielding quasiperiodic regimes are confined to a Cantor
set of measure 0 and of fractal dimension D ∼ 0.87; frequency-locked regimes
have measure 1. The graph of the function ρ(w,K = 1), shown in Fig. 7.4,
has a very peculiar structure, known as a devil’s staircase. It is continuous and
monotonic but increases only where ρ is irrational: Each rational value occurs
on a finite interval. Moreover, it is self-similar: Any part of the graph contains
a reduced copy of the entire graph. Incomplete devil’s staircases are observed
for K < 1 (i.e., the set of parameters yielding irrational rotation numbers then
has positive measure).
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Figure 7.4: Graph of the rotation number ρ(w,K = 1) is a devil’s staircase.

7.3 Chaotic Circle Maps and Annulus Maps

TheK = 1 line in the phase diagram of Fig. 7.3 is called the critical line. Beyond
it, the circle map (7.2) has a point with zero derivative and hence is no longer
invertible, which has dramatic consequences on the dynamics. On the one hand,
there are no longer quasiperiodic regimes. Indeed, the latter are equivalent to
a pure rotation with an irrational rotation number, which cannot be conjugate
to a noninvertible map. On the other hand, more complex behavior can then
appear, including chaos. Since the map (7.2) has branches with negative slope,
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the stable periodic orbit can now have a negative multiplier and undergo a
period doubling when the latter crosses −1. Most of the analysis carried out for
the logistic map applies here: One observes cascades of period doubling leading
to chaos. The white zones in the K > 1 part of Fig. 7.3 correspond to chaotic
regimes or to periodic regimes of high period.

Another consequence of noninvertibility is that the rotation number (7.3)
now depends on the initial condition. Accordingly, a given regime is charac-
terized by a rotation interval [ρ−, ρ+] rather than by a single number. This
corresponds to Arnol’d tongues gradually overlapping as K is increased above
1, as can be seen in Fig. 7.3.

As discussed in the introduction to this section, invertible circle maps can
be obtained rigorously as a first-return map when the dynamics is confined
to a two-dimensional torus T 2. Obviously, this interpretation is not valid for
noninvertible circle maps. However, exactly as the one-dimensional logistic map
can be viewed as the infinitely dissipative limit of a two-dimensional horseshoe-
like invertible map, noninvertible circle maps can be thought as limits of maps
of an annulus into itself. Not that this interpretation is limited to circle maps
having a degree of 1 (the image of the annulus winds once around the center).
This is illustrated in Section 10.8 with the important example of the forced van
der Pol oscillator.

7.4 van der Pol Oscillator

The van der Pol oscillator has also been studied in great detail [?, ?]. The
twofold symmetry complicates studies of this oscillator as well. The stretching
and squeezing mechanisms responsible for creating chaotic behavior involve the
twofold iteration of a basic process but a process which is different from that
which operates for the Duffing oscillator. Symmetry reduction simplifies the
study of this nonlinear oscillator as well. The version of the van der Pol oscillator
that we study here is defined by

Ẋ = F (X,Y ) = bY + (c− dY 2)X

Ẏ = G(X,Y ) = −X +A sin(ωt)

In Fig. 7.5 we show a series of Poincaré sections in the X–Y space for a
strange attractor generated by the van der Pol equations. Alongside each section
for the original attractor, we exhibit a section in the u–v space for the attractor
which has had the symmetry removed. The reduction of the period from T in
the original equations with symmetry to 1

2
T in the image equations is evident.

Van der Pol dynamics differs in a fundamental way from Duffing dynamics.
In the latter case the stretch-and-squeeze mechanism is similar to a mapping
of the interval onto itself—in fact, it is equivalent to a mapping of a (long,
thin) rectangle into itself. In the case of van der Pol dynamics, the stretch-and-
squeeze mechanism is similar to a mapping of the circle onto itself—in fact, it is
equivalent to a mapping of an annulus into itself [?]. By following the stretching
of the attractor around one period [ 1

2
T ; Fig. 7.6(a)], it is possible to construct
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Figure 7.5: Left: Series of 10 Poincaré sections for the van der Pol attractor.
The sections are spaced at 0.1T . The symmetry (X,Y, t) → (−X,−Y, t+ 1

2
T )

is evident. Right: The 2 → 1 images of these 10 sections are shown after the
symmetry has been modded out. The reduced dynamical system has period
1

2
T . Parameter values: b = 0.7, c = 1, d = 10, A = 0.25, ω = π/2.



8 CHAPTER 7. CIRCLE MAPS

a rough approximation to a return map of the circle to itself. The return map
is shown in Fig. 7.6(b). Finally, the original circle can be blown up in the
transverse direction and the return map used to construct a map of the annulus
to itself. This map is shown in Fig. 7.6(c).

Figure 7.6: (a) By following the stretching of the attractor through a full period
(here 1

2
T ), it is possible to determine how a topological circle is mapped to itself

under the symmetry reduced flow. (b) This provides a reasonable estimate for
the return map. The return map for the system with full symmetry is the second
iterate of this return map. (c) The return map of the circle can be blown up to
provide a mapping of the annulus back to itself.

The branched manifold for the original van der Pol oscillator (at appropriate
parameter values) is shown at the top of Fig. 10.14. In this representation,
the left- and right-hand edges of the branched manifold must be identified,
using periodic boundary conditions. The processes that take place in the first
half period, from t = 0 to t = 1

2
T , are repeated in the second half period,

phase-shifted by π radians. The phase shift is equivalent to the map (X,Y ) →
(−X,−Y ). When the symmetry is removed (Fig. 7.7, bottom), the stretching
and squeezing that takes place during the first half period is extended a further
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π radians. As a result, the stretching and squeezing that takes place during
the second half period repeats that of the first half period. The period of the
flow has been reduced to 1

2
T . The simplified branched manifold (bottom) shows

three branches, compared to the six of the original branched manifold.

