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INTRODUCTION

Push on something. It will move. Push just
a little bit harder and it will move just a little
bit more. This incremental response to incre-
mental stresses is very typical. But under rare
conditions a small increase in the level of
stress will produce a large and dramatic re-
sponse. Such a response is called a “catastro-
phe.” This kind of behavior has been summa-
rized succinctly in the phrase “the straw that
broke the camel’s back.”

Although this phenomenon occurs under
rare conditions, it is also “typical.” That is,
although it is unlikely that any particular
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straw will break the camel’s back, it is certain
that after enough straw has been loaded, some
straw will break the camel's back.

Situations in which gradually increasing
stress leads to gradually increasing response,
followed by a sudden catastrophic jump to a
qualitatively different response state, are all
too common. Many examples can be given:

1. Under gradually increased loading a bridge
sags to a greater degree, followed by a
sudden collapse under the last bit of stress
(Zeeman, 1977; Poston and Stewart, 1978;
Gilmore, 1981). .

2. As temperature is gradually decreased at
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constant pressure, a gas gradually contracts
until a certain temperature is reached, at
which it condenses to its liquid (or solid)
state, with a sudden and very large change
in its volume (Zeeman, 1977; Poston and
Stewart, 1978; Gilmore, 1981).

3. Slow variation of the aileron trim settings
{wing flaps) of an airplane leads to slow
change in the atiitude of the plane, until a
certain threshold value is passed, at which
point there occurs a large change in aircraft
attitude (Gilmore, 1981).

4. When a glass tube filled with a helium-neon
or carbon dioxide-neon mixture is set in-
side a cavity formed by two highly reflect-
ing mirrors and a gradually increasing cur-
rent is passed through it, the amount of
incoherent lght emitied gradually increases.
After a current threshold is passed, the light
which is emitted increases rapidly in inten-
sity and coherence: the laser has turned
“on" (Poston and Stewart, 1978; Gilmore,
1981).

5. The amount of sunlight falling on the Earth

- varies gradually over about 1000 years due
to variation of the Earih's orbital parame-
ters. Sudden dramatic changes leading to
the occurrence and disappearance of the
Ice Ages occur during this period and seem
to be precipitated enly by this gradual
variation of the Earth’s orbital parameters
(Gilmore, 1981).

6. It is even possible to conceive of small
causes producing big effects in biological,
economic, social, and political systems
{Thom, 1975; Zeeman, 1977; Poston and
Stewart, 1978).

‘Catastrophes are widespread, occurring
- throughout all fields in the scientific and
engineering disciplines, and even beyond.
Moreover, the mathematical description of a
catastrophe follows the same procedure and
draws from the same restricted set of func-
tions, independent of whether the catastrophe
occurs in the area of physics, chemistry, struc-
tural engineering, aircraft dynamics, climate
dynamics, etc. The mathematical description
of catastrophes, involving mathematical func-
tions called elementary catastrophes, pro-
vides a language in terms of which discontin-
uous phenomena can adequately be described.

It is easy to imagine how to describe sys-
tems in which a small push gives rise to a
small response. One expects the mathematics

of continuity, the calculus of Newton, to be
applicable. One also expects that linearization
about the local state (linear response func-
tion) will give a quantitative estimate of how
much the system will respond to a small push.

Bui what of the mathematics of disconti-
nuity? How does one describe catastrophes? Is
it necessary to give up the ideas of continuity?

Roughly speaking, the state of a system is
an equilibrinm—in fact, a stable equilibrium.
By changing some external parameters called
control parameters (stress, loading), the equi-
librium is displaced. A small change in these
parameters usually results in a small displace-
ment of the equilibrium. Sometimes small
parameter changes result in the appearance of
new equilibria or the disappearance of old
equilibria. It is the latter instance in particular
that can lead to a catastrophic sudden jump. A
systematic study of catastrophes is closely
related to a systematic study of equilibria, and
especially the appearance and disappearance
of equilibria.

Families of functions depending on (con-
trol) parameters are called catastrophes when
the number of equilibria they possess changes
as the parameters are varied. There are only a
small number of catastrophes. A very small
number have been used to model sudden
jumps in physical systems. We will study the
mathematics of catastrophes in two steps:

1. We first study functions representing situ-
ations in which the number of equilibria is
about to change. This occurs when two or
more equilibria occur at the same point
(become degenerate).

2. We then study the effects of perturbations
on the degenerate equilibria. In fact, we
identify the simplest perturbation which
can reproduce the effects of the most gen-
eral perturbation.

That both these programs can be carried
out successfully is remarkable. _

A major obstacle in applying the mathemat-
ics of catastrophe theory to physical systems is
in identifying the underlying catastrophe. A
muliiplicity of phenomena occur in the pres-
ence of a catastrophe (catastrophe flags). The
occurrence of any one of these is an indica-
tion that others are present and can be found,
and that a catastrophe is ultimately responsi-
ble for all. The catastrophe flags are easy to
recognize and provide an inordinaie amount



of information about the underlying catastro-
phe. This information includes the type of
catastrophe, a rough indication of where the
sudden jump may occur, and—most
important—how to avoid it if that is a desir-
able objective.

This article is organized into three parts.
Section 1 describes what catastrophe theory
is, Sec. 2 describes how the catastrophe func-
tions are constructed, and Sec. 3 describes
how catasirophe theory is applied to the de-
scription of phenomena that occur in the
science and engineering disciplines.

