
ICARUS 8, 203-215 (1968) 

The Resonant Structure of the Solar System 

The Law of Planetary Distances 

A. M. MOLCHANOV 

Communicated by B. J. Levin 

Received December 16, 1966 

I t  has been shown tha t  the relations existing in the series of p lanetary  distances appear  
as a result of more simple and exact relations in the series of their  frequencies. The struc- 
ture of the solar system is determined by a table of resonance relations. Analogous tables 
of integers determine the constitution of the systems of planetary satellites. I t  will be our 
aim to explain theoretically tha t  the appearance of resonant structure in a given oscillat- 
ing system is inevitable. A small value of coefficients (one, two, or three) of the resonant 
relation is more probable if the evolution occurs undel the action of dissipative per turba-  
tions of mutual ly  comparable size. If the dissipative factors are small in comparison with 
the conservative influences (of the same type as the a t t rac t ion of the planets) then the 
system may conceivably remain in "d i s tan t"  resonance. 

I .  INTRODUCTION 

In celestial mechanics, conservative (Ham- 
iltonian) forces prove to be a fundamental  
object of study. They are characterized by 
stationary modes of the same type as uni- 
form equilibrium. In the potential field, 
arbitrary values of orbital parameters are 
possible. 

Systems in which dissipative terms are 
dominant are characterized by quite dif- 
ferent properties. They  have isolated stable 
states--limiting cycles, which may be re- 
duced, with growing of dissipation, to the 
stable position of equilibrium. However, the 
division of terms into dissipative and con- 
servative categories is an idealization useful 
only for the description of extreme limiting 
cases. For  the solar system in its present 
aspect, there is no doubt that  the potential 
field is dominant. However, the system has 
existed for such a long time, 5 X 10 9 years, 
tha t  even very small dissipative terms have 
had sufficient time to exert an influence. As 
will be shown below, small dissipative terms, 
especially in resonance zones, have a tend- 
ency to create stable configurations. Since 
resonance zones are determined by  sets of 
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integers, a discrete number of possible 
stationary states occurs. The solar system 
then, finds itself in one of these states. 

I I .  INTERNAL RESONANCE OF 
NONLINEAR SYSTEMS 

The concept of resonance usually arises 
during the study of an external periodic 
impulse or an oscillating system. This method 
of consideration assumes that  a small param- 
eter exists in the problem which permits 
one to neglect the reverse influence of the 
oscillating system on the outside medium. In 
this simplified form the phenomenon of 
resonance has been extensively studied, and 
the results are well known. In systems where 
there is no distinct disparity of the com- 
ponents which would permit separation of 
the "medium" from the . . . .  system, the 
phenomenon of resonance is considerably 
more interesting and complex. 

In what follows we shall limit ourselves to 
systems consisting of weakly bound com- 
ponents. Tile equations of motion of such a 
system are of the form 

d x J d t  = A . ~ ( x ~ )  A -  e B i ( x l ,  . . . x~ ;  ~); 
i =  ] , 2 ,  . . . I .  ( 1 )  
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Similar notation may  also be used to 
describe the planetary system. The com- 
ponents in this case prove to be pairs of 
vec to r s - - the  radius-vector of the planet and 
the velocity vector  (in the heliocentric 
coordinate system). The  principal t e rm in 
each equation describes the mutual  influence 
of the planet and central body. The per- 
turbat ion terms contain the mutual  influence 
of the planets upon one another  as well as 
other incidental influences; and depend, 
generally speaking, on all components 
(Xl, • . • x~). The nondimensional param-  
eter e characterizes the smallness of the 
perturbations. Since the fundamental  contri- 
butions to the perturbations arise f rom the 
general interaction of the planets, the size 
of e is of the same magnitude as the ratio of 
the m ~ s e s  of all the planets to the mass 
of the central body. In  particular, for the 
solar system e ~ 10 -3. 

I t  is more convenient to s tudy the per- 
turbed system by  changing to new varia- 
b l e s - p h a s e s  4g and first integrals Ik of the 
unperturbed system. In  the planetary sys- 
tem the variables Ot are mean anomalies 
(one for each planet), and the variables Ik 
are the orbital elements (five to each planet). 
In  terms of these new variables, 

dcp/dt = w(I) -k ~o~(I, 4~; e) 
d I /d t  -- eft(l, ~; e) (2) 

are smooth functions of the slow variables 
I = {Ik} and are periodic (with period 27r) 
in each of the rapid variables ~ = {~}. The  
variables ~ are well defined in the torus 
T = ~ [ ¢ ~ ;  0 ~< ~ < 2~]. 

