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INTRODUCTION

Push on something. It will move. Push just
a little bit harder and it will move just a little
bit more. This incremental response to incre-
mental siresses is very typical. But under rare
conditions a small increase in the level of
stress will produce a large and dramatic re-
sponse. Such a response is called a “catastro-
phe.” This kind of behavior has been summa-
rized succinctly in the phrase “the straw that
broke the camel's back.”

Although this phenomenon oceurs under
rare conditions, it is also “typical.” That is,
although it is unlikely that any particular
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straw will break the camel's back, it is certain
that after enough straw has been loaded, some
straw will break the camel’s back,

Situations in which gradually increasing
stress leads to gradually increasing response,
followed by a sudden catastrophic jump to a
qualitatively different response state, are all
too common. Many examples can be given:

1. Under gradually increased loading a bridge
sags to a greater degree, followed by a
sudden collapse under the last bit of stress
{(Zeeman, 1977; Poston and Stewart, 1978;
Gilmore, 1981). :

2. As temperature is gradually decreased at
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constant pressure, a gas gradually contracts
until a certain temperature is reached, at
which it condenses to its liquid (or solid)
state, with a sudden and very large change
in its volume (Zeeman, 1977; Poston and
Stewart, 1978; Gilmore, 1981).

3, Slow variation of the aileron trim settings
(wing flaps) of an airplane leads to slow
change in the attitude of the plane, until a
certain threshold value is passed, at which
point there occurs a large change in aircraft
attitude (Gilmore, 1981).

4, When a glass tube filled with a helium-neon
or carbon dioxide-neon mixture is set in-
side a cavity formed by two highly reflect-
ing mirrors and a gradually increasing cur-
rent is passed through it, the amount of
incoherent light emitted gradually increases.
After a current threshold is passed, the light
which is emitted increases rapidly in inten-
sity and coherence: the laser has turned
“on” (Poston and Stewart, 1978; Gilmeore,
1981).

5. The amount of sunlight falling on the Earth

(_*,C!r * varies gradually over about 1000/years due

~ to variation of the Earth’s orbital parame-
ters. Sudden dramatic changes leading to
the occurrence and disappearance of the
Ice Ages occur during this period and seem
to be precipitated only by this gradual
variation of the Earth's orbital parameters
(Gilmore, 1981). '

6. It is even possible to conceive of small
causes producing big effects in biological,
economic, social, and political systems
{Thom, 1975; Zeeman, 1977; Poston and
Stewart, 1978).

‘Catastrophes are widespread, occurring
throughout all fields in the scientific and
engineering disciplines, and even beyond.
Moreover, the mathematical description of a
catastrophe follows the same procedure and
draws from the same restricted set of func-
tions, independent of whether the catastrophe
occurs in the area of physics, chemistry, struc-
tural engineering, aircraft dynamics, climate
dynamics, etc. The mathematical description
of catastrophes, involving mathematical func-
tions called elementary catastrophes, pro-
vides a language in terms of which discontin-
uous phenomena can adequately be described,

It is easy to imagine how to describe sys-
tems in which a small push gives rise to a
small response. One expects the mathematics

of continuity, the calculus of Newton, to be
applicable. One also expects that linearization
about the local state (linear response func-
tion) will give a quantitative estimate of how
much the system will respond to a small push.

But what of the mathematics of disconti-
nuity? How does one describe catastrophes? Is
it necessary to give up the ideas of continuity?

Roughly speaking, the state of a system is
an equilibrium-—in fact, a stable equilibrium.
By changing some external parameters called
contro! parameters (stress, loading), the equi-
librium is displaced. A small change in these
parameters usually results in a small displace-
ment of the equilibrium. Sometimes small
parameter changes result in the appearance of
new equilibria or the disappearance of old
equilibria. It is the latter instance in particular
that can lead to a catastrophic sudden jump. A
systematic study of catastrophes is closely
related to a systematic study of equilibria, and
especially the appearance and disappearance
of equilibria.

Families of functions depending on (con-
trol) parameters are called catastrophes when
the number of equilibria they possess changes
as the parameters are varied. There are only a
small number of catastrophes. A very small
number have been used to model sudden
jumps in physical systems. We will study the
mathematics of catastrophes in two steps:

1. We first study functions representing situ-
ations in which the number of equilibria is
about to change. This occurs when two or
more equilibria cccur at the same point
(become degenerate).

2. We then study the effects of perturbations
on the degenerate equilibria. In fact, we
identify the simplest perturbation which
can reproduce the effects of the most gen-
eral perturbation.

That both these programs can be carried
out successfully is remarkable.

A major obstacle in‘applying the mathemat-
ics of catastrophe theory to physical systems is
in identifying. the underlying catastrophe. A
muitiplicity of phenomena occur in the pres-
ence of a catastrophe (catastrophe flags). The
occurrence of any one of these is an indica-
tion that others are present and can be found,
and that a catastrophe is ultimately responsi-
ble for all. The catasirophe flags are easy to
recognize and provide an inordinate amount



of information about the underlying catastro-
phe. This information includes the type of
catastrophe, a rough indication of where the
sudden jump may occur, and—most
important—how to avoid it if that is a desir-
able objective,

This article is organized into three parts.
Section 1 describes what catastrophe theory
is, Sec. 2 describes how the catastrophe func-
tions are constructed, and Sec. 3 describes
how catastrophe theory is applied to the de-
scription of phenomena that occur in the
science and engineering disciplines.