In Sec. 1 we describe a progression of three
theorems of elementary calculus. These theo-
rems’describe local standard forms for func-
tions in the neighborhood of a point. The first,
the implicit function theorem, tells us that a
function can be replaced by its linear approx-
imation when its slope is nonzero at a point.
The second theorem, the Morse lemma, tells
us that under suitable conditions a function
can be well approximated by a quadratic form
in the neighborhood of an equilibrium. The
third result, the Thom splitting lemma, de-
scribes what happens when the “suitable con-
ditions” required above are not satisfied, In
this case two or more equilibria occur very
close together (are degenerate), making it
possible for a small perturbation either to
split or annihilate the equilibria. This change
in the number of equilibria is a “catastrophe.”
Tables containing Thom's list of clementary
catastrophes and a complete list of all elemen-
tary catastrophes are provided. This is fol-
lowed by a discussion of the geometric prop-
erties’ of the very simplest catastrophe
functions. This section provides a clear an-
swer to one of the questions posed above: it is
possible to describe discontinuous phenom-
ena without giving up the ideas of continuity.
In fact, this mathematics of discontinuity is an
essential part of the calculus of Newton.

In Sec. 2 we compute some explicit catas-
trophe functions. The first example starts with
a family of functions depending on one state
variable and two-control parameters. Follow-
ing an algorithmic procedure, we reduce this
to a standard form in the neighborhood of its
most degenerate equilibrium. This degenerate
equilibriumm is then perturbed in order to
determine how these critical points can be
created and anmihilated as a function of the
control parameters. The algorithm developed
to effect this reduction to normal form is then

Catastrophe Theory 87

summarized and applied to a more compli-
cated family of functions.

In Sec. 3 we address the question of how to
apply the mathematics of catastrophe theory
to real world processes that exhibit discontin-
uous phenomena, Two widely adopted con-
ventions are first described. These are assump-
tions about the mathematical characterization
of the equilibrium state of a physical system:
whether it is determined by a local minimum
or the global minimum of a potential, and the
conditions under which a jump from one
minimum to another occurs. The mathemat-
ics tells us only where, how many, and what
type of equilibria a catastrophe function pos-
sesses; the convention isolates the physically
important equilibria. When a physical system
exhibits a catastrophe, a multiplicity of phe-
nomena occur. It is useful to be able to
recognize them~particularly if one wants to
avoid the physical catastrophe (e.g., bridge
collapse). These phenomena are called catas-
trophe flags. The presence of any one is an
indication that the others are present. Their
recognition provides a great deal of informa-
tion about the underlying catastrophe. The
use of catastrophe conventions and catastro-
phe flags is illustrated in the context of an
important example in Sec. 3.3. This illusirates
unexpected dangers which may arise in the
design of structures following standard opti-
mization criteria employed to reduce costs. In
Sec. 3.4 we indicate how the elementary ca-
tastrophes may make their appearance within
the broader program of catastrophe theory, in
the field of dynamical systems theory. That is,
the fold catastrophe appears in the guise of
saddle-node bifurcations while the cusp catas-
trophe appears in the guise of pitchfork and
Hopf bifurcations.

In a short Appendix we outline the early
turbulent and confusing history of catastro-
phe theory, which was at one point heralded
as the greatest advance in mathematics since
the development of the calculus by Newton,

1. WHAT T IS

In Sec. 1 of this article we describe the
enormous mathematical program called ca-
tastrophe theory and the much smaller and
more manageable mathematical program
called elementary catastrophe theory (Sec.
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1.1). This latter program is not only the
starting point for the study of the larger
program, but also a continuation of a very
important and rather simple program in ele-
mentary calculus. This is the program of
determining and classifying the standard, or
canonical, forms that functions can assume in
any of their neighborhoods.

The first two stages in this program are well
known at an intuitive level (Sec. 1.2). These
are the implicit function theorem and the
Morse lemma, which are the mathematical
justifications underlying the approximation of
a function by z linear function at a point
where its slope is nonzero, or by a quadratic
form at an equilibrium (where the slope is
zero). The third stage, the Thom splitting
lemma, describes what happens when two or
more equilibria become degenerate. Under
this condition a perturbation can either split
the equilibria or annihilate them. Change in
the number of equilibria is closely related to
the occurrence of sudden jumps in physical
systems.

- Functions that describe sudden jumps, or
changes in the number of equilibria of a
system, are called catastrophes. There is a
small number of elementary catastrophes.
They are classified in Sec. 1.3 and presented in
_Tables 1 and 2 (Sec. 1.4). Since the number of
catastrophes is small, the properties of each
can be studied in detail (Sec. 1.5); the results
are then directly applicable to any physical
systemn described by that mathematical func-
tion. The geometric properties of the two
simplest of the elementary catastrophes are
studied in detail in Sec. 1.6. In Sec. 1.7 we
make quantitative the statement that a smatl
push will displace an equilibrium by just a
little bit by computing the linear response
function for a large class of physical systems,
and showing that this function diverges pre-
cisely when a sudden jump is imminent.

1.1 The Program of Catastrophe Theory

Catastrophe theory is a program. The pur-
pose of the program is to determine how the
qualitative properties of solutions of equa-
tions change as the parameiers that appear in
the equations change (Gilmore, 1981),

. It often happens that small changes in the
values of parameters that appear in equations
produce only small quantitative changes in
the solutions of the equations. However, there

may be parameter values for which a small
change, cither in parameter values, initial
conditions, or boundary conditions, produces
a large quantitative change in the solutions to
these equations. Large quantitative changes in
solutions describe qualitative changes in the
behavior of the system, Catastrophe theory is
concerned with determining the parameter
values at which qualitative changes occur in
solutions of equations described by parame-
ters (Thom, 1975; Zeeman, 1977; Poston and
Stewart, 1978; Gilmore, 1981).

