then resuming the perturbation treatment suf-
ficiently far from the critical point degener-

acy.

2. WHY IT EXISTS

The reduction of a family of functions to
the sum of a non-Morse function and a Morse
i-saddle at a non-Morse critical point, which is
guaranteed by the Thom splitting lemma, can
be carried out by the methods of elemeritary
calculus. It will therefore not be reviewed
here.

The reduction of a non-Morse function in
the neighborhood of a degenerate (non-Morse)
critical point cannot be carried out by the
methods of elementary calculus. It will there-
fore be discussed in Sec. 2 of this article. This
reducticon to canenical form can be accom-
plished following a simple algorithm. The
algorithm is illusirated in Sec. 2.1 in the
context of a simple example: the reduction of
a’ two-parameter family of functions of a
single state variable to canonical form in the
neighborhood of its most degenerate critical
point. The steps involved in this algorithm are
summarized in Sec. 2.2, and applied in Sec.
2.3 to an important example in which the
canonical form is not at all evident.

The algorithm involves two main proce-
dures. The first is the determination of the
most degenerate critical point, and the catas-
trophe germ at this point. This is accom-
plished by finding critical points, using the
control parameter degrees of freedom to elim-
inate the leading terms in the Taylor series
expansion of the function in the neighbor-
hood of that critical point, and then using a
nonlinear change of coordinates to eliminate
the higher-degree terms in the Taylor series
expansion. What is left over, between the
climinated terms of low and high degree, is
the catastrophe germ, CG([), describing the
degenerate critical point.

The second procedure in this algorithm is
the determination of a universal perturbation.
This follows the steps described above in
more or less reverse order. First, an arbitrary
function (perturbation) is added to the catas-
trophe germ. Then the high-degree terms are
eliminated by a nonlinear change of coordi-
nates. Finally, as many as possible of the
low-degree terms are eliminated by a rigid
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translation of the coordinate system. The small
number of terms remaining from the original
general perturbation form the universal per-
turbation, Pert(lk), of the catastrophe germ
CG(D).

The mathematics used in these examples
appears naively simple. However, this simplic-
ity should not hide the fact that the mathe-
matical approach used here is correct in spirit
and can be (has been) made rigorous with
suflicient effort (Poston and Stewart, 1978;
Arnol'd, 1981; Gilmeore, 1981).

2.1 A Simple Example

We carry out the reduction of a family of
functions with a triply degenerate critical
point to the cancnical form of the cusp catas-
trophe A. ;. We begin by assuming f{x;c1.c)
is a family of functions depending smoothly
on one state variable, x, and two control
parameiers, ¢, and ¢,. We wish to determine
the qualitative properties of any member of
this family and, in particular, to determine
how these qualitative properties change as the
control parameter values change.

To facilitate this study, we expand f{xic,,¢.)
about some point xg:

f(xZCpcz) = Z fn(x{);clrcz) (x—xp)". (28)

n={}

The Taylor series expansion of this function is
shown in line 1 of Fig. 8. The remainder of the
discussion of this example will refer to subse-
quent lines of this figure. At points x, where
F1=0 the implicit function theorem is applica-
ble and nothing qualitatively interesting will
happen. We therefore search over the range of
the state variables to find a critical point. At
that critical point #,=0. Since we are inter-
ested in the qualitative properties (shape) of
the potential, we readjust our y axis so the
function vanishes at the critical point. As a
result of using these two degrees of freedom—
choice of origin in both ordinate and
coordinate—the first two terms in the Taylor
series expansion of f vanish. The expansion is
shown in line 2 of Fig. 8.

There remain the two degrees of freedom
represented by the two control-pararmeter val-
ues ¢y, 6. It might be expected that we can use
these two degrees of freedom to annihilate
one, or at most two, of the remaining coeffi-
cients in the Taylor series expansion, but that



100 Catastrophe Theory

Coefficients of x_
Object Line / Procedure X x x2 X xS
Find 1. Taylor Expansion 5 | £y fy I fg
Canonical
Gelm 2 Ad' T .
. Adjust Ordinate; f £ f
' Locate Critical Point o o 5 B L i
3. Exploit Control Parameter
Degrees of Freedom 0 0 & t.5 fﬁ
4. Smooth Change of Cocrdinates 11 0 0
Find 5. Add Arbitrary Perturbation € & & =&y & &
Canonical :
Perturbati
¢ on 6. Smooth Change of Coordinates £ & & =#x 0 0
7. Shift Origin 0 & €& 0 1

f(x:Crer)= 114 + Slxl + Szxz
g Y

CG() +  Per(l,2)

FIG.8. The steps used to reduce a two-parameter family of functions to its canonical form at the most degenerate
possible critical point are illustrated in lines 1-4. The steps used fo determina the universal perturbation are shown

in lines 5-7.

we cannot generically (some deep mathemat-
ics is required at this point: ¢f. Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gilmore,
1981) annihilate more than two coefficients. If
coefficients of some high powers (fs of 2, fy of
x") are annihilated, then the coeflicient f, of x?
remains nonzero, the Morse lemma is appli-
cable, and nothing qualitatively interesting
will happen. The most interesting things hap-
pen when the control parameter degrees of
freedom are used to annihilate the leading
nonzero terms in the Taylor series expansion.
In the present case the following two interest-
ing possibilities arise:

(i) f2=0r f3‘7(:0r
(if) f2=0, f3=0.

The second case is more interesting than the
first, which can already be encountered in
functions depending on one state variable and
a single control parameter.

We assume therefore that the two control-
parameter degrees of freedom can be used to
annihilate the two leading nonzero terms in

-the Taylor series expansion given on line 2 of

Fig. 8. The resulting Taylor series expansion
shown on line 3 of Fig. 8 begins with a term of
degree 4.

This is as far as we can go using the simple
“linear” degrees of freedom represented by
choice of origin in the ordinate and coordi-
nate and the two control-parameter degrees of
freedom. However, we have not yet exploited
any “nonlinear” degrees of freedom. That is,
there is the possibility to perform a smooth
nonlinear change of coordinates to remove
some of the higher-degree terms in the Taylor
series expansion. To do this we seek a nonlin-
ear change of variables,
' =Ax A+, (29)
which will eliminate as many of the higher-
degree terms as possibie from the remaining
Taylor series expansion (line 3, Fig. 8). It is
possible to find a nonlinear change of vari-
ables that eliminates the Taylor tail, the tail of
the Taylor series expansion (the term x* is
determinate; more powerful mathematics is
needed at this point also, cf. Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gilmore,
1981). The first two coeflicients in the nonlin-



ear change of variables above are 4,= | f,| 1%,
Ay==fs/4[f4]>*. The expansion is analytic
and the sum converges locally. In the new
coordinate system the transformed function
is =x* The Taylor series after this nonlinear
change of variables is shown on line 4 of
Fig. 8.

This procedure produces the catastrophe
germ of the two-parameter family of func-
tions f(x;e1,00):

flxepe) ==+x*  (catastrophe germ). (30}

The second step in the process of reducing
a non-Morse function to canonical form is
computation of the universal perturbation of
minimum dimension. To do this, we repeat
the procedure described above in almost the
reverse order. We begin by adding an arbi-
trary perturbation

o

e(x)= D r (31)

i=0

to the catastrophe germ. The Taylor series
expansion of the perturbed function is pre-
sented on line 5 of Fig. 8.

A nonlinear change of variables can once
again be called upon to eliminate the Taylor
tail. The nonlinear transformation (29} fails
to converge unless the base term from which
the elimination is made has a large coefficient.
Thus, trying to eliminate the Taylor tail of
terms above x, 2%, or »° will fail because the
coeflicients of these terms, &, 6, €, are small
and not bounded away from zero. However,
since the coefficient (£1+¢;) of x* is large
and bounded away from zero when ¢, is small,
all terms above x* may be eliminated by a
nonlinear change of coordinates. To state this
in another way: Any terms in the Taylor tail
that may be eliminated in the initial construc-
tion of the catastrophe germ (line 3 to line 4)
can be eliminated from the perturbation (line
5 to line 6). The result of this nonlinear
change of variables is shown in line 6 of Fig.
8. :

As a final step, we can choose a new origin
of ordinates (rigid vertical shift) to eliminate
€g and of coordinates (rigid horizontal shift)
to eliminate one of the three remaining terms.
Since the linear and quadratic terms cannot
always be eliminated but the cubic term can
be, we choose to eliminate this term. The final
result, ) '
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flxene) =£x'+ e x' + 6,47, (32)

is shown in line 7 of Fig. 8.