Unperturbed motion in the system (2) is 
very easily ob ta ined- - the  slow variables 
remain constant 

I = const. (3) 

~nd the rapid variables increase in direct 
proportion to the t ime (more accurately, 
they run through the torus r many  times) 

= ~0t + ¢0. (4) 

However, at  various points of the space I 
the character of the motion of the phase 
variables differs. Generally speaking, the 
trajectory (4) is everywhere well-defined on 

the torus r. However, for the points I satis- 
fying the resonance relation 

( n ,  ¢o) ~ n 1 ~ 1 ( I )  + . . . .  
-k n z ~ ( I )  = O, (5) 

the torus r becomes divided into tori of 
smaller dimensions, defined by the equation 

~b ----- n,~b, q- . . . .  q- n~¢z -- const. (6) 

As a result, instead of changing--as  do 
the phase var iab les - - the  resonance phase 
~b acts the par t  of a first integral and remains 
constant. However, it is impossible to con- 
found the resonance phase with a first inte- 
gral because the resonance phase is constant  
only at  points of the resonance surface (5). 
At  a given point, the resonance phase ~h, and 
the other phases as well, increase linearly as 

= ~t + ~0, (7) 

where u = u(I), the corresponding resonance 
frequency 

~([)  - ~ -  nlWl( / )  -[- . . . .  -~- nl~z([). (8) 

Consequently, the full phase space is the 
direct product  of the torus r and the space I .  
The  space containing the slow variables I 
proves to be a great number  of equal station- 
ary  modes of the unperturbed system. To 
each point I there corresponds a motion of 
the rapid variables on the r torus deter- 
mined, in agreement with the formula (4) by  
the frequency vector o 

o ------ o ( 5 .  ( 9 )  

At the points of the space I situated on 
resonance surfaces (5), there appears a 
supplementary  "incidental" first in tegra l - -  
the resonance phase 

~b -- const. (10) 

Each resonance surface is characterized by 
the integer vector  of resonance 

n - -  (h i ,  . . • n~) .  ( 1 1 )  

Thus there is a finite manifold of resonance 
planes, and they constitute a manifold of 
measure zero. Surfaces (on a unit of lesser 
dimensions) obtained by  the intersection of 
two resonance surfaces consist of points of 
double resonance. 
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D o u b l e  resonances  a re  d i s t r i bu t ed  on  a 
g iven  resonance  surface  ana logous ly  to  t he  
m a n n e r  in  which  resonance  surfaces  a re  
d i s t r i b u t e d  in  t he  space  of slow var iab les  
I ,  f o rming  a man i fo ld  of measu re  zero. T r ip l e  
resonances  fo rm a man i fo ld  of measu re  zero 
on t h e  surfaces  of doub le  resonance,  and  
so on. 

I I I .  THE RESONANCE OF THE SOLAR 

SYSTEM 

I t  m a y  seem t h a t  t he  " a n d  so on"  which  
concludes  t he  foregoing p a r a g r a p h  is s i m p l y  
a m a t h e m a t i c a l  w a y  of speech, a n  a t t e m p t  
to  achieve  fo rmal  completeness .  F r o m  t h e  
p o i n t  of v iew of t he  t h e o r y  of measu re  
(Birkhoff ,  1933) t he  presence  of even one 
resonance  is surpr is ing;  and  doub le  or  t r ip le  
resonances  a re  ex t r eme ly  improbab le .  How-  
ever,  n a t u r e  does no t  l imi t  i tself  to  these  very  
convinc ing  reasons b u t  seemingly  is d r a w n  
to  t he  oppos i te  extremes.  Ana lys i s  (Molcha-  
nov,  1966) of the  observed  d a t a  (see Whipp le ,  
1948) br ings  us  to  t he  conclusion t h a t  t he  
solar  sy s t em possesses t he  m a x i m u m  poss ible  

t h e  f requencies  can  be  expressed in  t e r m s  of 
one. Th is  one t hen  p roves  to be  t he  on ly  
d imens iona l  p a r a m e t e r  a n d  de t e rmine s  t he  
scale of t he  sys tem.  

As a resul t ,  sys t ems  wi th  m a x i m u m  reso- 
nance  a re  un ique ly  d e t e r m i n e d  (wi th  com- 
p a r a b l e  accuracy)  b y  a set  of whole  n u m -  
b e r s - - a  t ab l e  of resonance  vectors .  T h e  
resonance  re la t ions  for  t he  so lar  s y s t e m  
(ob ta ined  by  t h e  ana lys i s  of a t ab l e  of 
f requencies)  a p p e a r  as  fol lows:  

0 ) 1  - -  0 J 2  - -  2¢¢3 - -  0 ) 4  

w2 - -  30 )4  

0)3 -- 20)4  -~- 
0)4 - -  60)5 

20)5 --  50)6 
0)5 

= 0 ,  

- -  0 ) 6  ----  0 r 

0)5 - 0)8 + 0)7 = 0, 

--  20)7 = O, 
-- O, 

-- 70)7 = 0r 
0)7 -- 20)s = 0, 
0)I - -  30)9 = O. 