This is an ambitious and difficult program.
For example, for systems of equations of the
form

F (xx' t;0)=0, (1)

where F, is a set of functions; x is an n-vector,
xX=(x1, X3,....%,, ) ER", called a state vector; ¢ is
a k-vector, c=(cy, cz,...,ck)ERk, called control
parameters; and ‘'=d/df, there are no general
results. When the set of equations is restricted
to the simpler form of coupled nonlinear
first-order ordinary differential equations (also
called dynamical systems) of the form

xp=F{x,t;c), (2}

very little can be said in general. Many results
are known when #=2 and f is independent of
t. A few results are known when n=2 and the
forcing term is periodic, f(x,t;¢) =f(x,t+ Tic).
Much less is known when #=2 and { is not
periodic. The case #>2 invites a lifetime of
work.

When the forcing function in the dynami-
cal system equations (2} is independent of
time and can be written as the gradient of
some potential,

fi=—3dV(xic)/dx, 3
then the systemn
xj=—aV(xe) /ax, @

is called a gradient dynamical system. For
such systems many results are available.
The qualitative properties of a gradient
dynamical system can be constructed by in-
vestigating the phase-space porirait of its flow.
This can be done by plotting the value of the
potential as a function of the phase-space
coordinates x;. The phase-space flow is “down-
hill” on the potential function. It is easily
determined in the neighborhood of each equi-
librium, or critical point, independent of the



stability of the equilibrium. The local flow
portraits around each critical point can then
be pasted together to determine a global phase
portrait. The potential

V(x,y:0,b) =4x* +3ax® + bx+1y? (5)

is illustrated in Fig. 1, together with the phase-
space portrait in the state-variable space.

Small changes in the control-parameter
values (4,b) typically produce small changes
in the location of the critical points. In turn,
this produces only small quantitative changes,
and therefore no qualitative change, in the
phase-space portrait. Qualitative changes will
only occur when changes in the control-
parameter values result in changes in the
number of critical points. This number can
change only when two or more critical points
coalesce and annihilate or, viewed from the
other direction, two or more critical points
are created in phase space and then move
apart from each other as the control parame-
ters are varied.

Elementary catastrophe theory is the study
of how the critical points of a potential, V(x:c),
move about, coalesce and annihilate each
other, or are created and disperse from each
other, in state space xER" as the control
parameters ¢cER¥ are varied.

Vixy)
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FIG. 1. The dynamics of a gradient system are
governed by a potential. The potential of Eq. (5} is
shown, together with the flows to arid from the stable
and unstable equilibria. These are projected down into
the -y plane.
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'1.2 Three Theorems from Elementary

Calculus

Elementary catastrophe theory is found at
the intersection of two lines of mathematical
development, one old, one new. On the one
hand, it is the latest development in the quest,
in elementary calculus, for standard local
forms for functions. On the other hand, it is
the first result in the quest, in catastrophe
theory, for canonical representations of func-
tions that show qualitative changes when con-
trol parameters are varied.

Elementary catastrophe theory is the third
in a series of reduction-to-standard-form the-
orems in elementary calculus. The three de-
velopments are the implicit function theorem,
which depends on the first derivatives of a
function; the Morse lemma, which depends
on the second derivatives of a function; and
the Thom splitting lemma, which depends on
the third (and higher) derivatives of a func-
tion. Each of these results provides a stan-
dard, or canonical, form for a function in the
neighborhood of a point,

We summarize these results now,

1.2.1 Implicit Function Theorem. The

~ implicit function theorem tells us that if the

slope of a function is nonzero at a point, the
function can be represented locally by a linear
approximation to that function. In a rough
sense, it tells us that it is justified to linearize
a function about a point at which its derivative
is nonvanishing.

Implicit Function Theorem: Let f(x)=f(x,,
X3,..4%,) be a function with nonzero gradient
at Xo:

V] ,50- (6)

Then it is possible to find a new coordinate
system, y={(y1,¥2+..Yn)}, ¥=7(x), so that

f=n. (7)

That is, f is equal, after a smooth change of
coordinates, to y,.

1.2.2 Morse Lemma. The Morse lemma
takes over where the implicit function theo-
rem leaves off. Suppose the gradient of a
function does vanish at a point—what then?
Such a point is called an equilibrium, or
critical point. Provided that the function has
enough “curvature” at the critical point, it can
be represented locally by a quadratic form. In
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a rough sense, the Morse lemma tells us that it
is justified to represent a function at an equi-
librium by a quadratic form, provided none of
the eigenvalues vanish.

Morse Lemma: Let f(x)=f(x,%3,...%,) be a
function with equilibrium at x; and nonsin-
gular stability matrix at xg!

V£ 5,=0, equilibrium, (8)
det{&zf/axﬁxi] | £, 70s nonsingular.

Then there is a smooth change of coordinates,
x=x'(x), so that

f= 2 Az, )

where A; are the eigenivalues (all nonzero) of
the stability matrix.

A critical point satisfying the conditions
{8) is called variously a Morse critical point or
an isolated critical point.

The quadratic form (9) can be put into a
canonical form by rescaling the coordinates:

yi=1 44 22 (10)

Under this scale transformation the function
at equilibrium assumes Morse canonical form:

=M, (11)
Mi=—Y— =Yty 5

The quadratic forms (11) are called Morse
saddles. The Morse saddle M has a minimum
at y=0, while M} has a maximum at y=0. The
remaining Morse saddles M7, i5-0,n, have
equilibria at ¥=0 that are neither maxima nor
minima.