We summarize briefly the steps taken to
answer the two equations implicit in the state-
ment of the classification theorem presented
at the beginning of this section:

1. How to construct the catastrophe germs:

{a) Locate a critical point and move the
origin of coordinates to that critical
point.

(b} Eliminate the leading Taylor series co-
efficients by using the control parame-
ters.

(c) Remove the Taylor tail by a smooth
nonlinear change of variables.

2, How to construct the universal perturba-
tion: :

(d) Add an arbiirary perturbation.

(e) Remove the Taylor tail by the same
smooih nonlinear change of variables.

(f) Move the origin of coordinates to elim-
inate unnecessary terms.

2.2 General Procedure

The general procedure for reducing a non-
Morse function to the sum of a catastrophe
germ and a universal perturbation has been
illustrated by example in the previous section.
In some respect, the procedure followed in the
reduction follows in spirit the procedure used
in the study of electrodynamics. We often find
that the near-ficld regime (low-degree Taylor
series terms) is tractable, as is the far-field
regime (Taylor tail). The really interesting
part is between these two regimes (interme-
diate-ficld regime ~ catastrophe germ).

We summarize the general procedure be-
low and refer to Fig. 9. The following steps are
taken to compute the catastrophe germ of a
function f(x;c) with x&R" and cER*:

1. Computation of the catastrophe germ CG({):

(a) The function is expanded in a Taylor

series. The origin of ordinates and co-

ordinates is rigidly (linearly) shifted to

a critical point. This eliminates the

zeroth- and first-degree terms in the
Taylor series expansion.

(b) The control parameter degrees of free-
dom are used to eliminate as many of
the remaining low-degree Taylor series
coefficients as possible. No more than £
coefficients can typically be annihi-
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Function (x;c)

Taylor Sesies
Expansion
Locate Critical
Paint
Shift Origin
Leading Tntermediate Taylor
Terms Terms Tail
Remove by use Put into Remave by Smooth
of Control Pagamcn:rs Canonical Form Change of Coordinates
o Cataslrophe o
Arbitrary
Perturbation

Taytor

Rewmove by Smooth
Caange of Coondinales

Teadin, Tniermediate |
O -

Shift Restore to
Origin Canonical Fonn

Universal
Pertvrbation

+ Catastrephe
Germ

FIG. 8. General procedure for computing the catas-
. trophe germ and the universal perturbation of a family
of functions.

lated (by transversality: cf, Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gil-
more, 1981).

{c) A smooth nonlinear change of wvari-
ables is introduced to eliminate as many
terms in the Taylor tail as possible.
Whether all terms above some finite
degree, or only most terms, can be
eliminated is determined algorithmi-
cally (determinacy algorithim: cf. Pos-
ton and Stewart, 1978; Arnol'd, 1981,
1986; Gilmore, 1981).

After the catastrophe germ has been com-
puted, the steps followed above are taken in
reverse order to compute the universal per-
turbation of the catastrophe germi:

2. Computation of the universal perturbation

Pert(Lk): ’

{d)} An arbitrary perturbation is added to
the germ. The smooth transformation
used to eliminate the Tayler tail in step

" {¢) above is used again to eliminate the
same terms of the perturbed germ and

reduce the coefficients in the germ to
the same canonical values.

(e) A shift of ordinate and coordinate is
introduced to eliminate the constant
term in the perturbation and / (state
space dimension of the germ) of the
remaining ierms of the perturbation.

This procedure reduces a family of func-
tions to canonical form in the neighborhood
of a degenerate critical point.

2.3 A More Complicated Example

In this closing section of Sec. 2 we tackle a
more complicated example. This is done for
{wo reasons:

1. to illustrate the methodology described in
the previous section for a multidimensional
state-variable space,

2. to illustrate exactly why the classification of
elementary catastrophes terminates at con-
trol dimension k=>5.

The particular example we consider is the
reduction to standard form of the six-control-
parameter family of functions defined on a
three-dimensional state-variable space,

F(x:0) = f(4,9,2:6),62.63.€4,€5.65). 3%

To effect this reduction we follow the steps
described in the previous two sections. The
computation of the catastrophe germ is illus-
trated in Fig. 10(a). The computation of the
universal perturbation is shown in Fig. 10(b).
The steps 1-5 used to compute the germ below
are indicated by the corresponding numbers
over the arrows, which show the effect of
these steps, in Fig. 10(a). Steps 6-9, used to
compute the universal perturbation, are sim-
ilarly keyed to the arrows in Fig. 10(b).

1. The Taylor series expaﬁsion for this func-
tion is

flmey= 2 “—'l'lf“ld—f (x—xg)’
e Gt
it

X (y—0) (z—z0). (34)
This Taylor series is illustrated schemati-
cally in Fig. 10(a), where we have grouped
together all terms of the same degree and
suppressed factorials.

2. We search over state-variable space for a
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Ty.3,3 + arbitrary pertucbation &

<

B +1w0

Pert (36) = 10 +-810 + ST+ €1 ¥ + 2178+ £ 32 + axyz

FiG. 10. The procedure used to compute the catastrophe germ and universal perturbation for-a six—parameter
family of functions depending on three state variables. The numbers over the arrows are keyed to the steps taken
in the text.

3.

4.

critical point, then move the origin of co-
ordinates to that point. This removes the
constant and linear terms from the Taylor
series expansion.

The six control-parameter degrees of free-
dom can be used to eliminate up to six of
the remaining terms in the Taylor series
expansion. If any of the quadratic terms
remain, the catastrophe ultimately con-
structed appears in the list given in Table 2,
However, if we use these six control-param-
eter degrees of freedom to eliminate all six
second-degree terms from the Taylor series
expansion, something new appears. Accord-
ingly, we make this choice. The resulting
expansion begins with the third-degree
terms,

Using a homogeéneous linear transforma-
tion we can attempt to put the cubic terms
into some canonical form. Since a linear

transformation on the state-variable space

is a 3 3 matrix with 3% degrees of freedom
and there are ten cubic cocfficients, it is
possible to give canonical values to only
nine of these ten coeflicients. Symmetry
dictates the choice

Y fad =2y 42 raxyz
i+j+k>3
(+ higher-degree

terms). (35)

This linear transformation maps nth-de-
gree terms (#>3) into terms of the same
degree. The parameter, a, which appears in
this function cannot be given a canonical
value, and is the reason why this catastro-
phe is not elementary. L '

5. We then search for a. smooth 'nonlﬁlear

change of variables which wil] eliminate as.
much of the tail of the Taylor series expan-
sion as possible. I

(a/3)° +150,

the cubic terms are determinate. This means
that a smooth transformation exists which
transforms away all terms in the Taylor
series expansion of degree in excess of
some finite value, in this case three. The
resulting catastrophe germ is

f(®ie)=Ts33=2"+y'+2+axyz.

(36)

37)

This catastrophe germ is shown at the bot-



104 Catastrophe Theory

tom of Fig. 10(a).

6. To compute the universal perturbation we
add a general function of three state vari-
ables,

exya)= 2 ey, (38)
i0
2
to the catastrophe germ T;3;. All coefli-
cients € are assumed to be small. The
Taylor series of the resulting perturbed
function is shown in Fig. 10(b).

7. Working backwards, we find a linear trans-
formation which transforms the cubic terms
to the form (37).

8. If the original function T} 3 ; is determinate
[(a/3)*+1540], the perturbed function must
also be determinate [(@'/3)°+1£0, a'=a
-+€3q;] for a sufficiently small perturbation.
This means that a smooth transformation
exists which transforms away all terms in
the Taylor series expansion of the per-
turbed germ of degree greater than 3.