In Sec. 1 we describe a progression of three
theorems of elementary calculus. These theo-
rems’describe local standard forms for func-
tions in the neighborhoed of a point. The first,
the implicit function theorem, tells us that a
function can be replaced by its linear approx-
imation when its slope is nonzero at a point.
The second theorem, the Morse lemma, tells
us that under suitable conditions a function
can be well approximated by a quadratic form
in the neighborhood of an equilibrium. The
third result, the Thom splitting lemma, de-
scribes what happens when the “suitable con-
ditions” required above are not satisfied. In
this case two or more equilibria occur very
close together (are degeneraie), making it
possible for a small perturbation either to
split or annihilate the equilibria. This change
in the number of equilibria is a “catastrophe.”
Tables containing Thom's list of elementary
catastrophes and a complete list of all elemen-
tary catastrophes are provided. This is fol-
lowed by a discussion of the geometric prop-
erties’ of the very simplest catastrophe
functions. This section provides a clear an-
swer to one of the questions posed above: it is
possible to describe discontinuous phenom-
ena without giving up the ideas of continuity.
In fact, this mathematics of discontinuity is an
essential part of the calculus of Newton.

In Sec. 2 we compute some explicit catas-
trophe functions. The first example starts with
a family of functions depending on one state
variable and two control parameters. Follow-
ing an algorithmic procedure, we reduce this
to a standard form in the neighborhood of its
most degenerate equilibrium. This degenerate
equilibrium is then perturbed in order to
determine how these critical points can be
created and anmihilated as a function of the
control parameters. The algorithm developed
to effect this reduction to normal form is then
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summarized and applied to a more compli-
cated family of functions.

In Sec. 3 we address the question of how to
apply the mathematics of catastrophe theory
to real world processes that exhibit discontin-
uous phenomena, Two widely adopted con-
ventions are first described. These are assump-
tions about the mathematical characterization
of the equilibrium state of a physical system:
whether it is determined by a local minimum
or the global minimum of a potential, and the
conditions under which a jump from one
minimum to another occurs. The mathemat-
ics tells us only where, how many, and what
type of equilibria a catastrophe function pos-
sesses; the convention isolates the physically
important equilibria. When a physical system
exhibits a catastrophe, a multiplicity of phe-
nomena occur. It is useful to be able to
recognize them—particularly if one wants to
avoid the physical catastrophe (e.g., bridge
collapse). These phenomena are called catas-
trophe flags. The presence of any one is an
indication that the others are present. Their
recognition provides a great deal of informa-
tion about the underlying catastrophe. The
use of catastrophe conventions and catastro-
phe flags is illustrated in the context of an
important example in Sec. 3.3, This illustrates
unexpected dangers which may arise in the
design of structures following standard opti-
mization criteria employed to reduce costs. In
Sec. 3.4 we indicate how the elementary ca-
tastrophes may make their appearance within
the breader program of catastrophe theory, in
the field of dynamical systems theory. That is,
the fold catastrophe appears in the guise of
saddle-node bifurcations while the cusp catas-
trophe appears in the guise of pitchfork and
Hopf bifurcations.

In a shért Appendix we outline the early
turbulent and confusing history of catastro-
phe theory, which was at one point heralded
as the greatest advance in mathematics since
the development of the calculus by Newton.

1. WHAT IT IS

In Sec. 1 of this article we describe the
enormous mathematical program called ca-
tastrophe theory and the much smaller and
more manageable mathematical program
called elementary catastrophe theory (Sec.



88 Catastrophe Theory

1.1). This latter program is not omly the
starting point for the study of the larger
program, but also a continuation of a very
important and rather simple program in ele-
mentary calculus. This is the program of
determining and classifying the standard, or
canonical, forms that functions can assume in
any of their neighborhoods.

The first two stages in this program are well
known at an intuitive level (Sec. 1.2). These
are the implicit function theorem and the
Morse lemma, which are the mathematical
justifications underlying the approximation of
a function by a linear function at a point
where its slope is nonzero, or by a quadratic

form at an equilibriurn (where the slope is

zero). The third stage, the Thom splitting
lemmma, describes what happens when two or
more equilibria become degenerate, Under
this condition a perturbation can either split
the equilibria or annihilate them. Change in
the number of equilibria is closely related to
the occurrence of sudden jumps in physical
systems.

Functions that describe sudden jumps, or
changes in the number of equilibria of a
system, are called catastrophes. There is a
small number of elementary catastrophes.
They are classified in Sec. 1.3 and presented in
‘Tables 1 and 2 (Sec. 1.4). Since the number of
catastrophes is small, the properties of each
can be studied in detail (Sec. 1.5); the results
are then directly applicable to any physical
system described by that mathematical func-
tion. The geometric properties of the two
simplest of the elementary catastrophes are
studied in detail in Sec. 1.6. In Sec. 1.7 we
make quantitative the statement that a small
push will displace an equilibrium by just a
little bit by compuiing the linear response
function for a large class of physical systems,
and showing that this function diverges pre-
cisely when a sudden jump is imminent.

1.1 The Program of Catastrophe Theory

Catastrophe theory is a program. The pur-
pose of the program is to determine how the
qualitative properties of solutions of equa-
tions change as the parameters that appear in
the equations change (Gilmore, 1981).

.~ It often happens that small changes in the
values of paramefers that appear in equations
produce only small quantitative changes in
the solutions of the equations. However, there

may be parameter values for which a small
change, either in parameter values, initial
conditions, or boundary conditions, produces
a large quantitative change in the solutions to
these equations. Large quantitative changes in
solutions describe qualitative changes in the
behavior of the system. Catastrophe theory is
concerned with determining the parameter
values at which qualitative changes occur in
solutions of equations described by parame-
ters {Thom, 1975; Zeeman, 1977; Poston and
Stewart; 1978; Gilmore, 1981).

This is an ambitious and difficult program.
For example, for systems of equations of the
form

F,(xx,5:c)=0, (1

where F, is a set of functions; x is an n-vector,
x=(xy, X3,...,.X, ) ER", called a state vector; ¢ is
a k-vector, €= (cy, C3uC} ER¥, called control
parameters; and ‘=d/dt, there are no general
results. When the set of equations is restricted
to the simpler form of coupled nonlinear
first-order ordinary differential equations (also
called dynamical systems) of the form

xi=fi{xt;0), (2)

very litile can be said in general. Many results
are known when #=2 and f is independent of
t. A few results are known when n=2 and the
forcing term is periodic, f(x,t;¢) =f(x,t+Tic).
Much less is known when n=2 and { is not
periodic. The case #>2 invites a lifetime of
work.