1.2.3 Thom Splitting Lemma. The Thom
splitting lemma takes over where the Morse
lemma leaves off. Suppose the stability matrix
of a function is singular at an equilibrium.
Then one or more eigenvalues (4;) vanish.
What then? The Thom splitting lemma tells us
that there is a smooth change of coordinates,
x'=x'(x), where xi,..,x; are tangent to the
eigenvectors with vanishing eigenvalues at the
critical point, and xj, y,...,x;, are tangent to the
eigenvectors with nonvanishing eigenvalues
at the critical point, so that the function can be
broken down into two parts. One part, asso-
ciated with the nonzero eigenvalues, is simple
and can be put into Morse canonical form.
The other part, associated with the vanishing
eigenvalues, is interesting and has all its sec-
ond derivatives equal to zero at the critical

point. This non-Morse function is the princi-
pal object of study in elementary catastrophe
theory.

Thom Splitting Lemma: Let f(x)=
flxy,%5,...%,) be a function with equilibrium
and singular stability matrix at xq:

Vilg=0 equilibrium, (12)
det[&f/ dx0x;] |X0=0, singular.

If the stability matrix has exactly ! vanishing
eigenvalues, then there is a smooth change of
coordinates, x'=x'(x), so that

() = Frapg (e + MEHR], ppeentl),

P/ 3xdx;| =0, 1<ij<l. (13}

The Thom splitting lemma can be proven
by the methods of elementary calculus. It tells
us that when the Morse lemma is not applica-
ble, the function can be split into two func-
tions, a “good” function in n-! coordinates
which can be pui into Morse canonical form
and a “bad,” or non-Morse, function of [
variables which bears further scrutiny. It tells
us nothing about the non-Morse function ex-
cept that its Taylor series expansion about the
critical point begins with at least third-degree
terms. ' _

We emphasize here that the three results of
elementary calculus, the implicit function the-
orem, the Morse lemma, and the Thom split-
ting lemma, depending on first, second, and
third derivatives, are local in nature. The
theorems do not provide an estimate for the
size of the neighborhood for which the state-
ment of the result is true.

1.3 Thom Classification Theorem

For a typical function, f(x), the gradient at
arandom (“typical”) point wiil be nonvanish-
ing, so that the implicit function theorem is
applicable. There are, however, typically iso-
lated points at which the gradient vanishes. At
such points the stability matrix is typically
nonsingular, so that the Morse lemma is ap-
plicable. How, then, does it come about that
the machinery of elementary catastrophe the-
ory becomes useful?

When the function depends on control
parameters ¢ as well as state variables x,
f=f(x;c), then the eigenvalues of the stability
matrix at a critical point, xo=2x¢(c), depend on
the control-parameter values: A;=A;{c). As a
result, there may be choices of the control-



parameter values that annihilate one or more
of the eigenvalues.

As a resuit, the structure of the non-Morse
function in Egs. (13) will depend on control
parameters, The Thom classification theorens,
which is outside the scope of calculus (ele-
mentary or otherwise), provides a further
resolution of the non-Morse function into two
functions. One of these, the catastrophe germ,
depends only on the / state variables y,,3,,....;
and summarizes the nature of the singularity
at the non-Morse critical point. The other
function, the universal perturbation, is a func-
tion of both the / state variables and k control
parameters. This function summarizes what
can happen to the singularity, or degenerate
critical point, under the most general possible
(“universal”) perturbation.

Thom Classification Theorem: Let fyu(y;
E)=Ff(¥e¥t:C1€r} be a non-Morse Func-
tion of / state variables and % control param-
eters. Then there is a smooth change of coor-
dinates so that
Fam(pe)=Cat(l k). (14)
The elementary catastrophe function, Cat(L4),
is the sum of two terms:
Cat(l,k) =CG(I) +Pert(l,k). (15)
The catastrophe germ, CG(/), depends only on
the / state variables. All its second partial
derivatives vanish at the critical point. The
universal perturbation depends on the % con-
trol parameters as well as the [ state variables.
The dependence of Pert(l%) on the control-
parameier values is linéar. For “most” choices
of control-parameter values {all but a set of

Catastrophe Theory 91

measure zero) the function Cat(lk%) has iso-
lated critical points.

The Thom classification theorem, like the
three results of elementary calculus described
in the previous section, is local in nature. The
theorem does not provide an estimate of the
size of the neighborhood for which the state-
ment of the theorem is true.

1.4 Thom's List of Elementary
Catastrophes

Thom's original classification theorem pro-
vided a list of the elementary catastrophes
{Thom, 1975). A slightly expanded version of
this list is provided in Table 1 (Arnol'd, 1981,
1986). This list contains the canonical catas-
trophe functions for £<é and therefore (cf.
Sec. 2.3) .I<3. This list consists of the classi-
fication of the function following the beautiful
convention introduced by Arnol'd {1981), the
original descriptive name, when it exists
{Thom, 1975; Zeeman, 1977; Poston and Stew-
art, 1978), values for k and /, the catastrophe
germ, CG({), and the universal perturbation,
Pert([k). Thom's original list contained only
the seven members with k<4 (dimension of
spacetime) for unsupportable historical rea-
soms.