9. Finally, we make a rigid displacement of
coordinate system to eliminate the constant
term ey in the perturbation and three of
the remaining nine linear and quadratic
terms. Since it is always possible to elimi-
nate the three terms 17, %, 2%, the universal
perturbation is

Pert(lu 3,’C = 6) =€190x+€()10y+50012
+ €108V +€101X2
+eyzt+axyz. (39)

The seventh term, axyz, has been added
because it is not possible to reduce the
coefficient of xyz in the catastrophe germ
T333 to a standard value. The universal
perturbation is shown at the bottom of Fig.
10(b).

The net result of this calculation is a reduc-
tion of the function f(x;c) given in Eq. (33) to
canonical form:

flx:e)=T;34 +Pert(3,6) (40)
(33)=(37) +(39)

We emphasize once more that for k<6
control parameters it is possible to assure that
any catastrophes that are encountered are
elementary, but for k=6 (and &> 6) this is no
longer possible, as T3 3 ; shows.

3. HOW IT WORKS

Elementary catastrophe theory consists of
a collection of theorems about the canonical
forms of functions in the neighborhood of
degenerate critical points. Catastrophes in the
real world consist of processes that exhibit
discontinuities and sudden jumps. It is clear
that the mathematics provides the right lan-
guage for describing the physical processes.
But how? The mathematics describes poten-
tials that depend on control parameters; pro-
cesses depend on time. It is tempting to allow
control parameters to depend on time, but
then the catastrophe functions are no longer
strictly potentials. And what of the dynamics
describing a physical system? If many equi-
libria are available, which does the system
choose? Finally, how can we recognize when
a physical process can be modeled by a math-
ematical catastrophe function?

These practical questions are the subject of
Sec. 3 of this article. The difficulty of relating
the dynamics of a system to a potential that
describes it is discussed in Sec. 3.1. In most
instances the system state is governed either
by a local or the global minimum of a poten-
tial, and sudden jumps from one state to
another occur when the control parameters
pass through an appropriate component of
the bifurcation set. Although the two conven-
tions presented (Maxwell, Delay) are not com-
plete, they serve well in a preponderance of
situations.

When a catastrophe occurs in some physi-
cal process, a multiplicity of related phenom-
ena occur. These phenomena are called catas-
trophe flags. They are treated in Sec. 3.2. The
identification of any is a clear indication that
the others are present and will be recognized
if sought. These flags may be used o identily
the mathematical catastrophe furction that
most accurately describes the discontinuous
physical process.

In Sec. 3.3 we illustrate the use of catastro-
phe theory in determining the sensitivity of
failure modes of a complex structure to hid-
den or unforeseen imperfections. This is done
by investigating the catastrophe germ for an
optimized system and then determining the
universal perturbation for that germ. In the
particular example considered, that of a

" propped cantilever, strong coupling of two

“soft” collapse modes yields a “soft” collapse
direction and a *hard” direction, one in which



a severe and unexpected collapse is possible.
Further, analysis of the universal perturba-
tion for that collapse mode reveals that the
mode is extremely sensitive to imperfections
in either the design or fabrication stages of
construction. Finally, the use of catastrophe
theory to suggest tests to locate the actual (as
opposed to designed) failure load, as well as
ways 1o increase the load at which failure
occurs, are suggested,

Since elementary catastrophe theory is the
first step in the program of catastrophe the-
ory, all its results and phenomenoclogy will
necessarily be present in subsequent develop-
ments in this program. The next stage in this

program following elementary catastrophe

theory is the study of dynamical systems, sets
of coupled first-order ordinary differential
equations. We show in Sec. 3.4 how the fold
and the cusp catastrophe appear in dynamical
systems theory under the guise of three ele-
mentary bifurcations: the saddle-node bifur-
cation (A;), the pitchfork bifurcation (43),
and the Hopf bifurcation (4;).

3.1 Catastrophe Conventions

Elementary catastrophe theory is the first
tentative step in the program of catastrophe
theory. It was motivated above by our desire
to describe the qualitative properties of gradi-
ent dynamical systems of the form (4). The
qualitative dynamics of such systems are de-
termined by a potential function. The local
flow in the neighborhood of each nondegen-
erate critical point (Morse i-saddle) is canon-
ical and the separate flows can be pasted
together to construct a global flow.

As the study of elementary catastrophe
theory evolved, it became clear that the key to
our understanding of non-Morse critical points
was the determination of how the critical
points moved about, coalesced and disap-
peared, or were born degenerate and moved
apart as the control-parameters changed. The
dependence of critical points on control-
parameter values, as described by the canon-
ical decomposition (15), provides a complete
resolution to the mathematical question posed
by elementary catastrophe theory. However,
it does not address a corresponding physical
question. That is, how does the dynamics
depend on the control parameters? Once the
control parameters are allowed to vary in
time, the system (4) is no longer a gradient
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system—the potential is time dependent. As a
result, knowledge of the shape of the potential
is not sufficient to determine the state of the
system unless the equations of motion are
known.

In the absence of a detailed set of equations
of motion, the state of the physical system
described by an elementary catastrophe must
be determined by some infusion of intuition.
This is done by adopting one of two standard
assumptions. These are the Delay convention
and the Maxwell convention (Zeeman, 1977,
Poston and Stewart, 1978; Gilmore, 1981).

-Delay Convention: The state of a system is
determined by a (local) minimum of a poten-
tial. As the control parameters change, the
state remains at the local minimum as long as
that minimum exists, When the local mini-
mum ceases to exist (at a bifurcation set) the
sysiem state jumps to a new local minimum.

Mazxwell Convention: The state of a system
is determined by the global minimum of a
potential. As the control parameters change,
the state remains at the minimum as long as
that minimum remains the global minimum
of the potential. When the minimum ceases to
be the global minimum, the system state
jumps to the new global minimum.

We stress again that these assumptions
about the behavior of a physical system are
required only by our lack of knowledge of the
system’s equations of motion.

The difference between these two assump-
tions is illustrated in Fig. 11 for the cusp
catastrophe. When <0 the potential may
have one minimum or two. We assume the
system begins in the unique minimum of the
potential. As the control parameter & is
changed, a new minimum is created in a fold
catastrophe, The original minimum eventu-
aily becomes metastable with respect to the
new minimum, and finally the original mini-
mum disappears in a fold catastrophe. Accord-
ing to the Delay convention, the system jumps
to the new minimum only when the original
minimum is annihilated. According to the
Maxwell convention, the jump occurs when
the two minima become equally deep (at
b=0). These two conventions are illustrated
on the canonical critical-value surface for the
cusp in Fig. 11(b). The jumps occur at the
parts of the critical-value graph
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which prevent the surface from being a man-
ifold. The Delay convention requires jumps to
" occur at the creases which represent the col-
lision of a local minimum and maximum and
which lie over the cusp-shaped curve (21).
The Maxwell convention requires jumps to
occur at the self-intersection which represents

FIG. 11. {a) The Delay conven-
ticn and the Maxwell convention
determine when the jump from
one local minimum to another
takes place as the control param-

. eters are varied. (b) The two bifur-
cation sets comrespond to pieces
of the critical surface which pre-
vent the surface from being a
manifold. Under the Delay conven-
tion, jumps occur at the creases in
the surface, where a local mini-
mum and maximum become de-
generate. Under the Maxwell con-
vention, jumps occur at the
intersection of two of the leaves of
this surface, where the two min-
ima become equally deep.

the surface on which the two minima are
equally deep and which lies over the half-line
b=0, a<0.