When the forcing function in the dynami-
cal system eguations (2) is independent of
time and can be written as the gradient of
some potential,

fi=—aV(xic)/dx; (3
then the system
xj=~dV{x;c) /x; (4

is called a gradient dynamical system. For
such systems many results are available.
The qualitative properties of a gradient
dynamical system can be constructed by in-
vestigating the phase-space portrait of its flow,
This can be done by plotting the value of the
potential as a function of the phase-space
coordinates x;. The phase-space flow is “down-
hill” on the potential function. It is easily
determined in the neighborhood of each equi-
librinm, or critical point, independent of the



stability of the equilibrium. The local flow
portraits around each critical point can then
be pasted together to determine a global phase
portrait, The potential

V(xya.b) =4 +ax® + bx - by (5)

is illustrated in Fig. 1, together with the phase-
space portrait in the state-variable space.

Small changes in the control-parameter
values (a,b) typically produce small changes
in the location of the critical points. In turn,
this produces only small quantitative changes,
and therefore no qualitative change, in the
phase-space portrait. Qualitative changes will
only occur when changes in the controi-
parameter values result in changes in the
number of critical points. This pumber can
change only when two or more critical points
coalesce and annihilate or, viewed from the
other direction, two or more critical points
are created in phase space and then move
apart from each other as the conirol parame-
ters are varied. _

Elementary catastrophe theory is the study
of how the critical points of a potential, V(x;c),
move about, coalesce and annihilate each
other, or are created and disperse from each
other, in state space *ER" as the control
parameters ¢ER¥ are varied.

Vixy)

A

e

FIG. 1. The dynamics of a gradient system are
govemed by a potential. The potential of Eq. (5) is
shown, together with the flows to and from the stable
and unstable equifibria. These are projected downinto
the -y plane.
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‘1.2 Three Theorems from Elementary

Calculus

Elementary catastrophe theory is found at
the intersection of two lines of mathematical
development, one old, one new. On the one
hand, it is the latest development in the quest,
in elementary calculus, for standard local
forms for functions. On the other hand, it is -
the first result in the quest, in catasirophe
theory, for canonical representations of func-
tions that show qualitative changes when con-
trol parameters are varied.

Elementary catastrophe theory is the third
in a series of reduction-to-standard-form the-
orems in elementary calculus. The three de-
velopments are the implicit function theorem,
which depends on the first derivatives of a
function; the Morse lemma, which depends
on the second derivatives of a function; and
the Thom splitting Jemma, which depends on
the third (and higher) derivatives of a func-
tion. Each of these results provides a stan-
dard, or canonical, form for a function in the
neighborhood of a point.

We summarize these results now.

12,1 Ymplicit Function Theorem. The
implicit function theorem tells us that if the
slope of a function is nonzero at a point, the
function can be represented locally by a linear
approximation to that function. In a rough
sense, it tells us that it is justified to linearize
afunction about a point at which its derivative
is nonvanishing,

Implicit Function Theorem: Let f(x)= flxg,
X3,.4%p) be a function with nonzero gradient
at xg:

V7| 1 70. (6)

Then it is possible to find a new coordinate
system, y={¥1,¥,....¥,), ¥=y(x), so that

f= (7N

That is, f is equal, after a smooth change of
coordinates, to y;.

1.2.2 Morse Lemma. The Morse lemma
takes over where the implicit function theo-
rem leaves off. Suppose the gradient of a
function does vanish at a point—what then?
Such a point is called an equilibrium, or
critical point. Provided that the function has
enough “curvature” at the critical point, it can
be represented locally by a quadratic form. In
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a rough sense, the Morse lemma tells us that it
is justified to represent a function at an equi-
librium by a quadratic form, provided none of
the eigenvalues vanish.

Morse Lemma: Let f(x)=f(x1,x5,..,%,) bea
function with equilibrium at xy and nonsin-
gular stability matrix at xg:

Vf| =0, equilibrium, 8)
det{df/3x,0%;1|,,#0, nonsingular.

Then there is a smooth change of coordinates,
x=x'(x), so that

f= 2 AgxD? %)

where A; are the eigenvalues (all nonzero) of
the stability matrix.

A critical point satisfying the conditions
(8) is called variously a Morse critical point or
an isolated critical point.

The quadratic form (9) can be put into a
canonical form by rescaling the coordinates:

yi= 4412} (10)

Under this scale transformation the function
_atequilibrium assumes Morse canonical form:

1M, (11)
Mi=—yi— =Y +5rt 40

The quadratic forms (11) are called Morse
saddles. The Morse saddle M} has a minimum
at y=0, while M}, has a maximum at y=0. The
remaining Morse saddles M7, is=0,n, have
equilibria at y=0 that are neither maxima nor
minima.

1.2.3 Thom Splitting Lemmma. The Thom
splitting lemma takes over where the Morse
lemma leaves off, Suppose the stability matrix
of a function is singular at an equilibrium.
Then one or more eigenvalues (4;) vanish.
What then? The Thom spliiting lemma tells us
that there is a smooth change of coordinates,
x'=x'(x), where xi{,..,x] are tangent to the
eigenvectors with vanishing eigenvalues at the
critical point, and x7_ ,,...,xy, are tangent to the
eigenvectors with nonvanishing eigenvalues
at the critical point, so that the function canbe
broken down into two parts. One part, asso-
ciated with the nonzero eigenvalues, is simple
and can be put into Morse canonical form.
The other part, associated with the vanishing
eigenvalues, is interesting and has all its sec-
ond derivatives equal to zero -at the critical

point. This non-Morse function is the princi-

‘pal object of study in elementary catastrophe

theory.