The catastrophe functions listed in Table 1
are elementary in the sense that all coeffi-
cients in the catastrophe germ can be assigned
canonical values. There are no free parame-
ters; every coefficient in the catastrophe germ
can be given canonical numerical values such
as + 1,0 by a coordinate change. For example,
a term of the form —3x* in the 4_; catastro-
phe could be transformed to the canonical

Table 1. All catastrophes up to control-parameter dimension five are elementary and are listed below

“ by dimension of control-parameter space.

k1 Classification =~ Name CG({l) Pert(Lk)

1 4 Fold 2 ax

21 Ay Cusp =1t a P ay?

3 1 A4 Swallowtail x5 al_xZ_]_azxz.{-.an‘

3 2 D, EHiptic umbilic Ly—yF axtay +a

3 2 Dy Hyperbolic umbilic 2 y+y X+ Y+ ayx

4 1 A Butterfly =58 ay a4 ax +ant

4 2 D Parabolic umbilic (2 y+y") axtayt+atay

5 1 4 Wigwam 27 @ xFapt + azr + a it ast®
5 2 D Second elliptic umbilic 2y—y axtayytrapxta Y +asy
5 2 D Second hyperbolic umbilic 22 y+y° X+ @y et a P rasy
5 2 E. Symbolic umbilic =(F+5h X+ By Y+ XY+ 8y Vo -+ as kP
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form —x'* (or —}x*) by an appropriate scale
change x'=Ax.

Thom's list of elementary catastrophes is
not a complete list. The complete list is pro-
vided in Table 2. There are two infinite series
of elementary catastrophes and one finite
series. One infinite series, the cuspoids 4.4
depends on only one state variable. The other
infinite series, the umbilics D, ;, depends on
two state variables. The exceptional elemen-
tary catastrophes, E. 4, E;, Ej, depend on two
state variables (Arnol'd, 1981, 1986; Poston
and Stewart, 1978; Gilmore, 1981).

There is a remarkable correspondence be-
tween the classification theory of elementary
catastrophes and the classification theory for
Lie algebras all of whose roots {in the root
space diagram) have the same length (Ar-
nol’'d, 1981, 1986; Gilmore, 1981). The corre-
spondence is as follows. The phase-space por-
traits of the elementary catastrophes with
maximum number of isolated critical points
can be summarized by drawing the flow from
each equilibrium to any of the others to which
a flow is possible. The phase-space portraits so
obtained are exactly the Dynkin diagrams
which classify all the simple Lie algebras
whose roots have equal length; these are 4,,_,
D,, and the exceptional simple Lie algebras
E;, E;, and Eg. This nomenclature for simple
Lie algebras has accordingly been adapted to

the classification of elementary catastrophes.
For Lie algebras the subscript (e.g., 8 for Eg)
denotes its rank; for elementary catastrophes
the subscript denotes the number of isolated
(complex) critical points generated by an
arbitrary perturbation of the function. This is
the maximum number of real critical points
into which the non-Morse critical point splits
under a general perturbation.

Tables 1 and 2 differ in a subtle way,
indicating that they are responses to some-
what different questions. The question to which
Table 1 responds is: “Up to what control-
parameter dimension are all catastrophes el-
ementary, and what are they?” The question to
which Table 2 responds is: “For each control
dimension %=1,2,..., what are the elementary
catastrophes?”

The difference between the two tables in-
dicates that for control dimension k>6 there
are catastrophes that are elementary and those
that are not, while for k<6 all catastrophes
are elementary. We will explore what happens
at k=6 to generate nonelementary {modal)
catastrophes as well as elementary catastro-
phes in Sec. 2.3. Briefly, the result is as
follows. To annihilate / eigenvalues of the
stability matrix requires k>(1+1) /2 conirol
parameters. A linear transformation can be
used in an attempt to provide canonical values
for cubic terms in the Taylor series expansion

Table 2. There are three series of elementary catastrophes. The cuspoids 4, depend on one state
variable while the umbilics D; and the exceptional catastrophes E;, k=6,7,8, depend on two state
variables. The subscript & indicates the maximum number of real Morse critical points the catastrophe
splits into under an arbitrary perturbation. The number of conirol parameters required in the universal

perturbation is £—1.

Symbol Catastrophe germ Universal perturbation
A:tka +x k+t Fe1 )
2 a;x!
i=1
k-3 k-1
Py £yl k even i o (k-3)
D Y=y ’ a:- v’ a.x’
=k = (Py+y 51, kodd Z:, iy j:%—l !
2 . 5 >
E.g = (+yh) > a;y’+ h a; xy '3
i i3
4 & .
E, 4ay Z v+ E a; xy =3
=1 =5
3 N 7 3
E 24y 2 gyt X axyit
j=1 j=4

A =A_, i k is even.
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FIG. 2. At a point where the implicit function theorerm
is applicable, perturbation of a function does not
produce a qualitative change in the function.

of the non-Morse function. When the number
of cubic coeficients [(I+3— 1)1/ (I—1)!31] ex-
ceeds the number of degrees of freedom in the
I'¢1I linear transformation (), then it is not
possible to assign canonical values to all cubic
terms in the Taylor series expansion of the
non-Morse function, and the resulting catas-
trophe germ cannot be elementary. This first
occurs for /=3 (= &==6). For k>6 there are
catastrophes that are elementary and those
that are not. For 2<6 all catastrophes are
elementary.