The bifurcation sets for the Delay and
Maxwell conventions are sets in the control-
parameter space at' which jumps to new states
take place. These sets are determined by local
and global considerations for the two conven-
tions. The bifurcation set for the Delay con-



vention consists of that subset of the bifurca-
tion set for the catastrophe which involves a
Morse O-saddle. For catastrophes more com-
plicated than A, some components of the
bifurcation set involve Morse saddles M7 and
M{, 1, i > 0. On these components of the
bifurcation set the two saddles M7 and M?,,
are degenerate. These components of the ca-
tastrophe’s bifurcation set are not compo-
nents of the bifurcation set determined by the
Delay convention, since local minima (M)
must be present. The bifurcation set for the
Maxwell convention is determined by nonlo-
cal arguments. Once a point on the Maxwell
set has been located, the remainder of the set
may be constructed by integrating a set of
equations of Clausius-Clapeyron type (Gil-
more, 1981).

The appropriate choice of convention must
balance the rate at which the control-param-
eters are varied against the noise level of the
system—specifically, the probability that a
fluctuation in energy will occur in excess of
the barrier height separating a local minimum
from other minima, including the global min-
imum. When the noise level is low, it is
usually safe to adopt the Delay convention.
When large fluctuations occur more rapidly
than the control parameters are swept, the
Maxwell convention is more suitable.

From Fig. 11 it can be observed that the
bifurcation set for the Maxwell convention
“lies inside” the bifurcation set for the Delay
convention. This is a general feature of catas-
trophes and has the following physical inter-
pretation. If a system whose phase transition
properties are usually described by the Max-
well convention is handied very gently, the
jump from a metastable state to a global
minirmum may not occur at the bifurcation set
for the Maxwell convention. The transition
may be delayed—but it cannot be delayed
beyond the point at which the local minimum
ceases to exist—the bifurcation set for the
Delay convention. The outer limits beyond
which metastability cannot occur for a phys-
ical system are called spinodal curves (or
surfaces). The spinodal curves surrounding
the bifurcation set for the Maxwell conven-
tion consist of the bifurcation set for the Delay
convention. The spinodal curves for the sym-
metry-restricted catastrophe

A5 f(ma,0) =bS tiaxt +iex? (41)

i
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are shown in Fig, 12.

When the equations of motion for the
system are known explicitly, there is no need
to make an assumption {i.e., adopt a conven-
tion) about the system's behavior. For exam-
ple, the system state may be governed by a
probability distribution, P(x,#), which satis-
fies a Fokker—Planck equation

P/ 3t=V(PVV) +V2(DP), (42)

where V has a time dependence due to the
time dependence of some conirol parameters:

V(x;t)=Wix;e(r)) (43)

and D is a diffusion constant. Then the prob-
ability distribution for the system state can be
determined explicitly as a function of time. In
this case there is no well-defined bifurcation
set—there is an occupation probability for the
two minima (and swrrounding regions) and
that probability changes smoothly in time.

It has been shown that the Fokker—Planck
equation can be used to interpolate between
the two extreme limits represented by the
Delay convention and the Maxwell conven-
tion (Gilmore, 1981). L

We remark, finally, that the problem of
system state is not necessarily resolved by
adopting the Delay convention, as appears to
be the case in Fig: 11. In that figure there is
one remaining minimum when the metasta-
ble minimum disappears in a fold catastro-
phe, so the system has a unique minimum to
jump to. But what happens when there are
two or more remaining minima-that the sys-
tem can jump to? Does the system jump to the
deepest minimum, the nearest minimum, or
yet another minimum? On this the Delay

| :

o

VAV,

Y

VaV,

FIG. 12. Shapes of th symmetry-restricted butterfly
catastrophe f{x;a,0)=p®+zax*+3502, together with
bifurcation sets under the Delay and Maxwell conven-
tions. Spinodal curve for the Maxwell set is the bifur-
cation set for the Delay convention.
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convention has nothing to say. In short, the
conventions are incomplete. They can be very
useful but they are not substitutes for detailed
_knowledge of the equations of motion.

3.2 Catastrophe Flags

An important reason for studying the ele-
mentary catastrophes is that their properties
are canonical. Therefore, predictions based
on the properties of an elementary catasiro-
phe in a physical system are canonical. This
means that their properties need be studied
only once. They can then be applied directly,
without change, to any physical system de-
scribed by that catastrophe. As a result, it is
important to be able to determine the pres-

ence and type of a catastrophe underlying the.

behavior of a physical system.

This may be done either deductively or
inductively. In the first procedure there is full
knowledge of the equations of motion describ-
ing the system. When this is the case it is
generally possible to make whatever predic-
tions are desired by computing solutions of
these equations. It is then possible to predict
the behavior of the system without any knowl-
edge of the elementary catastrophes. This, in
fact, has been a long-standing operational
mode in the physical sciences.

There are, however, instances in which the
equations of motion are not known. Then the
presence of a catastrophe cannot be deduced
{from the equations). It may, however, be

Modality

Sudden
Jump

Tima Dilation

Divergence of
Anomalous Varianca

Linear Response

induced from the behavior of the system.
When a catastrophe is present, the system
undergoes (or may undergo) a qualitative
change in its behavior. This qualitative change
is often accompanied by a number of other
phenomena. For any particular system these
may be more or less difficult to recognize. The
point is that the observation of any will imply
the presence of all and that if we look hard
enough we will find all these correlated phe-
nomena.

Eight phenomena typically occur when a
catastrophe is present. These are called catas-
trophe flags: in a sense the catasirophe “waves
flags” to attract our attention. Of the eight, five
are classical: they occur when there is a
qualitative change in the system. The remain-
ing three also occur when there is a qualitative
change, but they may also be observed before
a phase change occurs. This is very important
when the phase change represents the transi-
tion of a structure from one state io another
(i.e., collapse of a bridge)}. The five classical
catastrophe flags are modality, sudden jumps,
inaccessibility, sensitivity, and hysteresis (Zee-
man, 1977; Poston and Stewart, 1978). The
three diagnostic catastrophe flags are diver-
gence of linear response, time dilation, and
anomalous variance {Gilmore, 1981). These
are now discussed and illustrated in Fig. 13
for the cusp catastrophe.

3.2.1 Modality. Inthe neighborhood of a
catastrophe the system can exhibit two or

FlG. 13. Eight phenomena (flags) associ-
ated with the presence of a catastrophe.




more distinct types of behavior (near a criti-
cal point: liquid, gas; near a triple point: solid,
liguid, gas). The upper and lower surfaces of
the cusp catastrophe manifold represent two
distinct types of locally stable behavior in Fig.
13. The intermediate part of this manifold
represents an unstable mode of behavior which
nevertheless may be observed with sufficient
care.

322 Sudden Jumps. The system may
suddenly jump from one mode of behavior to
another mode of behavior (liquid, high den-
sity, to gas, low density) as the control param-
cters (intensive thermodynamic variables: tem-
perature and pressure) are varied. These jumps
represent the transition from one local mini-
mum to a global or another local minimum.
The location of the sudden jumps may or may
not be adequately described by one of the two
conventions presented in Sec. 3.1.

3.2.3 Inaccessibility. Separating the two
or more local minima (M§) responsible for
“modalities” is at least one Morse saddle
(MY). The Morse saddles M? (i > 0) are all
dynamically unstable. In the neighborhood of
such a saddle the system, if perturbed, will
move quickly to a locally stable state. As a
result, modality will always be accompanied
by inaccessible regimes as represented by the
middle sheet of the cusp catastrophe mani-
fold.

3.2.4 Sensitivity.  If the system is brought
from the single-mode regime to the multi-
mode regime the question arises: what is the
final state of the system? For most initial
conditions and processes, the final state is
robust against perturbations. That is, if the
final state lies on the upper sheet of the cusp
catastrophe manifold, then a perturbation of
either initial conditions and/or processes will
leave the final state on the upper sheet. How-
ever, there is a small set of initial conditions
and/or processes for which this is not true.
This sensitivity to (some) injtial conditions is
shown in Fig. 13. For the process db/dr=0,
da/dt <0 the initial condition with b=e>0
will result in a final state on the lower sheet
while the nearby initial condition b= —e<0
lies on the upper sheet. A similar phenome-
non occurs for processes that are almost
identical, beginning from appropriate initial
conditions. We remark that for the elemen-
tary catastrophes there is sensitive depen-
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dence on some initial conditions while in the
study of chaos there is sensitive dependence
on gl initial conditions,

3.2.5 Hysteresis. A sudden jump from
one modality to another may occur at the
bifurcation set for the Delay or Maxwell con-
vention, or anywhere in between. If the pro-
cess is reversed, the jump back 1o the original
modality may occur at the same control-
parameter value as the initial jump (Maxwell
convention) or at different control parameter
values (any other convention). Unless the
Maxwell convention is observed, jumps be-
tween the different modalities will exhibit
hysteresis, Hysteresis, while not necessarily a
part of the catastrophe scenario, can usually
be observed with sufficient care even when the
Maxwell convention suggesis itself (e.g., su-
perheating and supercooling in a liquid—gas
phase transition).