(12) 

Choosing  J u p i t e r ' s  f r equency  as  t h e  un i t  
of me a su re me n t ,  we find the  f requencies  ~ of 

TABLE I 

FREQUENCIES AND RESONANCE VECTORS OF THE SOLAR SYSTE5~ 

Planet ~ o b ,  OJ theo  r A ~ / ~ 

Mercury 49.22 49.20 0. 0004 
Venus 19.29 19.26 0.0015 
Earth 11. 862 11. 828 0. 0031 
Mars 6. 306 6.287 0. 0031 
Jupiter 1. 000 1. 000 0.0000 
Saturn 0. 4027 0. 400 0. 0068 
Uranus 0.14119 0.14286 --0.0118 
Neptune 0. 07197 0. 07143 0.0075 
Pluto 0.04750 0.04762 --0.0025 

1 - i  - 2  - I  0 0 0 0 0 

0 1 0 - 3  0 - i  0 0 0 
0 0 1 - 2  1 - i  1 0 0 
0 0 0 1 - 6  0 - 2  0 0 
0 0 0 0 2 - 5  0 0 0 
0 0 0 0 1 0 --7 0 0 
0 0 0 0 0 0 1 - 2  0 
0 0 0 0 0 0 1 0 - 3  

0 0 0 0 0 1 0 - 5  1 

n u m b e r  of resonance  r e l a t i o n s - - e i g h t  for  
n ine  p lanets .  W e  shall  pos tpone  for  now the  
quest ion,  " H o w  does th is  occur?"  (Schroed-  
inger,  1948) and we shal l  f o rmu la t e  some 
resul ts  of th is  i m p o r t a n t  expe r imen ta l  fact .  

T h e  resonance  re la t ions  can  be  regarded  
as  a f ami ly  of equa t ions  which  are  l inear  in 
t he  frequencies .  T h e  n u m b e r  of i n d e p e n d e n t  
resonances  cannot ,  therefore ,  be equal  to t he  
n u m b e r  of frequencies,  since a homogeneous  
s y s t e m  has  on ly  a nul l  solut ion.  I f  t he  n u m -  
ber  of resonances  is smal le r  b y  one, t hen  al l  

t he  o t h e r  p lanets .  T h e  frequencies  and  the  
resonance  vectors ,  2 the  coefficient m a t r i x  of 
the system (12), are given in T~ble I. 

The results obtained cannot be explained 

1 Which are, of course, rational and rounded off 
in the table to four significant figures. 

2 The last vector proves not to be ~ resonance 
vector and is chosen so that tile sq~lare matrix 
obtained should have a determinant equal to unity. 
The me~ning of this procedure will be explained 
in Section III.  
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by chance. The  resonance is very simple2 
Most  of the positions of the table are oc- 
cupied by zero, ones and twos, and there are 
too many  of them to allow us to believe that  
this has occurred by  a chance. The explana- 
tion must  be causal; it would appear  inescap- 
able tha t  the resonance relations are the 
result of evolution. However,  it would be 
hazardous, on the basis of one example, to 
draw the more important  conclusion tha t  
max imum resonance is a structural  principle. 

onance vectors 2 are given in Table  II ,  di- 
rectly confirming the t ruth  of the principle. 

The law of maximum resonance, which 
now may  be accepted a t  least as an heuristic 
principle, determines a discrete set of states 
in which an oscillating system can find itself. 
F rom this stems the necessity of changing 
the constitution of the question concerning 
the law of planetary distances (Schmidt, 
1950) since simple integral value relations 
occur not for the distances, but  for the fre- 

T A B L E  II  
FREQUENCIES AND RESONANCE VECTORS OF SATELLITE SYSTEMS 

Satellite oob, ~th,o, ±~/o~ 

M i m a s  16. 918 16 .800  
Ence l adus  11. 639 11. 600 
Phoebe  8. 448 8. 400 
D i a n a  5 .826  5 .800  
R h e a  3. 530 3. 500 
T i t a n  1 1 
H y p e r i o n  0. 7494 0. 7500 

J a p e t u s  0 .2010  0 .2000  

Io 4 .044  4 .000  
E u r o p a  2 .015  2 .000  
G a n y m e d e  1 .000 1. 000 

Call is to 0. 4288 0. 4285 

M i r a n d a  6. 529 6. 545 
Ariel 3.4,54 3. 454 
Umbr ie l  2. 100 2. 091 
T i t a n i a  1. 000 1 .000 

Oberon  0 ,6466  0. 6364 

Saturn's Satellites 

0. 0070 - 1 
0 .0035  0 
0. 0057 0 
0 .0045  0 
0 .0086  0 
0. 0000 0 
0 .0008  0 

0. 0050 0 

J~lpiter' s Satellite.~ 

0 .0110  1 
0.0O75 0 
O. 0000 0 

0 .0008  0 

Uran~d Satellite,~ 

- 0 .0025  - 1 
- - 0 . 0 0 0 0  0 

0 .0043  0 
O. 0000 0 

O. 0160 0 

0 2 0 0 0 0 0 
- - I  0 2 0 0 0 0 

0 - - I  0 2 i 0 2 
0 0 - - I  2 - - I  0 - - I  
0 0 0 - - I  2 2 0 
0 0 0 0 --3 4 0 
0 0 0 0 --1 0 5 

0 0 0 0 0 --1 4 

- -2  0 0 
1 - -2  0 
0 - -3  7 

0 --1 '2 

1 1 1 0 
--1 1 2 --1 

0 - -2  1 5 
0 1 - -4  3 

0 1 --'2 0 

Fortunately,  in the solar system there are at  
least three other subsystems on which it is 
possible to test  the predicted strength of the 
principle of max imum resonance these are 
the systems of Jupiter 's ,  Saturn's,  and 
Uranus '  satellites. Their  frequencies and res- 