1.5 Why a List of Perturbaiions is
Required

The first two canonical form theorems of
elementary calculus are clean and simple. If
the function has certain properties at a point,
then the canonical form in the neighborhood
of the point is provided by the statement of the
theorem (implicit function theorem, Morse
lemma). By contrast, the third result is not
nearly so clean cut. The Thom splitting lemma
tells us that we can decompose a function at a
non-Morse critical point into the sum of two
functions, one Morse, the other interesting.
The classification theorem provides a list of
the interesting functions by number of state
variables (/) and control parameters (k). Why
is it that the classification theorem, in addition
to providing a list of canonical forms for
catastrophe germs, in the spirit of the implicit
function theorem and the Morse lemma, also
provides a list of canonical perturbations? The
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reason is that perturbation of the canonical
linear form which is provided by the implicit
function theorem does not change its qualita-
tive properties. The same is true for the ca-
nonical quadratic form which is provided by
the Morse lemma. However, perturbation of
the canonical singularity CG(/) provided in
Tables 1 and 2 produces dramatic changes in
its qualitative properties. Different perturba-
tions produce different qualitative changes.
The canonical perturbation, Pert( %}, of each
catastrophe germ is the “smallest” function, in
the sense of number of control parameters
required, which incorporates all distinct qual-
itative changes produced by all possible per-
turbations of the catastrophe germ.

We illustrate these statements in Figs. 2—4.
In Fig. 2 we show a function, f(x), which
satisfies the conditions of the implicit function
theorem at x5. Under a perturbation, £p(x)},
where p(x) is a well-behaved function and ¢ is
a small parameter, the new function, F(x)
=f(x)+ep(x), also satisfies the conditions of
the implicit function theorem at x, for ¢
sufficiently small. Therefore, perturbation of
f{x) at x; does not change its qualitative
properties (perturbation “commutes” with the
implicit function theorem).

In Fig. 3 we show a function, f(x), which
satisfies the conditions of the Morse lemma
at xy. Under a perturbation, ep(x), the new
function, F(x}=f{x)+ep(x), no longer ap-
pears to satisfy the conditions of the Morse
lemma at xg, since typically p’{xy)520. How-
ever, F'(x)=ep'(xy) is small for small ¢ so

X

F(g = #x) + & px)

—t— X

FIG. 3. At a point where the Morse lemma is appli-
cable, perturbation of a function does not produce a
qualitative change in the function.
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that the implicit function theorem is on the
verge of not being applicable. It is more useful
to regard the perturbation as moving the
location of the critical point to a nearby point,
x§ = xy + 8x,. At this perturbed critical point
the conditions for the Morse lemma are ful-
filled. Thus, a small perturbation at an equi-
librium produces only a small displacement
of that equilibrium. Not only that, but the
curvature or, more generally, the Morse sad-
dle type of the canonical form remains un-
changed. As a result, perturbation of a func-
tion that satisfies the conditions for the Morse
lemma does not produce a qualitative change
of the function in the neighborhood of the
critical point.

The situation is guite different for a catas-
trophe germ. In Fig. 4 we plot the catastrophe
function 4,: f(x;a;) =1%° +a,x for three values
of the control parameter 4,. For ;=0 the
catastrophe germ f(x;a;=0)=x"/3 has a dou-
bly degenerate critical point at 1=0. The
perturbation with a; <0 splits this doubly
degenerate critical point into two isolated
critical points at x_=—(—a;)"? and x,
=+(—ay)"% The perturbation with a,>0
removes the critical point altogether. These
are the only two qualitatively distinct things
that can occur to a doubly degenerate critical
point under an arbitrary perturbation. These
correspond to scattering of the solutions of
Vf(x;a,)=0 from the real axis to the imagi-

f(xa,)
a, >0

=0=x_ %

(=X )2

FIG. 4. Ata point where a function has a degenerate
critical point, so that neither the implicit function theo-
rem nor the Morse lemma is applicable, perturbation of
a function produces a qualitative change in the func-
tion. In the case shown, perturbation of the function x°
either annihilates the critical points or splits them into
two nondegenerate critical points. ’

nary axis as «; increases through zero, with
the point of double degeneracy occurring at
a;=0. Ii is a remarkable result that the simple
perturbation P(1,1)=a,x encapsulates all dis-
tinct possibilities under generic perturba-
tions.
It should now be clear why the catastrophe
germs listed in the classification theorem must
be accompanied by a list of universal pertur-
bations while the implicit function theorem
and the Morse lemma are not encumbered by
such baggage. The canonical linear and qua-
dratic forms are invariant under perturba-
tion: perturbation produces no qualitative
change. However, the catastrophe germs un-
dergo a wide spectrum of distinct qualitative
changes under perturbation. The perturbation
functions listed are those of minimal control-
parameter dimension which are capable of
reproducing the entire spectrum of distinct
qualitative changes induced by the most gen-
eral perturbation.

It is a remarkable result that the control
paramelers appear linearly in these perturba-
tions.

1.6 Geometry of the Fold and the Cusp

In this section we review the properties of
the two simplest elementary catastrophes, the
fold catastrophe A4, and the cusp catastrophe
A 3. Since the cusp catastrophe A 3 occurs
more frequently in physical applications than
A_3 (which is not bounded below), we study
specifically the properties of A ;. The proper-
ties of A_3 are related by appropriate sign
changes. We also review a restricted set of
properiies of the co(ntrol)-dimension three
catastrophes Ay, D 4.

For the fold and the cusp we study the
following properties:

1. typical functions in the family of functions
as well as the bifurcation set;

2. location of the critical points;

3. values of the function at the critical points;

4. curvature of the function at the critical
points.