The five classical catastrophe flags just de-
scribed are of little use to the structural engi-
neer locking for the limits of stability of a
large structure (bridge, building) or a naval
engineer testing a ship's stability. In many
instances, transition from one modality to
another is not only a catastrophe, but a disas-
ter as well (collapsed bridge, building; cap-
sized ship). For this practical reason it is
essential to have a set of catastrophe flags that
identify the presence of a catastrophe, and can
be used to map out approximately the bounds
of the catastrophe (i.e., bifurcation sets) with-
out actually having to enter the multimode
regime, or at least make the transjtion be-
tween modes. The three diagnostic catastro-
phe flags accomplish just this.

32,6 Divergence of Linear Response.
The response, 8x; of an equilibrium in state-
variable space to a small change in the control
parameters, 8¢, is given by
8x;=y;,6¢,, (44)
where the linear susceptibility tensor y;, is
given explicitly by Eq. (25) for a system
governed by a potential. As a local bifurcation
set is approached, at least one of the eigendi-
rections has a very large response. This is the
direction in which two or more critical points
are approaching each other. This direction is
an eigenvector of the stability matrix, V;, in
Eq. (25). The cigendirection, and the depen-
dence of the diverging eigenvalue (i;') on



910 Catastrophe Theory

the control parameters ¢, can be used to map

.out the bifurcation set without actually pene-
trating it (Gilmore, 1981). In the liquid-gas
phase transition divergence of linear response
manifests itself as the divergence of the com-
pressibility as the critical point is approached
from either the single-phase or the multiphase
region. Divergence of the compressibility may
also be seen, with greater difficulty, as the
spinodal lines are approached from within the
multiphase region. '

3.2.7 Time Dilation (Critical Slowing
Down, Mode Softening). In the neighbor-
hood of a nondegenerate critical point the
equations of motion for a dissipative gradient
system are

dx,/dt=—Vx;. (45)

For a dissipative system the relaxation to
equilibrium following a perturbation occurs
on a time scale that is the reciprocal of the
smallest eigenvalue of the stability matrix V.
For a conservative system the spectrum of
oscillation frequencies, w; consists of the
square roots of the eigenvalues of V; Upon
approach to a bifurcation set one or more of
the eigenvalues of Vj; approaches zero. Relax-
ation to equilibrium slows down (critical slow-
ing down) as the bifurcation set is approached.
The dependence of the vanishing eigenvalue
on the control parameters can be used to
determine where in control-parameter space
the bifurcation set occurs. The associated ei-
‘genvector can be used to locate where in state
space the critical points become degenerate. A
similar analysis is possible when one (or
more) of the frequencies of a conservative
system approaches zero (mode softening).
Time dilation is well known to experimental-
ists. The time required for equilibration near
the critical point in the liquid-gas phase tran-
sition grows very rapidly as the critical point
is approached, making experiments on the
equilibrium properties of fluids near their
critical points very difficult and time consum-
ing.

3.2.8 Anomalous Variance., When the
state of a physical system is described by a
Morse critical point, motion dbout the equi-
- librium is confined by a quadratic potential
well. On approach of another critical point the
quadratic potential becomes flattened and mo-

tion about the equilibrium becomes less con-

fined. This reduction in localization, or decon-
finement, is called anomalous variance. In a
gas-liquid system anomalous variance is dra-
matically observed at the critical point as
critical opalescence. This occurs when fluctu-
ations in the size of liquid droplets in the gas
phase and gas bubbles in the liquid phase can
occur at all length scales, including length
scales comparable to optical radiation, pro-
ducing an anomalously strong scattering of
light.

Although catastrophe theory provides a
qualitatively correct description of physical
properties of a fluid near its critical point, it
does not provide a quantitatively correct de-
scription of these properties and must be
replaced by a better descriptive mechanism
for the purposes of making accurate predic-
tions of physical behavior.

3.3 The Dangers of Design Optimization

Large structures are built from many
smaller parts. Cost is almost always a major
factor in the design and construction of a
complex structure, such as a bridge. As a
result, a design philosophy has been widely
adopted. This is the philosophy of design
optimization. The basic idea is to design each
component to meet but not exceed its specifi-
cations. For example, if an elevated roadway

. designed to support a load L is to be supported

by ten cantilevers, each cantilever should be
designed to support some fraction of that
load. 1t makes no sense to design some canti-
levers to be stronger (and more expensive)
than others: what good will they do when the
others have already collapsed, taking the road-
way with them?

This is the philosophy of design optimiza-
tion. It has hidden dangers because complex
structures may have hidden or unexpected
collapse modes. Further, these modes may
have exceptionally sensitive dependence to
imperfections in the fabrication/construction
stages. We illusirate these ideas and dangers
by treating a simple example. This is a propped
cantilever designed to support a load Fup to
some critical load, F.

The cantilever is shown in Fig. 14. We
assume it has unit length and a force F is
applied vertically at the top of the cantilever.
The mass of the beam is assumed small com-
pared to the [oading force F.



FIG.14. The cantilever consists of a vertically propped
beam supporied by springs of spring constant k
providing restoring forces in the x-z plane and springs
of spring constant &, providing restoring forces in the
y-Z plane. The length of this beam is scaled to 1.
Displacements from the vertical are described by the
(x.y) coordinates of the top of the beam. Solid axes
(%)) are axes along which a “soft” A, 3 catastrophe
occws. Dashed axes (x==)) are axes along which a
“hard” A_; catastrophe occurs.

We assume the collapse modes of this
cantilever involve deflection in the x-z plane
through an angle 0, from the vertical, deflec-
tion in the y-z plane through an angle ¢, from
the vertical, or any combination of these
motions. We also assume that deflection is
counteracted by springs with spring constants
k,, k; providing restoring forces in the x-z and
-z planes, respectively. The potential describ-
ing this cantilever is

V(6,,05iF) =(2/2)k; 07+ (2/2) kx5 +Fz, (46)

where z is the height of the top of the cantile-
ver.

It is useful to express this potential as a
function of the displacement coordinates x
=sing) and y=siné, of the top of the cantile-
ver. The potential, up to quartic terms, is

ViagiF) =k (1 +22/3) 4k’ (1452/3)
HF1—2 -y (47)

For displacements in the x-z ﬁlane with y=0,
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V(x,0;F)=F+4 (k;—F/2)x*+ (k;/3—F/8 )(:3‘; )

This can immediately be recognized as a
symmetry-restricted cusp catastrophe, 4,3 A
similar potential describes displacements in
the y-z plane x=0. Since the potential V{x,y;F)
exhibits a bifurcation at &;,—F/2=0 and
V(0;3;F) exhibits one at ky— F/2=0, it makes
sense to design the cantilever with equal spring
constants ky=k,=F_/2, where F, is the criti-
cal load to be supporied by the cantilever.

Or does it?

The potential for the optimized cantilever
under an arbiirary displacement is

V(x,y;F) =F+3(F.— F) (£ +5")
+(F/6—F/8) (x*+y*) —3F2y,
(49)

The last term represents a strong coupling
between the two displacement directions. This
coupling term has severe consequences for
the collapse behavior of the cantilever.