Of 160 posi t ions  ill tile tables  of resonances ,  0 
occupies  98 places and  1 occupies  33 posi t ions.  T h e  
r ema in ing  n u m b e r s  occur  r e m a r k a b l y  less often.  Two 
occupies  16 posi t ions 3 only  five posi t ions.  N u m b e r s  
g rea te r  t h a n  3 occupy  only  e ight  v a c a n c i e s - - 5  
occurs  th ree  t imes,  7 a n d  4 each arise twice a n d  6 is 
f o u n d  in the  last  vacan t  place. 

quencies, through which the distances are 
uniquely determined. Besides this there 
arises the problem of theoretically explain- 
ing the law of the maximum resonances itself. 

I V .  T H E  STRUCTURE OF THE RESONANCE 
ZONE (l ~ e -1/2) ESSENTIAL 

(PRINCIPAL)  RESONANCE 

I t  is not possible to understand the pref- 
erence shown to resonance surfaces by ex- 
amining only the unperturbed system. In 
this system all the points of the space are 
quite equa l - - they  are all points of uniform 
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equilibrium. A more accurate model of the 
full system has been obtained (Molchanov, 
1963) in studying a new motion (with 
velocity of the order of ~)4 in the space, 
defined 

d4)/dt = o~(I), 
d I /d t  = eG(I, ~), (13) 

where 

G(I, e) = ( i ( I ,  ¢, e)),,~ 
/ *  

= 12r J ,  if(I, 4, e)d~b. (14) 

The system (13) already, in principle, 
have preferred points or regimes, in which 
sooner or later a given t rajectory will be 
drawn, independently of the initial condi- 
tions. But  these separated states, even 
if they exist, are entirely determined by  the 
function G(I, ~) and do not depend at all on 
the frequencies w(I). Their  chance coinci- 
dence with the resonance surfaces is "miracu- 
lous" but  in the end not less so than the 
"miracle" of resonance in the unperturbed 
system. From this follows the rather  dis- 
couraging result that  the averaged system, 
just as an unperturbed system, cannot 
explain resonance nmdes. 

Luckily the drift approximation possesses 
a property which would be a drawback 
in all situations except the one under investi- 
gation. This approach lends itself to the 
majori ty of trajectories but  fails in the 
vicinity of resonance surfaces. The reason is 
easy to understand. The system is obtained 
by averaging over a rapid variable. But  one 
of them, a resonance phase, stops being 
rapid especially close to the resonance sur- 
face, and necessitates a more detailed 
investigation. 

We shall pass over to the investigation of 
the given resonance surface (5). We intro- 
duce new phase variables 

¢ = Aq~; q~ = Be, (15) 

so that  the resonance phase becomes one of 
the new variables, and the right-hand side 

4 Multiple-frequency analog of the "drift-approxi- 
nmtion," well known in physics. Particularly it 
leads to Laplace's method in celestial mechanics and 
to the method of Krylov-Bogolyubov in the theory 
of oscillation (Bogolyubov, 1955). 

of the system remains, as before, periodic 
(with period 27r). 

Thus it is sufficient that  the matrix A be 
integral and its determinant should equal 
unity 

de tA  = 1. (16) 

] t  is known (Molchanov, 1966) that  a 
given set of S independent resonances can be 
brought to the canonical form 

¢01 ---- 0 ~  . . • , C O S  ~ 0 

by the substitution of variables such as (15). 
In the four sets of resonance vectors analyzed 
above, expansion into unimodular matrices 
A is assuredly allowed. Each of these mat- 
rices transforms the corresponding system 
to the canonical form (see footnote 2). 

Let  us now choose the convenient slow 
variables. As one of them, let us take the 
resonance frequency v. Such a choice is 
allowed, provided the frequencies are func- 
tionally independent. This condition can be 
expressed in the form 

For  the equations describing the motion of 
the planetary systems, this condition is 
fulfilled. 

The remaining slow variables we shall 
denote by the letter K, and we shall choose 
them so that  the average of their real parts 
is zero. Here two cases may occur. If G ~ 0, 
then the variables K may be chosen as 
convenient, only if together with v they give 
a full system of coordinates in the space I. 

If G ~ 0, then the variables K must be 
stationary along drift trajectories. Such a 
choice is possible everywhere besides the 
points where drift trajectories touch the 
resonance surfaces. At all other points the 
following system is obtained: 

d¢~/dt = ~o(v, K)  +ew(v, K ,  0, ¢, e), 
d¢/dt  = v + em(v, K ,  0, 4/, s), 
d~/dt = el(u, K ,  4,, ¢, e), 

dK/d t  = ef(v, K ,  ~, ¢, ~). (18) 

In this system ~b and p are scalar qtmntities, 
while K and ~b are vectors, each having one 
component less than in the initial system. 
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The right-hand sides are periodic over 4' and 
each of the 4)'s, and the function ff has a 
mean over the phases equal to zero. 