We present only the bifurcation set for the
three catastrophes Ay, D4

1.6.1 Geometry of the Fold Catastrophe.
The fold catastrophe is

Ay f(xa)=3+tax. (16)



The canonical properties of this function are
shown in Fig. 5. In Fig. 5(a) we show mem-
bers of this family with >0, a=0, a<0. The
bifurcation set is the set of points in the
control parameter space at which there is a
qualitative change in the nature of the func-
tion. This occurs when two or more critical
points become degenerate. For the fold catas-
trophe this consists of the single point a=0, at
which there is a doubly degenerate critical
point at x=0,

The location of the critical points, the so-
lution of Vf(x;a)=0, is shown in Fig. 5(b).
The critical points, x, (@) ==(—a)'/?, have a
standard 1/2 power-law dependence on the
control parameter a. Note that the critical
points x, (a) exist only for a<0 and that the
graph of x (a) as a function of a is a smooth
manifold embedded in the space R! (state
space) XR! (control parameter space). This
is a general result. The fold catastrophe de-
rives its name from the shape of its critical set
Vf{x;a) =0, which looks like a curve folded
over itself.

a=0
(@) a=o (b)

2.0
f1.0
N,
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The value of the function at the critical
points,

fdxala)a)==3(—a)*?, (17)

is plotted in Fig. 5(c). This curve has a canon-
ical 3/2 power-law dependence. This graph is
not generally a manifold.

The curvature of the function,

Flxsla)a)=%2(—a)’? (18)

is shown in Fig. 5(d). Although the critical
curvature happens to be a manifold in the
present case, this is not generally true for the
remaining catastrophes.

1.6.2 Geometry of the Cusp Catastrophe,
The cusp catastrophe is

A3 flmab)y=ix"+3ax® +bx. (19)

The canonical properties are shown in Fig. 6.
In Fig. 6(a) we show the control-parameter
plane R?=(a,b), various points in this plane,
and the function f(x;a,b) evaluated at these
points. Within the cusp-shaped region the

X

©

5.0+
4.0
3.01

/7

Bifurcation Set

()

-5.0-4.0-3.0-20-1.0 40

-5.0.4.0-3.0-2.0

1.0
1.0
-4.01
f!l
0_ ,a

5.0-4.0-3.0-2.0-1.0 [0 1.0

FIG.5. (a) Membeqs of the fold family
of functions f()x;a) =5+ ax for various
values of the control parameter a. (b)
Location of the critical poinis as a
function of a. (c) Value of the function
at its critical points. (d) Curvature of the
function at its critical points.
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FIG. 6. (a) Members of }he cg'Jsp fam-
tly of functions fa,b) =3x* +3ax+bx
for various values of the control param-
eters a,b. (b} Location of the critical
points as a function of position over the
control parameter plane. (¢} Value of

the function at its critical points. (d)
Curvature of the function at its critical

Fold Llnes / / Fold Tines /
(c)

Function has three isolated critical points, two
minima separated by a local maximum. Out-
side the cusp-shaped region the function has
only a single minimum. These two regions in
the control plane parametrize two qualita-
tively distinct types of functions. Any path
from one region to the other must pass through
the cusp-shaped curve, along which there is a
doubly degenerate critical point (triply degen-
erate at the tip of the cusp). This degeneracy
occurs when the local maximum collides with
one of the two minima. Entering the larger
region complementary to the cusp-shaped re-
gion, the two degenerate critical points anni-
hilate each other in a catastrophe which is of
type Az.

The cusp-shaped bifurcation set is deter-
mined by the condition that a critical point
{V/(x;a,b)=0] is degenerate [V2f(x;a,b) =0]:

f(nab)=x+ax+-b=0,
" (xab) =312+ a=0.

critical point:
degenerate:
(20)

From these two equations we compute the
semicubical parabola

a= —3x3,

ct

points.

along which a critical point is degenerate. The
projection of this space curve into the control
parameter plane.is

(a/3Y+(b/2)%=0. (21b)

This is the bifurcation set shown in Fig. 6(a).

In Fig. 6(b) we show the critical point(s),
x.(a,b), as a function of the control parame-
ters 4,b. These points lie on the critical man-
ifold or catastrophe manifold V{(x;a,b)=0.
Outside the cusp-shaped region there is a
single critical point. Over the cusp-shaped
region there are three. The middle critical
point is the local maximum which separates
the two minima. Moving toward the edge of
the cusp-shaped region, two of the critical
points move together. They collide on the
bifurcation set and annihilate each other be-
yond the bifurcation set. The graph x.(a,b) in
R! (state space) X R? (control parameter space)
is a smooth two-dimensional manifold. The
locus of points on this manifold where the
tangent is “vertical” is the semdicubical parab-
ola (21). From another point of view, the
cusp-shaped bifurcation set in R? is the pro-
jection into R? of the fold in the manifold
x(a,b) in R'XR? The singularity in this
catastrophe lies not in the catastrophe mani-
fold itself, which is smooth, but in the projec-



tion of this two-dimensional manifold down
into the two-dimensional control parameter
space. In general, the graph of Vf(x;c)=0,
with xER" and c=R¥, is a smooth %-dimen-
sional manifold embedded in R"XR* The
only singularity occurs in the projection of
this k-dimensional manifold into the k-dimen-
sional space of control parameters.

In Fig. 6(c) we present the critical func-
tion, the value(s) of the function at the critical
point(s). This graph is not a manifold because
of the sharp corners and self-intersections.
The two lower pieces of the graph are the
values of the function at the two minima.
Where these pieces intersect, the minima are
equally deep (Maxwell set, a<0, #=0, Sec.
3.1). The remaining piece of this graph, which
looks like the seat of an Art Moderne chair, is
the value of the function at the local maxi-
mum. The creases at which the values at the
local maximum and minimum join have ca-
nonical power-law dependence familiar from
the behavior of the Gibbs free energy of a
function exhibiting a second-order phase tran-
sition (Gilmore, 1981). This canonical power-
law dependence is that of the fold catastrophe,
namely, 3/2.