As the foree F is increased, the potential
V{3 F) remains locally stable uniil the crit-
ical load F, is reached. At this load, the
fourth-degree term F.(x*—612%+5%) /24 al-
lows sudden collapse of the cantilever in
particular directions. This is not what is ex-
pecied from investigating the planar poten-
tials V(x,0;F) and V(0,y,.F): for these poten-
tials the coefficient of the quartic term is
positive at the critical load, so that only a
small in-plane displacement occurs after the
critical load is exceeded. In other words, the
postbuckling behavior of the cantilever in
either the x-z plane or the y-z plane is “soft” in
the sense that after the bifurcation the stable
equilibrium is located near the original stable
equilibrium (x,¥)=(0,0) in the state-variable
space. ' _

In cylindrical coordinates x=r cos¢ and
y=r sing the potential is

V(r,;F)=F+(k—F/2)r*

+(k/3)r (cos*d+sin*p) — (F/8)7".
(50)

The coefficient of #* is largest (=+1) for
displacements along the +x or +y axes (¢
=nxu/2, n integer) and smallest (=1/2) for
displacements along the axes x=+y (§=n/4
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+nw/2, n integer). Along these two different
sets of displacement directions the potentials
are

V(r,¢=0;F)=F+(k—F/2)r*+(k/3—F/8)r,
(51a)
Virg=n/4F)=F+(k—F/2)r*

+(k/6—F/8)r".

The first potential, representing displace-
ments in the x-z or y-z planes, is a catastrophe
of type A3 with “soft” postbuckling behav-
iof. That is, for loads in excess of the critical
load the displacement from vertical increases
rapidly but coniinuously. The second poten-
tial, representing coupled displacements (x=
%), is a catastrophe of type A_5, with “hard”
postbuckling behavior. For loads in excess of
the critical load the only stdble position is
horizontal—completely collapsed.

These observations may appear academic.
Afier all, the cantilever remained vertical and
supported loads F below the critical load.
However, we have not yét considered imper-
fection sensitivities. These are encountered in
the fabrication stages (of the springs, for
example) and the construction stages in every
large project. The most general perturbation,
representing arbitrary imperfections for the
cantilever, are obtained by investigating the
germ of the potential, which is (x*
—6x*v*+3*)/24. The universal perturbation
of this catastrophe germ is the eight-parame-
ter function

(51b)

Pert{x.y;a;) = > “ifxly. :
(52)
i<2, j<2, (ij3#(00).

It is truly remarkable that every imaginable
imperfection in fabrication of the individual
components {nonuniformity in density of ma-
terial from which the beam is constructed,
unwanted bends in the beam, air bubbles,
etc.) as well as every imaginable imperfection
in construction (springs along the x axis with
different spring constants, springs along x and
¥ axes slightly out of perpendicular, rest height
not quite vertical, loading force not gquite
“vertical, etc.) can be represented by a univer-
sal perturbation with only eight parameters.
However, even eight parameters will present
a complicated problem of analysis. In the
present case we can do even better. The

failure eigendirections for the soft A ; catas-
trophe are the x and y axes (£x,0), (0,£¥).
Under this catastrophe [Eq. (51a)] the original
unperturbed stable solution (x,5)=(0,0) be-
comes unstable for F> F,, giving rise to new
stable equilibria (£[6(F/F,—1)]'/2,0), (0,
+[6(F/F,~1)]'?). Since the new equilibria.
are relatively near the old one and are stable,
this structural failure is a “soft” bifurcation.
This “soft” bifurcation is shown in Fig. 15(a).

The other failure eigendirection, x==y, is
a “hard” bifurcation and a completely differ-
ent story. In this case [Eq. (51b)] the new
equilibria exist for F<F, at (=[6(1—F/
FO112, +[6(1—F/F)]Y?). These equilibria
are saddles of type M2. If for F<F, a pertur-
bation moves the system state (x,¥) to the
neighborhood of any of these saddles, there is
the possibility of sudden collapse of the can-
tilever. This “hard” bifurcation is shown in
Fig. 15(b).

As aresult of these considerations, in order
to study the severe failure modes of the
propped cantilever, and in particular the im-
perfection sensitivity of these modes, it is
sufficient to study the imperfection sensitivity
of the A_; catastrophe [Eq. (51b)]. Under the
most general perturbation, the potential de-
scribing failure modes in the weak eigendirec-
tion is

V(r;b,Fy = —5F 1+ 3(F.—F)r* 4 br, (53)

where F, = F_, + a, and «a is one of the two
control parameters for the cusp catastrophe.
The other parameter, b, describes symmetry-
breaking perturbations. The load F
= F(F,b) at which the propped cantilever
collapses is determined by the values of
F!, b at which the locally stable equilibrium
becomes degenerate with either of the two
saddles it separates. This locus is the semicu-
bical parabola (21b), which gives for the
failure load

Fi=F,—3(3bF*)*". (54)

This simple expression reveals that the failure
load is severely decreased by any symmetry-
breaking imperfection (5£0). The severity is
indicated by the power-law dependence: 2/3.
An imperfection leading to 4 small asymme-
try in either plane x==+y will lead to an
unexpectedly large reduction in the cantile-
ver's failure load. The imperfection sensitivity
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{b)

X4y=rVZ  xy=0
or
Xy=0  xy=r'2

XY= nZ X-y=0
or
X#y=0  xy=rf¥

In all figures stable equilibria (Morse saddies M) are shown by solid curves and unstable equilibria

(ME) are shown by dashed curves. (a) Equilibrium displacement for the “soft” A 1z Catastrophe along the axes
(x.y=0) or (x=0,y). Prebuckling path (F <FJ)is (x¥}=(0,0). Beyond the critical load, F~ F, the postbuckiing path
is parabolic, with r~(F-F.}"2, (b} Equilibrium displacement for the “hard"” A_5 catastrophe along the directions
Xx=+£y. Prebuckling path (x,y)=(0,0) is stable for F <F,. There are no stable equiiibria for F> £, (c) The most
general perturbation of a cusp catastrophe consists of a linear plus a quadratic term: (a/2)r+br. The quadratic
term (a/2)r* shifts the critical load: %(Fw—Fgr?+(alZ):2+br—.%(F — FPbr, where F, = F, — a. The linear term
breaks the symmetry. For the “soft” catastrophe A, 3 the perturbation displaces the equilibrium as shown. {d) For
the “hard” catastrophe A_, the perturbation can dramatically reduce the load at which failure occurs, as shown.

of the “soft” and “hard” bifurcations are shown
in Figs. 15(c) and 15(d).

Having analyzed the problem, can we do
anything about it? The first step is to deter
mine how severe the problem is. To determine
the failure lead, we make use of the catastro-
phe flags. The ficst five (modality, sudden
Jumps, inaccessibility, sensitivity, hysteresis)
are observable when the cantilever collapses.
This is precisely the problem we would like to
avoid. The remaining three catastrophe flags
(divergence of linear response, critical slow-
ing down, anomalous variance) are diagnos-
tics designed precisely for the purposes at
hand. That is, the system is subjected to grad-
ually increasing loading. The following data
are then recorded:

1. the displacement, r, from equilibrium;

2. the normal-mode frequency, o, for small
oscillations;

3. the amplitude, A, for small oscillations
about equilibrium.

These three observables depend in a canoni-
cal way on the control parameters F — F, and
b. Testing is carried out gently and terminated
before the collapse of the cantilever. By ex-
trapolating the equilibrium displacement »(F),
the normal-mode frequency o(F), and the
amplitude of small oscillations A(F), the fail-
ure load Fy and the control-parameter values
F_and b at the failure load can be determined
(Gilmore, 1981). Such extrapolations are
shown in Fig. 186.
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FIG. 16. The failure load F{F_,b) has a 2/3 power-law dependence on the symmetry-breaking parameter &. The
value of the load at which collapse occurs {vertical iine at F}) can be located by exploiting the catastrophe flags.
This is done by plotting the frequency of small osciltations, o(F) (critical slowing down), by determining the fnear
susceptibility, y(F} (divergence of linear response}, and by measuring the ampiitude of small equal-energy
oscillations, A{F} (anomalous variance), all as functions of increasing load F. The amplitude diverges and causes

collapse before the failure load F;is reached.