Our task consists of studying the neigh- 
borhood of the coordinate surface v = 0, 
into which the resonance surface under in- 
vestigation has been transformed in the new 
variables. However, not all the variables in 
the system (i8) are yet  sufficiently well 
chosen. The structure of these equations 
would indicate that  4' is a rapid variable and 

a slow one. This is what actually occurs, as 
a mat ter  of fact, at  large values of v, but  we 
are interested in the region of s m a l l / s .  Let  
us perform then yet  another change of 
variables 

v = e"~ (19) 

to study small values of u. Judging from the 
substitution in the system we may sur- 
mise that  the index ~ may be taken equal to 
one-half, rendering 

= u ~  ~12, (20) 

and then the equations take the form 

d4~/dt = w(~ei/2, K) + e~(~e~/2, K, ~b, 4', e), 
d~p/dt = t~/2 + ~m(t~e ~12, K,  4~, 4', e), 
dt~/dt = el/~f(ue~/~, K, 4', g', e), 

dK / dt = ~ff(u~ ~/~, K,  4~, 4', e). 
(21) 

The structure alone of this system makes 
clear the main features of what takes place in 
the neighborhood of the resonance surface. 
The rapid variable 4' certainly ceases to be 
rapid, but  neither does it become a real slow 
one, since it varies with the velocity e u~. The 
slow variable v engenders a new variable t~, 
changing with the same speed as 4'. This 
variable differs from u by the characteristic 
scale factor e~/~, which determines the extent 
of the resonance zone. I t  follows that  there 
exist three types of variables--rapid phases, 
slow integrals, and intermediate "semi- 
rapid" resonance variables. 

This division according to the scale of 
speed of variation permits full investigation 
of the structure of the resonance zone. In  
order to s tudy the system (21) let us once 
again refer to the drift approach, but  sub- 
ject only the "intrinsically" rapid phases 

to averaging, leaving the resonant phase 4' 
as a slow variable. The right parts of the re- 
sulting system are related by  the factor ~/2. 
The introduction of the semi-slow time 

r = ~l/~t (22) 

converts the system 5 into the form 

d4'/dr = U -F el/2m(Izell2, K,  4', ~), 
du/dr = f(~e~/~, K,  4', ~), 

dK/dr  = d/2~(m ~/2, K,  4', e). (23) 

Setting e equal to zero (what else is a small 
parameter  good for?) we obtain the system 

d 4 ' / d r  = u ,  

d~/dr = f (K ,  4'), 
dK/dv  = 0, (24) 

which may be regarded as ui,perturbed in 
relation to the system (23). I t  follows 
immediately then from (24) tha t  

K = const., (25) 

which means much in the solution of the 
two first equations for t~ and 4', wherein K 
enters as a parameter. 

I t  is of great interest tha t  these two equa- 
tions coincide with Hamilton's  equations of 
one-dimensional motion, the phase 4' playing 
the role of coordinate, and ~ the role of im- 
pulse. The field is given by  the function 
f (K ,  4') which also deterr~ines the structure 
of the resonance zone. The problem of one- 
dimensional motion has been studied in 
detail, and it is possible to derive the follow- 
ing results of significance for what follows. 
If the function f (K ,  4') does not vanish 
anywhere, then the variable u increases (or 
decreases) monotonically along the given 
trajectory and all integral curves cut the 
resonance surface, as in Fig. 1. If on the other 
hand, the function f (K ,  4') vanishes, then in 
the vicinity of the resonance surface a vortex 
region occurs, consisting of closed trajec- 
tories. As a mat ter  of fact, the function 
f (K ,  4') is periodic in 4' and for fixed K has an 
even number of zeros. Every  one of the zeros 
on the axis ~ = 0 is a stationary point of the 

5 In the context, the letters fi if, and m are used to 
denote general functional relations and may have 
various interpretations in various formulas. 
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!\-- 
FIG. 1. Weak resonance. 

Y 

/1 
FIG. 2. Limits of strong resonance. 

FIG. 3 Strong resonance: dissipative c a s e .  

/r 

FIG. 4. Strong resonance: conservative case. 

system (24); while exactly half of them, 
stationary points of the same type as the 
center, are surrounded by closed trajecto- 
ries. Each such region is bounded by a loop- 
shaped boundary, beginning and ending in 
a stationary saddle point, in which case the 
two other lobes of the boundary either also 
close into a loop or continue to infinity, one 
of them receding and the other approaching. 
In the simplest case the resulting figure is 
reminiscent of a figure eight with one loop 
broken. The point at which it intersects 
itself is a stationary saddle point. The center 
is found within the complete boundary loop 
and the broken loop yields two boundaries-- 
approaching and receding. 