Thom Splitting Lemma: Let f(x)=
Flx1,X,.%,) be a function with equilibrium
and singular stability matrix at xg:

Vi =0 equilibrium,
; 12)

det[d’f/3x0%;]| ,,=0, singular.

If the stability matrix has exactly ! vanishing

eigenvalues, then there is a smooth change of

coordinates, x'=x'(x), so that

FO) = Frapt (B peons®) )+ METH AT ntl),

BszM/axzﬂx]-Ixﬂ=0, 1<i:j<1'

(13)

The Thom splitting lemma can be proven
by the methods of elementary calculus. It tells
us that when the Morse lemina is not applica-
ble, the function can be split into two func-
tions, a “good” function in #—! coordinates
which can be put into Morse canonical form
and a “bad,” or non-Morse, function of [
variables which bears further scrutiny. It tells
us nothing about the non-Morse function ex-
cept that its Taylor series expansion about the
critical point begins with at least third-degree
terms.

We emphasize here that the three results of
elementary calculus, the implicit function the-
orem, the Morse lemma, and the Thom split-
ting lemma, depending on first, second, and
third derivatives, are local in nature. The
theorems do not provide an estimate for the
size of the neighborhood for which the state-
ment of the result is true.

1.3 Thom Classification Theorem

For a typical function, f(x), the gradient at
arandom (“typical”) point will be nonvanish-
ing, so that the implicit function theorem is
applicable. There are, however, typically iso-
lated points at which the gradient vanishes. At
such points the stability matrix is typically
nonsingular, so that the Morse lemma is ap-
plicable. How, then, does it come about that
the machinery of elementary catastrophe the-
ory becomes useful?

When the function depends on control
parameters ¢ as well as state variables x,
f=F(x:c), then the eigenvalues of the stability
matrix at a critical point, xg=x,(¢), depend on
the control-parameter values: 4;=A4¢). As a
result, there may be choices of the control-



parameter values that annihilate one or more
of the eigenvalues,

As a result, the structure of the non-Morse
function in Eqgs. (13) will depend on control
parameters. The Thom classification theorem,
which is outside the scope of calculus (ele-
mentary or otherwise), provides a further
resclution of the non-Morse function into two
functions. One of these, the catastrophe germ,
depends only on the / state variables yy,s,....3;
and summarizes the nature of the singularity
at the non-Morse critical point. The other
function, the universal perturbation, is a func-
tion of both the / state variables and & control
parameters. This function summarizes what
can happen to the singularity, or degenerate
critical point, under the most general possible
{“universal") perturbation.

Thom Classification Theorem: Let fuu(y;
E)=F(¥1e¥C1ens€y) be a non-Morse func-
tion of { state variables and & control param-
eters. Then there is a smooth change of coor-
dinates so that
Fam(e) =Cat(Lk). (14)
The elementary catasirophe function, Cat(£ k),
is the sum of two terms:
Cat(L,ky=CG(l) +Pert(l,k). (15)
The catastrophe germ, CG(/}, depends only on
the [ state variables. All its second partial
derivatives vanish at the critical point. The
universal perturbation depends on the % con-
trol parameters as well as the / state variables.
The dependence of Pert(l%) on the control-
parameter values is linear. For “most” choices
of control-parameter values {all but a set of
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measure zero) the function Cat(lk) has iso-
lated critical points.

The Thom classification theorem, like the
three results of elementary calculus described
in the previous section, is local in nature. The
theorem does not provide an estimate of the
size of the neighborhood for which the state-
ment of the theorem is true.

1.4 Thom's List of Elementary
Catastirophes

Thom's original classification theorem pro-
vided a list of the elementary catastrophes
(Thom, 1975). A slightly expanded version of
this list is provided in Table 1 {Arnol'd, 1981,
1986). This list contains the canonical catas-
trophe functions for £ <6 and therefore {cf.
Sec. 2.3).1< 3. This list consists of the classi-
fication of the function following the beautiful
convention introduced by Arnol'd (1981}, the
original descriptive name, when it exists
{Thom, 1975; Zeeman, 1977; Poston and Stew-
art, 1978), values for % and /, the catastrophe
germ, CG({), and the universal perturbation,
Pert(Lk). Thom's original list contained only
the seven members with k<4 (dimension of
spacetime) for unsupportable historical rea-
SOns.

The catastrophe functions listed in Table 1
are elementary in the sense that all coeffi-
cients in the catastrophe germ can be assigned
canonical values. There are no free parame-
ters; every coeflicient in the catastrophe germ
can be given canonical numerical values such
as = 1,0 by a coordinate change. For example,
a term of the form —3«* in the A_; catastro-
phe could be transformed to the canonical

Table 1. All catastrophes up to control-parameter dimension five are elementary and are listed below

by dimension of control-parameter space.

k1 Classification = Name CG(l) Pert(Lk)

1 1 A Fold 22 ax

2 1 Ai, Cusp xxt a4

3 1 A4 Swallowtail x a, x2+azx2+a3x3

3 2 D, Eltiptic umbilic 2y—y ax+ayy +asc

3 2 D, Hyperbolic umbilic 2 y+y Oy x+ @ Y+ ax

4 1 A Butterfly x4 ayx+a +ad rayxt

4 2 D Parabolic umbilic (2 y43)  aptamytatta, P

5 1 4 Wigwam x A+ a4 @ + a gl - ast
5 2 D, Second elliptic umbilic 2y—y @i+ ay y+at+ a P+ as
5 2 D, Second hyperbolic umbilic 22 y4+5° @ x+a y+axti+a +as )
5 2 E. Symbeolic umbilic {2+ AX -y Y+ XY+ @y Y+ A5 1P
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form —x* (or —x'*) by an appropriate scale
change »'=Ax.