Figure 7.7: (a) The stretching and squeezing that take place for the van der
Pol oscillator are represented by this template with six branches. The left- and
right-hand edges are to be identified. (b) After the inversion symmetry has been
removed, the stretching and folding is represented by this branched manifold.
The basic periodicity has been reduced from T to 1

2
T .

The perestroika of the van der Pol equations is governed by the same con-
straints as that of the Duffing equations. It is only the topology that is different.
Specifically:

• As the ratio T/Tr increases, the global torsion of the branches present in
the branched manifold describing the strange attractor increases system-
atically.
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• As the strength of the nonlinear coupling increases, the average number
of branches required to describe the strange attractor increases.

The details are summarized in Fig. 7.8. In Fig. 7.8(a) we present a return
map of the circle to itself: θ → θ′. In this map we take 0 ≤ θ ≤ 2π, with 0
and 2π identified. We should do the same for the image θ′, but do not, to make
the argument clearer. In this figure, the circumference of the circle is stretched
by a factor of approximately 3, with 0 → 0. The period-1 orbits are identified
by the intersections of the return map with the diagonals. The branches of the
return map are dressed by their local torsion. There are four fixed points when
we identify the points at 0 and 2π. The nonlinearity governs the amplitude of
the return map (approximately 4π) and the ratio T/Tr governs the “rotation”
(here 0). As T/Tr increases, the return map is rigidly shifted upward.

Figure 7.8: (a) A return map θ → θ′ = f(θ) of the circle to itself has amplitude
governed by the strength of the nonlinearity and rotation (vertical displacement)
governed by the ratio of time scales: T/Tr. The branches of the map are dressed
by the local torsion of the corresponding period-1 orbit in the flow. The image
θ′ has not been taken mod 2π for the sake of clarity. (b) The period-1 orbits
that exist for any value of T/Tr are indicated in this circle map analog of a
snake diagram. Each sinuous curve is a “bubble,” difficult to recognize because
of the 2π vertical boundary conditions. Unlike the snake, the period-1 orbits
mutually create and annihilate.

The evolution of the period-1 orbits as a function of increasing T/Tr is
summarized in Fig. 7.8(b). As T/Tr increases above 0, the period-1 orbit at
0 = 2π and the one near 2π with torsion 2 collide and annihilate in an inverse
saddle-node bifurcation. The two fixed points on branches 2 and 3 separate,
and by the time f(0) = 2π, the entire curve has been shifted up by 2π. The
return map has been shown for the case f(0) ≃ 3π in Fig. 10.15(a). In this
case the orientation-preserving branches have torsions 2, 4, and 6, while the
orientation-reversing branches have torsions 7 and 5. Figure 10.15(b) for the
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circle map is the analog of the snake diagram (Fig. 10.11) for the scroll return
map of the interval to itself. It consists of a sequence of “bubbles” which do
not look like bubbles. For example, the bubble at T/Tr = 2 consists of two
period-1 orbits with torsions 4 and 5. These orbits are created in a saddle-node
bifurcation for T/Tr ∼

7

4
π and annihilate in an inverse saddle-node bifurcation

for T/Tr ∼
11

4
π. For any value of T/Tr there is only an even number of period-1

orbits. This is in opposition to the Duffing case, in which the snake diagram
indicates that only an odd number of period-1 orbits is present for any value of
T/Tr. The difference, even (for maps of S1) or odd (for maps of R1), is tied
intimately to the global topology of a one-dimensional surface. This surface is
the intersection of the branched manifold for a strange attractor with a Poincaré
section.

7.5 Summary

Although maps are very simple dynamical systems, they display most of the key
features of chaos. This has allowed us to become familiar with concepts that
will appear throughout this book, without excessive mathematical difficulty.

Even the simplest dynamical system that one can think of, the logistic map,
is able to reproduce surprisingly well qualitative behaviors that are observed
experimentally in the laser system described in Chapter 1. As a control pa-
rameter is varied, it experiences bifurcations, in particular a period-doubling
cascade leading to chaos, and a variety of chaotic regimes.

The simple structure of the logistic map makes it possible to study one of
the basic mechanisms responsible for chaotic behavior, namely stretching. In its
most chaotic regime, the logistic map is basically a “multiply by two” machine.
This has far-reaching consequences: Sensitivity to initial conditions, existence
of an infinite number of periodic orbits which are dense in the invariant set, and
so on.

Stretching is at the root of an extremely powerful tool for unfolding chaos,
symbolic dynamics. Thanks to the unlimited magnification provided by sensi-
tivity to initial conditions, a series of coarse-grained measurements of the system
state suffice to specify it with arbitrary accuracy. Symbolic dynamics not only
allows us to classify orbits (e.g., how many periodic orbits of period p?) but
also to study their genealogies (e.g., in which order do orbits appear? Which
orbit is a period-doubled orbit from another?). By studying the grammar of
a chaotic system, we can classify regimes and compute quantitative invariants
such as topological entropy. Not all of the results obtained (e.g., the universal
sequence) can be directly extended to higher dimensions. That there are topo-
logical invariants (e.g., permutations) that both are deeply related to symbolic
dynamics and play a major role in forcing relations will later prove to be a key
property.

The logistic map is a noninvertible system. Many physical systems are de-
scribed by ODEs and thus are associated with invertible maps, such as the
Hénon map. A chaotic invertible map shares many properties with noninvert-
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ible ones. In particular, the dynamics in the unstable space is associated with a
noninvertible map, as the example of the horseshoe map shows. There are also
new problems, such as constructing relevant symbolic encodings in that case.
Finally, global phase space topology can have a deep influence of phenomena
observed, as exemplified by circle maps.