All the remaining integral curves cut the 
resonance surface, deviating little from the 
integral curves of the drift approximation. 
In this case, in the neighborhood of some 
resonance surfaces, a vortical zone may 
arise with extent of the order of e~/2. Let us 
evaluate the fraction of the phase space 
occupied by the points of the eightfold (as in 
the solar system) resonance. This fraction as 
to order of magnitude is equal to (el/2)s = e4. 
Adopting the value of e characteristic of the 
solar system as 1.34 × 10 -3, we obtain 6 

Direct multiplication of the quantities Aoj/oj for 
all the planets (except. of course, Jupiter!) yields a 
value smaller than 10 -~°, which unequivocally cor- 
roborates the validity of the evaluation (26) and 
even points to the fact that  the system is situated 
well inside the resonance zone. 
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evaluation for phase volume 

A V / V  ~ 3 X l0 -~2. (26) 

The resonance zone and the supplements 
to it comprise a f ragmentat ion of phase space 
which is invariant  relative to the system 
(24). Each trajectory (generally speaking) 
lies in its ent irety in one of these two regions. 
For  this reason in particular, even a more 
accurate version of the drift approximation 
is not capable of rationally explaining the 
resonance structure. Were every one of the 
10 n stars of our galaxy to have a planetary 
system, it follows from the evaluation (26) 
tha t  even then, in the absence of dissipation, 
the solar system wound remain unique in its 
properties. 

This s ta tement  may  be generalized. A 
given model (in particular, the theory of the 
perturbations of Hamil tonian systems), for 
which there exists a mentioned division, ap- 
pears too crude for clarification of the reso- 
nance structure. I t  is noteworthy tha t  
particularly mathematicians expanding the 
theory of perturbations of Hamil tonian 
systems (see, for example, Arnold, 1963) 
clearly understand, it seems, the abstractness 
of such a model. 

In  this way, a more precise version of the 
drift approximation enables one to under- 
stand why the system cannot deviate from 
a resonance surface. I t  remains a mystery,  
however, how it got in resonance zone. I t  
seems tha t  this is in general impossible to 
understand without taking into account 
nonconservative factors. 

V. THE THIN STRUCTURE OF RESONANT 
ZONES (t ~ e -1) DRAWING 

INTO RESONANCE 

The foregoing investigations make clear 
the special role of resonance zones. In  the 
models treated resonance configurations 
form an insignificantly small, closed, privi- 
leged group, into which entry is forbidden to 
outsiders. The fact tha t  the solar system 
belongs to this select group indicates tha t  an 
explanation of the resonance structure in 
terms of evolution is inescapable. The refusal 
to a t t empt  such an explanation would be 
equivalent to a return to the Newtonian 

concept (Levin, 1964) of the uniqueness of 
the solar system. 

However, the system (24), an analysis of 
which brings one to such troublesome con- 
clusions, is obtained by  the averaging and 
transition to the limit f rom a full system 
(18) - - tha t  is, in the final analysis, by ignor- 
ing certain small terms. I t  follows tha t  the 
hope of investigating the breach within the 
isolation of resonance zones can only be 
based upon the legitimacy of our neglect of 
the terms. Let us define, therefore, the 
structure of the field of integral curves, 
regarding the more important  neglected 
terms. 

Let us look at  the model system (23) and 
abandon terms of the order of eli2: we obtain 

&,l,/dr = t~ -{- el/2m(K, ~l,), 
d u / d r  = f ( K ,  ¢~) -k- d/~uf~(K, g,), 

e lK/dr  = + d /~ j (K ,  ~).  (27) 

In  order to understand the quali tat ive 
picture a special case is useful, m = 0, fl = 
const., and f ( K ,  ~) =- f(~b). Such a system of 
the form 

d~b/dr = u 
dt~/dr = f(~b) - ~ (28) 

can be reduced to one equation 

d2¢~ du 
dr-- ~ + ~t dr  -- f(~) = O, (29) 

which, as is known, describes motion with 
friction in a field of force f(~b). 

I t  follows tha t  the neglect of the deleted 
terms brings into existence a new aspect. 
The  resonance zone loses its isolated charac- 
ter and begins to take place in the general 
movement .  Even the second loop of the 
boundary,  which in system (24) began and 
ended in the saddle point, now breaks. One 
of the ends remains at  the saddle point, and 
the other winds around the second st~ t ionary 
point, the former  center of the system (24). 
If  the approaching end remains in the saddle, 
as in diagram 6, then between the approach-  
ing boundaries there appears a thin flow of 
phase volume e 1/2, running into the resonance 
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zone. In the opposite case the receding 
boundary is separated and the flow runs out 
of the resonance zone. 

With the help of the drift approximation 
it would be possible to carry out a full 
quanti tat ive investigation of the system 
(27). However, the formulas obtained are 
rather  cumbersome and, in the general case, 
not very informative. We shall therefore 
limit ourselves to the remark that  the 
drift approximation works well only within 
the loop of the boundary- -on  the closed 
trajectories of the system (24)--and that  the 
investigation itself is more usefully carried 
out in passing over to first integrals and the 
phase variable of systems (24); similarly in 
the general case it is useful to pass from sys- 
tem (1) to system (2). 

In  what follows a qualitative picture of 
the motion in the system (27) is important,  
arising as it does from the discontinuity of 
the change of variables K. I t  can be produced 
by moving slowly (with speed ~1/2) the figure 
4 perpendicularly to the plane of the figure 
and as slowly as possible deforming the 
diagram of the integral curves. I t  is very  
important,  tha t  the movement along the K 
axis should take place with different (even 
though small) speed on different ovals. Dur- 
ing the movement down the axis K, stability 
may change to instability, the loop of the 
boundary may shrink to a point, and the 
zone of fundamental  resonance may dis- 
appear. This whole quite peculiar picture 
becomes yet  more complex if the number of 
variables is greater than unity. 