Thom's list of elementary catastrophes is
not a complete list. The complete list is pro-
vided in Table 2. There are two infinite series
of elementary catastrophes and one finite
series. One infinite series, the cuspoids A.g,
depends on only one state variable. The other
infinite series, the umbilics D, depends on
two state variables. The exceptional elemen-
tary catastrophes, E, ¢, Ey, Eg, depend on two
state variables (Arnol'd, 1981, 1986; Poston
and Stewart, 1978; Gilmore, 1981).

There is a remarkable correspondence be-
tween the classification theory of elementary
catastrophes and the classification theory for
Lie algebras all of whose roots (in the root
space diagram) have the same length (Ar-
nol'd, 1981, 1986; Gilmore, 1981). The corre-
spondence is as follows. The phase-space por-
traits of the elementary catastrophes with
maximum number of isolated critical points
can be summarized by drawing the flow from
each equilibrium to any of the others to which
a flow is possible. The phase-space portraits so
obtained are exactly the Dynkin diagrams
which classify all the simple Lie algebras
whose roots have equal length; these are 4,4,
D,, and the exceptional simple Lie algebras
E;, E;, and E;. This nomenclature for simple
Lie algebras has accordingly been adapted to

the classification of elementary catastrophes.
For Lie algebras the subscript (e.g., 8 for Ej)
denotes its rank; for elementary catastrophes
the subscript denotes the number of isolated
(complex) critical points generated by an
arbitrary perturbation of the function. This is
the maximum number of real critical points
into which the non-Morse critical point splits
under a general perturbation.

Tables 1 and 2 differ in a subtle way,
indicating that they are responses to some-
what different questions. The question to which
Table 1 responds is: “Up to what control-
parameter dimension are all catastrophes el-
ementary, and what are they?” The question to
which Table 2 responds is: “For each control
dimension k=1,2,..., what are the elementary
catastrophes?”

The difference between the two tables in-
dicates that for control dimension %>6 there
are catastrophes that are elementary and those
that are not, while for k<6 all catastrophes
are elementary. We will explore what happens
at k=6 to generate nonelementary (modal}
catastrophes as well as elementary catastro-
phes in Sec. 2.3. Briefly, the result is as
follows. To annihilate ! eigenvalues of the
stability matrix requires k>{(/+1)/2 control
parameters. A linear transformation can be
used in an attempt to provide cancnical values
for cubic terms in the Taylor series expansion

Table 2. There arc three series of elementary catastrophes. The cuspoids A, depend on one state
variable while the umbilics D, and the exceptional catastrophes Ej, k=6,7,8, depend on two state
variables. The subscript & indicates the maximum number of real Morse critical points the catastrophe
splits into under an arbitrary perturbation. The number of control parameters required in the universal

perturbation is £—1.

Symbol Catastrophe germ Universal perturbation
AP 4y k+1 bt ‘
a;x!
j=1
£=3 k=1
Ly £y *-t k even ] i (k—3)
b ' a;y’ ax’
* *(Zy+y©h), kodd ,:21 iy ,-E‘_z ’
2 5
E.q = (&7 +5% Z a,-y"'+ Z a; xy i3
j=1 j=3
4 - 6 -
E; x’+xy“ Z a,-y’+ Z a; Xy =3
=1 =5
3 oz ]
E B4y 24yt X oamy
j=1 j=4

A=Ay i & is even.
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FIG. 2. Ata pointwhere the implicit function theorem
is applicable, perturbation of a function does not
produce a qualitative change in the function.

of the non-Morse function. When the number
of cubic coefficients [(/4+3— 1)1/ ({-1)13}] ex-
ceeds the number of degrees of freedom in the
I>¢! linear transformation (), then it is not
possible to assign canonical values to all cubic
terms in the Taylor serfes expansion of the
non-Morse function, and the resulting catas-
trophe germ cannot be elementary. This first
occurs for =3 (= k=6). For k>6 there are
catastrophes thai are elementary and those
that are not. For k<6 all catastrophes are
elementary.

1.5 Why a List of Perturbations is
Required

The first two canonical form theorems of
elementary calculus are clean and simple. If
the function has certain properties at a point,
then the canonical form in the neighborhood
of the point is provided by the statement of the
theorem (implicit function theorem, Morse
lemma). By conirast, the third result is not
nearly so clean cut. The Thom splitting lemma
tells us that we can decompose a function at a
non-Morse critical point into the sum of two
functions, one Morse, the other interesting.
The classification theorem provides a list of
the interesting functions by number of state
variables (/) and control parameters (k). Why
is it that the classification theorem, in addition
to providing a list of canonical forms for
catastrophe germs, in the spirit of the implicit
function theorem and the Morse lemma, also
provides a list of canonical perturbations? The
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reason is that perturbation of the canonical
linear form which is provided by the implicit
function theorem does not change its qualita-
tive properties. The same is true for the ca-
nonical quadratic form which is provided by
the Morse lemma. However, perturbation of
the canonical singularity CG(/) provided in
Tables 1 and 2 produces dramatic changes in
its qualitative properties. Different perturba-
tions produce different qualitative changes.
The canonical perturbation, Pert(l %), of each
catastrophe germ is the “smallest” function, in
the sense of number of control parameters
required, which incorporates all distinct qual-
itative changes produced by all possible per-
turbations of the catastrophe germ.

We illustrate these staternents in Figs. 2-4.
In Fig. 2 we show a function, f(x), which
satisfies the conditions of the implicit function
theorem at x. Under a perturbation, p(x),
where p(x) is a well-behaved function and ¢ is
a small parameter, the new function, F(x)
=f(x}+ep(x), also satisfies the conditions of
the implicit function theorem at x, for ¢
sufficiently small. Therefore, perturbation of
f(x) at x5 does not change its qualitative
properties (perturbation “commutes” with the
implicit function theorem).