Once the symmetry-breaking parameter b
has been determined, small adjustments to
the cantilever can be made to reduce the
magnitude of &. Such adjustments may possi-
bly include the nonintuitive steps of decreas-
ing the strength of some component (e.g.,
reducing one of the spring constants) in order
to increase the strength of the compound
system. '

Much larger compound structures have
many more degrees of freedom, and conse-

quently many more failure modes. While some

failure modes are clear-cut, others may be
very subtle—depending on unexpected cou-
pling between “soft” failure modes, as the
example above illustrates. Characterization of
the imperfection sensitivity is algorithmic: for
any catastrophe germ (the potential of the
perfect optimized structure at the failure load)
there is a universal perturbation. This is finite
dimensional provided that the germ is deter-
minate. It is important to understand the
universal pertirbation in order to catalog all
possible failure modes of the system, both
obvious and not, in order to prevent catastro-
phes from occurring in such complex struc-
tures. '

3.4 Elementary Catastrophes in Nonlinear
Dynamics

Elementary catastrophe theory is the first
result in the program of eatastrophe theory.
As aresult, it stands at the base of the pyramid
of bifurcations to be expected in nonlinear
dynamical systemns (se¢ CHAOTIC PHENOM-
ENA). Any bifurcations encountered in elemen-
tary catastrophe theory will be encountered in
nonlinear systems with greater complexity.

To illustrate how the elementary catasiro-
phes are encountered in more complex non-
lincar systems, we survey here how the two
simplest elementary catastrophes appear in
nonlinear systems at the next level of com-
plexity in the hierarchy of nonlinearity. Such
systems are low-dimensional periodically
driven dynamical systems or, equivalently,
autonomous (time independent) dynamical
systems with one more dimension. :

In treating two-dimensional periodically
driven dynamical systems and three-dimen-
sional autonomous systems it is typical to
explore the bifurcation diagram by sweeping
one control parameter and locating periodic
and aperiodic orbits. When a single control
parameter is varied, it is typical to encounter
among the catastrophes only the fold. If,



however, there is a symmetry present, then
the symmetry-restricted cusp catastrophe
[V(x;a) =31+ 304 = V(—x;0)] may also be en-
countered.

The fold catastrophe appears in bifurcation
diagrams for autonomous dynamical systems
as saddle-node bifurcations. These are shown
in Fig. 17. In this figure there are several
control parameter values at which new stable
{solid curve) and unstable (dashed curve)
solutions appear. If the system is periodically
driven the saddle-node pair consists of a sta-
ble periodic orbit and a saddle orbit with one
unstable direction. Both orbits have the same
period.

Under a broad range of conditions the
saddle remains unchanged as the control-
parameter values are further increased, but
the node undergoes additional bifurcations.
Such bifurcations are often of the period-
doubling variety. The period-doubling bifur-
cation is essentially a symmetry-restricted cusp
catastrophe. Its relation to the cusp is shown
in Fig. 18. As a control-parameter value is
increased past some threshold, a stable peri-
odic orbit loses its stability. In a transverse
section (Poincaré plane) the unsiable point is
surrounded by two stable nodes. As the Poin-

—
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Pitchfork
Bifurcations —-—

Saddle
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\ Bifurcation
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FIG. 17. Fold and symmetry-restricted cusp (also
called pitchfork) bifurcations are commonly encoun-
tered in nonlinear dynamicat systems. At a fold or
saddle-node bifurcation a stable orbit (solid lines) and
& saddle orbit {dashed lines) are created. At a pitchfork
bifurcation, period doubling may occur; leading to
creation of orbits of twice the period of the original
orbit, which loses its stability.
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caré plane is swept around the unstable peri-
odic orbit, the two nodes will rotate around
the direction of propagation of the Poincaré
section either an integer number of times or a
half-integer number of times. If the two nodes
rotate an integer number of times around the
saddle that is between them [Fig. 18(a)}], the
two nodes belong to two separate periodic
orbits, both of which have the same period as
the unstable periodic orbit from which they
bifurcated.. On the other hand, if the two
nodes rotate a half-integer number of times
around the saddle that they straddle [Fig.
18(b)], they belong to a single orbit whose
period is twice the period of the unstable
periodic orbit from which they bifurcated.

Saddle-node bifurcations and period-dou-
bling cascades are general features of auton-
omous dynamical systems. The pitchfork bi-
furcation with an integer number of twists is
atypical in autonomous dynamical systems.
However, if there is a symmetry, as occurs, for
example, in the Lorenz equations, a period-
doubling cascade cannot occur beginning at a
symmetric orbit (Gilmore, 1981). As a result,
the first pitchfork bifurcation occurs at a
symmetric orbit of period 7, creating an asym-
metric pair of orbits of the same pefiod.
Subsequent pitchfork bifurcations from the
asymmetric periodic orbits then generate pe-
riod-doubling cascades.

A simple Hopf bifurcation can also be
viewed as a symmetry-restricted cusp catas-
trophe (Gilmore, 1981). In the neighborhood
of a Hopf bifurcation the dynamical equa-
tions can be written in polar coordinates as

dr/dt=Arxy3,
d6/dt=o. (35)

During the bifurcation the equation of motion
for 6 remains essentially unchanged. The bi-
furcation is therefore-described by the radial
equation, which can be writfen in gradient
form:;

dr/dt=—aV/ar,
V(rd)=—3A7— (£, (56)

A typical Hopf bifurcation is illustrated in
Fig. 19. A section of the bifurcation surface in
a plane containing the control parameter axis
has the standard pitchfork shape,

Since the saddle-node, period-doubling,
symmetry-breaking, and Hopf bifurcations
are all related to elementary catastrophes, all
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the phenomenology associated with the ele-
mentary catastrophes is present and observ-
able for these bifurcations as well. For exam-
ple, one can observe modality, sudden jumps,
inaccessible regions, sensitivity, hysteresis, di-
vergence of linear response, time dilation,
and anomalous variance in all these bifurca-
tions. Furthermore, the behavior of each bi-
furcation has the same canonical form as that
of the corresponding catastrophe (e.g., power-
law dependence).

4

APPENDIX: A BRIEF HISTORY OF
CATASTROPHE THEORY

Catastrophe theory burst upon public con-
sciousness in the mid-1970s with a series of
articles in widely available sources: Scientific
American, Science, London Times, Time, and
The New York Times. The articles themselves
were bimodal. At one extreme the London
Times heralded it as the “main intellectual
movement of the century” while the Science
article announced “The emperor has no
clothes.”

The theory of singularities of mappings
was intensively developed by Whitney, Thom,
and Mather in the decade 1955-1965. Thom
presented his formulation of the theory of
singularities in his eagerly awaited work Sta-
bilite Structurelle et Morphogénese (1972).
This book was an enigma in both form and

Half Integer Twist
Period-Doub{ﬁtTg Bifurcalion
}

FIG. 18. When a periodic orbit loses
its stability in a pitchfork bifurcation,
either iwo new orbits of the same
period may be created or one new
orbit of twice the period may be cre-
ated, depending on the local torsion
about the original orbit (integer or
half-integer).

substance, It was largely inaccessible to the
mathematics community because it was writ-
ten in the language of biologists, and inacces-
sible to the biological community due to its
presentation of mathematical concepts which
seemed to be deep and mysterious.

Yet it held the promise of describing dis-
continuous phenomena in a systematic way.
Zeeman crowned the subject with the florid
name “catastrophe theory” and took up the
challenge of presenting these mathematical
ideas to the larger community of scientisis.
When challenged to show concrete applica-
tions in the real world, he responded with a
series of articles of stunning originality which
explored the range of possible applications of
this new subject.