Comparison of the results of the Sections 
]V and V is instructive. In the main term 
we obtained Hamilton's  system and the 
strict isolation of the resonance zone. The 
following approximation shows itself to be in 
general nonconservative, and the emigration 
(or immigration) is unexpectedly large-- the  
width of the flow is of the order of e 1/2, and 
not ~. 

Evident ly this phenomenon is a general 
law. Hamilton's  systems determine the main 
terms of the motion, but  over short times. 
Nonconservative connections are negligibly 
small for short periods, but  they are responsi- 
ble for determining the evolution of the 
system. 

VI.  THE EVOLUTIONARY FORMATION OF A 
RESONANCE STRUCTURE 

Above we examined separately three 
fundamental  elements indispensable for the 
evolutionary explanation of resonance struc- 
ture--zones of fundamental  resonance, the 
drift approximation, and the drawing inward 
of the resonance zone. 

Let  us now follow through the full picture 
of evolutionary process, bringing into 
existence the resonance structures inde- 
pendently of the initial conditions. At the 
initial moment 7 let us choose at  random the 
point I and follow through the fate of all 
possible systems, differing by the initial 
values of the phase 4. The points depicting 
these systems fill the torus r in phase space, 
over which a rapid motion exists, super- 
imposed on a slow drift over the space I.  

After some time the drift t rajectory 
cuts the resonance surface. Par t  of our torus 
(very small, s as we saw) turns out to be 
drawn into the resonance surface. The 
main part  of the torus will be drawn along 
further  by  the drift motion and will drive 
down on the following surface, where the 
detachment of an alternate position takes 
place. For  this reason sooner or later the 
given trajectory becomes pulled into the 
resonance zone. If at  the initial moment  
the systems uniformly disintegrate over 
all phase space, then as the result of evo- 
lution they will congregate in volumetri- 
cally trivially small resonance zones. A 
picture of evolutionary matur i ty  arises, 
directly opposed to the ergodic concepts, 
characteristic for the initial stages of evolu- 
tion. 

However, the conclusiveness of the repre- 
sentations arrived at depends in a decisive 
way upon the amount  of time necessary for 
the creation of a resonance structure from 
the initial amorphous configuration. Let  us 
turn next to the evaluation of the time of 
evolution I. First of all we notice tha t  Hamil- 
ton's perturbation does not usually lead to 

7 Which we choose at will during~ let us say, the 
first million of the five billion years which contem- 
porary science alotts to the present situation. 

8 See in what follows, the text that follows for- 
mula (33). 
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the creation of a drift transverse to the 
resonance surface. For  this reason it is neces- 
sary to discount two factors--Hamil ton 's  
perturbations of magnitude e calling for the 
formation of resonance zones and dissipative 
factors of magnitude ~, leading to the trans- 
verse drift and the draining into the reso- 
nance zones. Motion within these zones is 
carried out, as we saw, along closed trajec- 
tories with period of the order of e-1/2. Dis- 
sipation turns these curves into spirals, 
decreasing the amplitude to the order of 
magnitude 8e -1/2 at each revolution. The 
phase volume of the flow running in will be 
of the same order 

A V / V  ,-~ ~/~1/2. (30) 

Strictly speaking the resonance surfaces are 
everywhere concisely laid out. However, our 
interest lies only in the fundamental  reso- 
nance having small coefficients (see footnote 
1). I t  follows then that  the distances between 
resonance surfaces are of the order of unity. 
This means that  the "mean free t ime" 
between surfaces (or the time of return dur- 
ing multiple crossing of the same surface) is 
evaluated as the reciprocal of the drift  
velocity 

Td ~ ~-1. (31) 

Increasing the quanti ty of intersections V /  
A V  to the mean free time, indispensable to 
full "fragmentat ions" of the space, we ob- 
tain an evaluation of the time of evolution 

T N ($-%~/2. (32) 

In a single frequency case the calculations 
may be carried out more accurately and the 
estimate obtained is remarkably better  

T ~ T ~  N ~-1. (33) 

The cause of such a fundamental  divergence 
lies in the fact tha t  where the dissipative 
perturbation is superimposed on the reso- 
nance zone which obeys Hamiltonian rela- 
tions, the dimension of ~he inflowing stream 
turns out  to be finite, and not infinitely 
small. However, in the general case the fact 
is not yet  proven and in what follows it is 
suitable to satisfy ourselves with a rough 
evaluation (32). 

The careful reader will have certainly 
noticed already that  everything that  has 
been derived uses little of the specific prop- 
erties of the solar system, that  even the 
Newtonian potential has not once been 
brought to mind. In justification, the author  
can only fall back on the words of Eddington 
(1933). The principal laws of gases hold, 
not because a gas is made " tha t  way,"  but  
because it is made "just anyhow." The 
analysis carried out leads to the conclusion 
that,  without discounting the dissipative fac- 
tors, it is not possible to explain the reso- 
nance structure of the solar system. But  in 
the presence of weak dissipative factors, a 
given oscillating system in the end takes on 
a resonance structure. I t  follows that  the 
resonance structure is, in the main part,  a 
developing category-- i t  is the result and 
mark of evolutionary matur i ty  of the system. 