In Fig. 3 we show a function, f(x), which
satisfies the conditions of the Morse lemma
at xg. Under a perturbation, ep(x), the new
function, F(x)=2f(x)4ep(x), no longer ap-
pears to satisfy the conditions of the Morse
lemma at xp, since typically p’(x5)520. How-
ever, F'(xg)=ep'(xg) is small for small ¢ so

9

F(x = fix) +p0)

— X

FIG. 3. At a point where the Morse lemma is appli-
cable, perturbation of a function does not produce a
qualitative change in the function.
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that the implicit function theorem is on the
verge of not being applicable. It is more useful
to regard the perturbation as moving the
location of the critical point to a nearby point,
x§ = xq + 8xy. At this perturbed critical point
the conditions for the Morse lemma are ful-
filled. Thus, a small perturbation at an equi-
librium produces only a small displacement
of that equilibrium. Not only that, but the
curvature or, more generally, the Morse sad-
dle type of the canonical form remains un-
changed. As a result, perturbation of a func-
tion that satisfies the conditions for the Morse
lemma does not produce a qualitative change
of the function in the neighborhood of the
critical point.

The situation is quite different for a catas-
trophe germ. In Fig. 4 we plot the catastrophe
function 4,: f(x:a;) =§Jc3 +a,x for three values
of the control parameter a;. For 4;=0 the
catastrophe germ #(x;¢; =0)=+%/3 has a dou-
bly degenerate critical point at x=0. The
perturbation with a;<0 splits this doubly
degenerate critical point into two isolated
critical points at x_=—(—a;)¥? and x,
=-+{~a;)2 The perturbation with ;>0
removes the critical point altogether. These
are the only two qualitatively distinct things
that can occur to a doubly degenerate critical
point under an arbitrary perturbation. These
correspond to scattering of the solutions of
Vf(x:a;)=0 from the real axis to the imagi-

fixa,)

a,>0 g =0

a.<0

1

(-2 1

(xux: )2

FIG. 4. At a point where a function has a degenerate
critical point, so that neither the implicit function theo-

rem nor the Morse lemma is applicable, perturbation of .

a function produces a qualitative change in the func-
tion. In the case shown, perturbation of the function »°
either annihilates the critical points or splits them into
two nondegenerate critical points. )

nary axis as a, increases through zero, with
the point of double degeneracy occurring at
a;=0. If is a remarkable result that the simple
perturbation P(1,1) =a;x encapsulates all dis-
tinct possibilities under generic perturba-
tions.

It shouid now be clear why the catastrophe
germs listed in the classification theorem must
be accompanied by a list of universal pertur-
bations while the implicit function theorem
and the Morse lemma are not encumbered by
such baggage. The canonical linear and qua-
dratic forms are invariant under perturba-
tion: perturbation produces no qualitative
change. However, the catastrophe germs un-
dergo a wide spectrum of distinct qualitative
changes under perturbation. The perturbation
functions listed are those of minimal control-
parameter dimension which are capable of
reproducing the entire spectrum of distinct
qualitative changes induced by the most gen-
eral perturbation.

It is a remarkable result that the control
parameters appear linearly in these perturba-
tions.

1.6 Geometry of the Fold and the Cusp

In this seciion we review the properties of
the two simplest elementary catastrophes, the
fold catastrophe 4, and the cusp catastrophe
A 3. Since the cusp catastrophe A3 occurs
more frequently in physical applications than
A_3 (which is not bounded below), we study
specifically the properties of 4 3. The proper-
ties of A_; are related by appropriate sign
changes. We also review a resiricted set of
properties of the co(ntrol)-dimension three
catastrophes A4, D4

For the fold and the cusp we study the
following properties:

1. typical functions in the family of functions
as well as the bifurcation set;

2, location of the critical points;

3. values of the function at the critical points;

4. curvature of the function at the critical
points.

We present only the bifurcation set for the
three catastrophes Ay, D 4.

1.6.1 Geometry of the Fold Catastrophe.
The fold catastrophe is

Ay f(xa) =1 +ax. (16)



The canonical properties of this function are
shown in Fig. 5. In Fig. 5(a) we show mem-
bers of this family with >0, =0, 2 <0. The
bifurcation set is the set of points in the
control parameter space at which there is a
qualitative change in the nature of the func-
tion. This occurs when two or more critical
points become degenerate. For the fold catas-
trophe this consists of the single point a=0, at
which there is a doubly degenerate critical
point at x=0. .

The location of the critical points, the so-
lution of Vf(x;a)=0, is shown in Fig. 5(b).
The critical points, x (@) =%(—a)!/? have a
standard 1/2 power-law dependence on the
control parameter «. Note that the critical
poinis x, (a) exist only for a<0 and that the
graph of x (a) as a function of & is a smooth
manifold embedded in the space R! (state
space) XR' (control parameter space). This
is a general result. The fold catastrophe de-
rives its name from the shape of its critical set
Vf(x;2) =0, which looks like a curve folded
over itself,

a>0
@ a=0 (b)

P

2.0
1.0
0 » &
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The value of the function at the critical
points,

flx . (@yia)==3(—a)’?, an

is plotted in Fig. 5(c). This curve has a canon-
ical 3/2 power-law dependence. This graph is
not generally a manifold.

The curvature of the function,

fr(x.(a)a)==2(—a)l”?, (18)

is shown in Fig. 5(d). Although the critical
curvature happens to be a manifold in the
present case, this is not generally true for the
remaining catastrophes.

1.6.2 Geometry of the Cusp Catastrophe.
The cusp catastrophe is

ALy fixab)=ix*+iax +bx. (19)

The canonical properties are shown in Fig. 6.
In Fig. 6(a) we show the control-parameter
plane R?=(aq,b), various points in this plane,
and the function f(x;a,b) evaluated at these
points. Within the cusp-shaped region the

/;

Bifurcation Set
fc

5.0,

4.04

3.04

2.01

1.04
-1.0

fc}

-5.0-4.0-32.0-2.01.0 A0 1.0

-3.01
-4.04

it
fc

O ,a

_n
%

-5.0.4.0-3.0-2.0 _
1.0

2,01
-3.07

-4.01
_5'0.