These applications eventually worked their
way into public consciousness through the
popular journals. A reaction to the value of
catastrophe theory set in. This reaction was

FIG. 19. A Hopf bifurcation can be viewed as a
symmetry-restricted cusp catastrophe in the radial
direction.



partly as a result of the overblown claims
made in its name, partly as a result of the
neglect offered to the workers who created the
field of dynamical systems theory: Poincaré,
Andronov, Pontryagin, Smale, etc., and those
currently working in this field. The result was
a multiyear public dialogue on the merits of
this subject of discontinuities using argu-
ments now long forgotten and best left un-
earthed, a dialogue of which the public even-
tually tired.

The appearance of the monographs by
Poston and Stewart (1978) and Gilmore (1981)
made it clear that this was a subject of sub-
stance, which had to be taken seriously, one
capable of providing a useful language for the
description of discontinuities at both a quali-
tative and a quantitative level.

GLOSSARY

Anomalous Varfance: A catastrophe flag,
Amplitude of motion about an equilibrium
becomes increasingly large as a degenerate
critical point is approached.

Bifurcation: A qualitative change in the
properties of a system.

Bifurcation Set: Set of values in control-
parameter space at which qualitative changes
occur.

Catastrophe: Mathematical—A family of
functions, depending on control parameters,
in which the number of equilibria changes as
the control parameters are varied. Physical—
A sudden, discontinuous change in the state
of a system.

Catasirophe Flags: Phenomena that oc-
cur when a catastrophe (sudden jump) is
present.

Catastrophe Germ: A function which de-
scribes a degenerate critical point.

Catastrophe Theory: The program for de-
termining how the qualitative properties of
the solutions of equations change as parame-
ters appearing in these equations change.

Clausius-Clapeyon Equations: A set of
equations which determine the Maxwell set of
a catastrophe.

Control Parameters: A set of parameters
c={ey,c3,-..,¢x) Which appear in the equations
that describe a physical system.
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Critical Curvature: The curvature &7/
dx? of a function evaluated at its critical poinis
Vi=0.

Critical Point: An equilibrium: a point at
which motion does not occur.

Critical Sei: The k-dimensional manifold
V.f(x:¢) =0 for x©R" and cER".

Critical Slowing Dowm: A catastrophe
flag. Relaxation to equilibrium takes increas-
ingly long times as a degenerate critical point
is approached.

Critical Values: Values of a function at
its critical points.

Cusp Catastrophe: The function A;(x)
=x*/4+ax*/2+bx. So named because the
critical set V,43(x;a,b) =0 exhibits a cusp on
projection to the g-b control parameter plane.

Cuspoids 4,,_;: A class of functions de-
pending on one state variable x and #—2
control parameters. The family of functions
A,y (x)=x"/n+Z2""ax’ has up to n—1 iso-
Iated critical points.

Degenerate Critical Point: An equilib-
rium (V¥=0) at which the stability matrix
(8°V/3x9x;) is singular. This requires two or
maore critical points to be arbitrarily close to
each other (degenerate).

Delay Convention: The system state re-
mains in a local minimum until that mini-
mum ceases to exist.

Divergence of Linear Response: A catas-
trophe flag. Linear response coefficients in-
crease very rapidly as a degenerate critical
point is approached.

Dynamical System: A set of coupled first-
order ordinary differential equations which
may be nonlinear: x; = f(x,c;¢), where x is a
state vector and c¢ are control parameters.

Elementary Catastrophe: A function of
one or two state variables (x,v) and one or
more control parameters, These functions are
used to describe systems in which small causes
can produce large effects.

Equilibrium: A point at which all forces
vanish; a critical point, ,

Exceptional Elementary Catastrophes:
Ky, Eq, Eg depend on two state variables and
have up to 6, 7, 8 critical points, respectively.

Flow: The motion of a point in phase
space under the equations of motion for the
system. :

Fokker-Planck Equation: An equation
that describes the evolution of a probability
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distribution in the presence of diffusion and
driving forces.

Fold Catastrophe: The function 4;(x} =
x°/3+ax. So named because the critical set
exhibits a fold.

Generic: Typical. Occurs with “probabil-
ity one.”

Gradient Dynamical System: A dynami-
cal system in which the time-independent
forcing term is the gradient of a potential
function: f{x,c)=—aV(xc)/x;

Hopf Bifurcation: Bifurcation in which a
stable fixed point becomes unstable and emits
a stable periodic orbit (limit cycle).

Hysteresis: Transitions from one state to
another do not occur at the same values of the
control parameters when the control param-
eters are changed in the opposite direction,

Implicit Function Theorem: A theorem
of elementary calculus. If a function has a
nonzero slope at a point, Vf5=0 at xg, then it
can always be approximated by a linear func-
tion at xg.

Inaccessibility: An unstable physical state
separating two stable physical states.

Isolated Critical Point: An eguilibrium
(V¥=0) at which the stability matrix (FV/
ax0x;) is nonsingular.

Maxwell Convention: The sysiem state is
always in the deepest minimurm.

Maxwell Set: The set of control parame-
ter values at which a function has two or more
equally deep minima.

Metastable: Stable to small periurbations
but not to large perturbations.

Modal Catastrophe: A catastrophe germ
which depends on one or more parameters.

Modality: Distinct types of behavior that
a system can exhibit under identical or nearly
identical conditions (e.g., liquid-gas states for
a fluid). '
~ Mode Softening: A catastrophe flag. Os-
cillation frequencies approach zero as a de-
generate critical point is approached.

Morse i-Saddle: The quadratic function
MHx) =~ — " — G+ 2+ + A

Morse Lemma: A normalform theorem
like the implicit function theorem. If a func-
tion of # variables has a nonsingular stability
matrix (det f/dxdx;) at an equilibrium x, it
can always be approximated by a quadratic
function at x;. Such a function is called a
Morse saddle.

Nongeneric: Atypical. Occurs with “prob-
ability zero.”

Perestroika: Change in the properties of
a dynamical system due to changes in its
control-parameter values.

Perturbation: A function which is every-
where small.

Phase Space: A space in which the coor-
dinates of a point define the state of the
system.

Phase-Space Portrait: A trajectory (or
trajectories) in phase space which describes
the evolution of a physical system from one
{or more) initial conditions.

Pitchfork Bifurcation: Bifurcation in
which a stable fixed point becomes unstable
and two new stable fixed points are emitted.
Corresponds to a single-well potential devel-
oping into a double-well potential.

Quadratic Form: A funcition of # vari-
ables x=(xy,%3,....%,) Which can be written
x*Mx, where M is a symmetric # X n# matrix.

R™: Real n-dimensional space.

Saddle-Node Bifurcation: Bifurcation in
which two fixed points, one saddle and one
node, are created.

Sensitivity: The final state of a system
may change under small perturbations of
either the initial conditions or processes ap-
plied to the system.

Stability Matrix: ‘The matrix of mixed
second partial derivatives of a function: 8*f/
dxdx;.

State Vector: A set of parameters x= (x4,
X3,0e%,,) Which describes the state of a system.

Structural Stability: Invariance of quali-
tative properties under a perturbation.

Taylor Tail: Tail of a Taylor series expan-
sion: all terms beyond a certain degree.

Thom Classification Theorem: A list of
elementary catastrophes depending on one or
two state variables and up to five control
parameters.

Thom Splitting Lemma: A normal form
theorem for functions. If a function has an
equilibrium (¥f=0) at which the stability
matrix 1/ 9x,9x; has [ vanishing eigenvalues,
the function can always be written as the sum
of two functions, f(x)=fnm(F1.--¥1)+
M7 31y 1n¥n), Where fuy(Fi,u)) is @
function with vanishing first and second de-
rivatives in the [ variables corresponding to
the vanishing eigenvalues and M7 ' is a Morse
#-saddle in the remaining n—1 variables.



Time Dilation: A catastrophe flag. Sys-
tem response takes increasingly long times as
a degenerate critical point is approached.

Umbilics D,,_;: A class of functions de-
pending on two state variables and #—2 con-
trol parameters. The family of functions D,
-1(x,y) has up to n—1 isolated critical points.

Universal Perturbation: Simplest func-
tion (i.e., lowest dimension, or number of
control parameters) that describes all possi-
bilities that can result when a degenerate
critical point is perturbed.
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