V I I .  POSSIBLE FACTORS IN THE 
EVOLUTION OF THE SOLAR SYSTEM 

Since at  the present time dissipative terms 
are without doubt  much smaller than New- 
tonian interactions, and are generally not 
considered, they have been considerably 
less studied. I t  is possible, all the same, to 
make some quanti tat ive statements directly 
on the basis of formula (32). 

Of decisive importance to the argument is 
the "age" of the solar system, which we 
shall take as being five billion years old, tha t  
is (in measurement of the characteristic 
time of the sys tem-- the  period of Jupiter) 

T = 4 X  10 s. (34) 

We find the magnitude of ~ from the condi- 
tion that  basically the evolution was com- 
pleted in the first one hundred million years. 

Inserting in (32) e = 1.34 × 10 -3 and 
T = 107 we obtain ~ = 6 × 10 -5 . Let  us ac- 
cept, further, tha t  ~ decreases by a factor of 
1 ~  or 2 in the time equal to the time of evo- 
lution. The following hypothetical picture 
emerges from the results. 

During the first hundred million years the 
dissipative factor (twenty times sm~ller 
than the mutual perturbations of the planets 
or smaller by four orders than the main 
gravitational field of the Sun) safeguards the 
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construction of a resonance structure from a 
randomly chosen initial configuration. In  
the following forty periods (or the same 
length) this factor diminishes one-million- 
fold, becoming completely imperceptible. 

I t  is evident that  the calculations we have 
made are quite arbitrary, and demonstrate 
more a deferential delight in the age of 
the solar system and the properties of ex- 
ponents than the real magnitude. However, 
they demonstrate also that  it is quite possi- 
ble with quite modest assumptions con- 
cerning the size of the dissipative terms to 
deduce that  evolution of the resonance 
system is inescapable. 

The question of the reality of the evolu- 
t ionary terms is very interesting. We shall 
demonstrate two possible contentions. The 
first of them--pure ly  friction arising in 
the motion of already almost finished planets 
in the remnants of a gas-dust cloud. This ex- 
ample illustrates an important  character- 
ist ic--a term which calls for evolution 
unmistakably weakening and "dying out"  
in the process of evolution, which permits 
the system to remain in its complexly organ- 
ized configuration. I t  is understood that  
systems exist in which the dissipative factor 
does not weaken, but  these belong rather to 
the group of "has beens" and they interest 
us but  little at the moment. 

Another process may play an important  
role-- the  process of ejection of matter.  This 
is, so to speak, the "cometary"  variant as 
opposed to, or rather complementary to, the 
"asteroidal" variant. The cometary variant 
is methodically more interesting. I t  shows 
that  evolutionary problems may be set up 
in the framework of purely Hamiltonian 9 
equations, in which case dissipation must be 
understood as a dispersion, an escape of 
particles from the system. 

Evaluations (see Levin, 1960) of the ejec- 
tion of mass point out the great importance 
of the role played by this process in the 

0 Sometimes one encounters the opinion that  the 
Lionville theorem precludes the possibility of 
evolution in Hamiltonian systems. The example of 
the Hamiltonian function, H = pq, shows that  evo- 
lution is possible. The prejudice is seemingly founded 
on the custom of thinking that  the level surfaces of a 
Hamiltonian function are closed. 

beginning stage of evolution of a gas-dust 
cloud. 

The formation of "repeated"  vibrating 
structures could take place even under the 
influence of other dissipative factors. The 
decisive role played by tidal friction in the 
evolution of the Ear th -Moon  system is not 
doubted by anyone. As a result the Moon 
turns one side always towards us, clearly 
demonstrating the properties of 1:1 reso- 
nance. Such resonances are characteristic 
of systems in evolution whose dissipative 
factors are large enough that  they do not 
allow the system to "build up"  in "shallow" 
resonances. In the case where conserva- 
tive perturbations dominate, resonances 
with large coefficients may  be produced. 
In this way, 1:7 resonance of the fre- 
quencies of Uranus and Jupiter  brings to 
mind that  these may be the "youngest"  of 
the resonances of the solar system, arising on 
the background of already decaying dissi- 
pation. I t  is possible to think that  the trio of 
far planets with good 1 : 2 : 3 resonances came 
into resonance with the remainder of the 
solar system quite late. 

Dining consideration of this work B. J. 
Levin suggested the hypothesis that  the 
plane resonance structure in its rough form 
already was in the process of accumulating 
the planets, and in the process of further  
evolution a comparatively thin "branch"  
arose. I t  is most probable that  the evolution 
of the solar system did in fact progress in 
this way. 

I t  is worthwhile, however, to underline 
that  the conclusion about the inevitability 
of resonance does not depend on the mecha- 
nism of formations of an oscillating system, 
and is based only upon its sufficiently long 
duration. Thus even if the sun were to 
capture, not necessarily at one time, already 
formed planets, five billion years would 
suffice, it seems, to form a resonance struc- 
ture, possibly at the cost of ejecting some of 
the material. 
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