-5.0-40-30-20-1.0 [0 1.0

FIG.5. {a) Memberﬁ of the fold family
of functions f{x;a) =5%*+ax for various
values of the control parameter a. {b)
Location of the critical points as a
function of a. {¢) Value of the function
at its critical points. (d) Curvature of the
function at its critical points.
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eters a,b. (b) Location of the critical

FIG. 6. (a) Members of the cusp fam-
1c ity of functions f{x;a,b) =3x*+3ax° +-bx
for various values of the control param-

points as a function of position over the
contrel parameter plane. (¢} Value of

Folg, Lmes / / Fold Tines /

the {unction at its critical points. (d)
Curvature of the funiction at its critical

function has three isolated critical points, two
minima separated by a local maximum. Out-
side the cusp-shaped region the function has
only a single minimum. These two regions in
the control plane parametrize two qualita-
tively distinct types of functions. Any path
from one region to the other must pass through
the cusp-shaped curve, along which there is a
doubly degenerate critical point (triply degen-
erate at the tip of the cusp). This degeneracy
occurs when the local maximum collides with
one of the two minima. Entering the larger
region complementary to the cusp-shaped re-
gion, the two degenerate critical points anni-
hilate each other in a catastrophe which is of
type A,.

The cusp-shaped bifurcation set is deter-
mined by the condition that a critical point
{Vf(x:a,b)=0] is degenerate [V2f(x;a,b) =0]:

critical point:  f'(x;a,6) =x°+ax1+5=0,
degenerate:  f*(x;a,b)=3x*+a=0. 20
(20)

From these two equations we compute the
semicubical parabola

a= -—3x2

b2 (212)

points.

along which a critical point is degenerate. The
projection of this space curve into the control
parameter plane.is

(a/3)}+(b/2)2=0. (21b)

This is the bifurcation set shown in Fig. 6(a).

In Fig. 6(b) we show the critical point(s),
x.(a,b), as a function of the control parame-
ters a,b. These points lie on the critical man-
ifold or catastrophe manifold Vf(x;a,b)=0.
Outside the cusp-shaped region there is a
single critical point. Over the cusp-shaped
region there are three. The middle critical
peint is the local maximum which separates
the two minima. Moving toward the edge of
the cusp-shaped region, two of the critical
points move together. They collide on the
bifurcation set and annihilate each other be-
yond the bifurcation set. The graph x.(a,4) in
R? (state space) X R? (control parameter space)
is a smooth two-dimensional manifold. The
locus of poinis on this manifold where the
tangent is “vertical” is the semicubical parab-
ola (21). ¥rom another point of view, the
cusp-shaped bifurcation set in R? is the pro-
jection into R? of the fold in the manifold
x(ab) in R'XR%. The singularity in this
catastrophe lies not in the catastrophe mani-
fold itself, which is smooth, but in the projec-



tion of this two-dimensional manifold down
into the two-dimensional control parameter
space. In general, the graph of Vf(x;c)==0,
with x€R" and ¢€RF is a smooth k-dimen-
sional manifold embedded in R*xR*. The
only singularity occurs in the projection of
this k-dimensional manifold into the &-dimen-
sional space of control parameters.

In Fig. 6(c) we present the critical func-
tion, the value(s) of the function at the critical
point(s). This graph is not a manifold because
of the sharp corners and self-intersections.
The two lower pieces of the graph are the
values of the function at the two minima.
Where these pieces intersect, the minima are
equally deep (Maxwell set, a<0, $=0, Sec.
3.1). The remaining piece of this graph, which
looks like the seat of an Art Moderne chair, is
the value of the function at the local maxi-
mum. The creases at which the values at the
local maximum and minimum join have ca-
nonical power-law dependence familiar from
the behavior of the Gibbs free energy of a
function exhibiting a second-order phase tran-
sition (Gilmore, 1981). This canonical power-
law dependence is that of the fold catastrophe,
namely, 3/2.

The critical curvature, f°(x.(a,b):a,b), or
curvature of the function at its critical point(s),
is shown in Fig. 6(d). The curvature is positive
at the local minima and negative on the
intermediate local maximum. Although there
are no creases as in Fig. 6(d), this graph is not
a manifold because of the self-intersection.
Over the bifurcation set the critical curvature
vanishes because the second derivatives van-
ish and the tangent is “vertical.”

1.6.3 Bifurcation Sets for the Three-Di-
mensional Catastrophes. The geometry of
the fold and the cusp was relatively easy to
visualize because their graphs could be em-
bedded in low-dimensional spaces: R' x R! for
the fold and R'XR? for the cusp. Higher-
dimensional catastrophes are more difficult to
visualize. The catastrophe A, should be viewed
in R' X R® while the catastrophes D, , should
be viewed in RZXR3, However, the bifurca-
tion sets for these three catastrophes are rel-
atively simple to visualize, since they are
embedded in the control-parameter space R3.
These three catastrophes are

Ag flumabie) =30 +3a8° +3b2% +cx,
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D,y flayabe)=2y+iP+a(P—22)
+bx+cy,

feyabe)=22y-YP 1a(y? +17)
+bx+cy. (22)

D_g

In each instance the three-dimensional control-
parameter space is partitioned into open re-
gions by two-, one., and zero-dimensional
manifolds, components of the bifurcation set
on which two, three, and all four of the critical
points are degenerate. Within each open re-
gion the critical points are isolated; their
number and type are unchanged by a suffi-
ciently small perturbation. The number of
critical points can change only when passing
from one open region to another through the
bifurcation set. The bifurcation sets for these
three catastrophes are shown in Fig. 7. Shown
in each figure is the number of critical points
possessed by the catastrophe function in-each
of the open regions in its control parameter
space. The catastrophes Ay, D, 4 can each have
zero, two, or four nondegenerate critical points
while D_4 can have only two or four nonde-
generate critical points,

1.7 Perturbations of Gradient Dynamical
Systems

The qualitative properties of a gradient
dynamical system are determined by the num-
ber, saddle type, and distribution of its critical
points. If the critical points are isolated, then
the dynamical system is structurally stable
against perturbations. If one or more critical
points are degenerate, the system is structur-
ally unstable—a perturbation will produce a
qualitative change in the properties of the
system by splitting or annihilating the degen-
erate critical points,

As a result it is sufficient to use perturba-
tion theory to describe the effect of a pertur-
bation on a structurally stable system. In the
case of a structurally unstable system it is
useful to reduce the degenerate critical point
to canonical form (a catastrophe) and then
discuss the effect of a perturbation by using
the catastrophe germ’s universal perturba-
tion.