The critical curvature, f"(x.(a,b);a,b), or
curvature of the function at its critical point(s),
is shown in Fig. 6(d). The curvature is positive
at the local minima and negative on the
intermediate local maximum. Although there
are no creases as in Fig. 6(d}, this graph is not
a manifold because of the self-intersection.
Over the bifurcation set the critical curvature
vanishes because the second derivatives van-
ish and the tangent is “vertical.”

1.6.3 Bifurcation Sets for the Three-Di-
mensional Catastrophes. The geometry of
the fold and the cusp was relatively easy to
visualize because their graphs could be em-
bedded in low-dimensional spaces: R! x R! for
the fold and R!'xR? for the cusp. Higher-
dimensional catastrophes are more difficult to
visualize. The catastrophe 4, should be viewed
in R'X R?® while the catastrophes D, , should
be viewed in R*XR®. However, the bifurca-
tion sets for these three catastrophes are rel-
atively simple to visualize, since they are
embedded in the control-parameter space R>.
These three catastrophes are

Ay flmabic) =3 +3a +1b2% tex,
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D,y flxyabe)=2y+bP+a(P—22)
+bx+cy,

D_, f{x,y;a,b,c)=x2y—-§y3+a(yz+x2)
+bx+cy. (22)

In each instance the three-dimensional control-
parameter space is partitioned into open re-
gions by two-, one-, and zero-dimensional
manifolds, components of the bifurcation set
on which two, three, and all four of the critical
points are degenerate. Within each open re-
gion the critical points are isolated; their
nurmber and type are unchanged by a suffi-
ciently small perturbation. The number of
critical points can change only when passing
from one open region to another through the
bifurcation set. The bifurcation sets for these
three catastrophes are shown in Fig, 7. Shown
in each figure is the number of critical points
possessed by the catastrophe function in each
of the open regions in its control parameter
space. The catastrophes A4, D, can each have
zero, two, or four nondegenerate critical points
while D_4 can have only two or four nonde-
generate critical points.

1.7 Perturbations of Gradient Dynamical
Systems :

The qualitative properties of a gradient
dynamical system are determined by the num-
ber, saddle type, and distribution of its critical
points. If the critical points are isolated, then
the dynamical system is structurally stable
against perturbations. If one or more critical
points are degenerate, the system is structur-
ally unstable—a perturbation will produce a
qualitative change in the properties of the
system by splitting or annihilating the degen-
erate critical points. ‘

As a result it is sufficient to use perturba-
tion theory to describe the effect of a pertur-
bation on a structurally stable system. In the
case of a structurally unstable system it is
useful to reduce the degenerate critical point
to canonical form (a catastrophe) and then
discuss the effect of a perturbation by using
the catastrophe germ's universal perturba-
tion.

To illustrate the effect of a perturbation in
the structurally stable case, we consider a
family of potentials, V(x;c), depending on #
state variables and k control parameters. As-
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sume x is a critical point for control-param-
eter value ¢;. What happens under a pertur-
bation €y—¢’ =cy+56c? We expect that the
critical point xp will move to a nearby point:
Xg—x'=x+5x. The displacement of the criti-
cal point as a function of the change in
control-parameter value is determined by ex-
panding V(xy+68xc5+8¢) in a Taylor series
about xp, ¢y .

Vixg+6x,c5-+8¢)
= V(xgico) + VSx;+ V, 8c,+ 5V Sx5x;
4 Vi 8C,+3V 50 8¢5
+higher-order terms. (23)

The coefficient V;(xgc)=0, since x, is as-
sumed to be a critical poini for c=c¢;. The
value of 8z is computed by solving ¥V (3 +8x3¢y
+68¢)=0. To lowest order (linear), we find

Vx4 Vi, bc,=0. (24)
If the stability matrix ¥ is nonsingular,
0%/ 3cy=— (V" ")V, (25)

where (V') is the matrix inverse of the
nonsingular stability matrix: (V~1);Vy=5y.
That is, a small change in control-parameter
value produces a small change in the location
of the critical point, as long as the stability
matrix is nonsingular. The matrix (25) is the
linear response function for the potential at

the equilibrium x;: it describes how much the -

FIG. 7. Bifurcation sets for the three
elementary catastrophes [Eq. (22)] of
control dimension three as a function
of the three controf parameters a,b,c.
The number of isolated critical points
is shown in each of the open regions
into which the control-parameter
space is divided by the bifurcation
set.

equilibrium is displaced by a small change in
the control parameters.

To second order the value of the potential
at the displaced critical point is

Vixg+8x;c9+-8c)

=Vixyey) +V, b¢c,
43 Vag— Vil V1) iVl 06,0¢5  (26)

The stability matrix at the displaced critical
point, V;(xq+8x;c9-8¢), is related to the sta-
bility matrix at the original critical point,
Vi xpico), by

Vi xg+6xi¢0+8¢) = Vii{4i60) + PipdCon
Pijoa= Vgl 0iC0) = Vig (V™) 1tV (27)

As a result, for sufficiently small perturbations
the Morse saddle type cannot change if the
stability matrix is nonsingular.

This application of perturbation theory,
and the analytic results constructed in Egs.
(25)-(27), evaporate when the stability ma-
trix V;; becomes singular. Under these condi-
tions the evolution of the dynamical system
under change in the control-parameter values
(“perestroika”) is computed by expressing the
potential, V(x;c}, in the neighborhood of a
non-Morse critical point by an appropriate
catastrophe, following the perturbation
through the well-defined bifurcation sets, and