To illustrate the effect of a perturbation in
the structurally stable case, we consider a
family of potentials, V(x;c), depending on »
state variables and % control parameters. As-
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sume x is a critical point for control-param-
eter value ¢;. What happens under a pertur-
bation ¢y—c'=cy+8c? We expect that the
critical point x, will move to a nearby point:
Xg—x' =x5+58x. The displacement of the criti-

cal point as a function of the change in

control-parameter value is determined by ex-
panding V{(xg+6x%;¢5-+-6¢c) in a Taylor series
about xy, ¢y: '

V(xy+8x:60+8¢)
=V(xpcy) + Vix;+ Vaﬁca+%V,-16xt<‘):xj
+ Vibxde, +3V,g8¢,8c,
+higher-order terms. (23)

The coefficient Vi(xgce) =0, since x, is as-
sumed to be a critical point for ¢=c;. The
value of 8x is computed by solving V¥V x+6x5c
+8¢)=0. To lowest order (linear), we find

Vb4 Vi, =0. 24
If the stability matrix Vj is nonsingular,
8%,/ 8 =— (V")V} (25)

where (V1) is the matrix inverse of the
nonsingular stability matrix: (V=1);V=5;.
That is, a small change in control-parameter
value produces a small change in the location
of the critical point, as long as the stability
matrix is nonsingular. The matrix (25) is the
linear response function for the potential at
the equilibrium xg: it describes how much the

FIG. 7. Bifurcation sets for the three
elementary catastrophes [Eq. {22)] of
control dimension three as a function
of the three control parameters a,b,c.
The number of isolated critical poinis
is shown in each of the open regions
into which the control-parameter
space is divided by the bifurcation
set.

equilibrium is displaced by a small change in
the control parameters,

To second order the value of the potential
at the displaced critical point is

V(xg+8x;c4+8¢)

=V{xgcy) +V, ¢,
+3[ Vg~ Vo V1) VilbC,8c,  (26)

The stability matrix at the displaced critical
point, V;{xg+8x;65+8¢), is related to the sta-
bility matrix at the original critical poeint,
Vii(xpico), by

V,-}-(xo + Sx;co+ 60) == [/!','( xo;CO) +Pijaaca'
Py Vol 20360) — Vi (V) Ve 27

As a result, for sufficiently small perturbations
the Morse saddle type cannot change if the
stability matrix is nonsingular.

This application of perturbation theory,
and the analytic results constructed in Egs.
(25)—(27), evaporate when the stability ma-
trix V;; becomes singular. Under these condi-
tions the evolution of the dynamical system
under change in the control-parameter values
(“perestroika”) is computed by expressing the
potential, V(x;c), in the neighborhood of a
non-Morse critical point by an appropriate
catastrophe, following the perturbation
through the well-defined bifurcation sets, and



then resuming the perturbation treatment suf-
ficiently far from the critical point degener-
acy.

2. WHY IT EXISTS

The reduction of a family of functions to
the sum of a non-Morse function and a Morse
i-saddle at a non-Morse critical point, which is
guaranteed by the Thom splitting lemma, can
be carried out by the methods of elementary
calculus. It will therefore not be reviewed
here.

The reduction of a non-Morse function in
the neighborhood of a degenerate (non-Morse)
critical point cannot be carried out by the
methods of elementary calcutus. It will there-
fore be discussed in Sec. 2 of this article. This
reduction to canonical form can be accom-
plished following a simple algorithm. The
algorithm is illustrated in Sec. 2.1 in the
context of a simple example: the reduction of
a two-parameter family of functions of a
single state variable to canonical form in the
neighborhood of its most degenerate critical
point. The steps involved in this algorithm are
summarized in Sec. 2.2, and applied in Sec.
2.3 to an important example in which the
canonical form is not at all evident.

The algorithm involves two main proce-
dures. The first is the determination of the
most degenerate critical point, and the catas-
trophe germ at this point. This is accom-
plished by finding critical points, using the
conirol parameter degrees of freedom to elim-
inate the leading terms in the Taylor series
expansion of the function in the neighbor-
hood of that critical point, and then using a
nonlinear change of coordinates to eliminate
the higher-degree terms in the Taylor series
expansion. What is left over, between the
eliminated terms of low and high degree, is
the catastrophe germ, CG(/), describing the
degenerate critical point.

The second procedure in this algorithm is
the determination of a universal perturbation.
This follows the steps described above in
more or less reverse order. First, an arbitrary
function (perturbation) is added to the catas-
trophe germ. Then the high-degree terms are
eliminated by a nonlinear change of coordi-
nates. Finally, as many as possible of the
low-degree terms are eliminated by a rigid
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translation of the coordinate system. The small
number of terms remaining from the original
general perturbation form the universal per-
turbation, Pert(4k), of the catastrophe germ
CG()).

The mathematics used in these examples
appears naively simple. However, this simplic-
ity should not hide the fact that the mathe-
matical approach used here is correct in spirit
and can be (has been) made rigorous with
sufficient effort (Poston and Stewart, 1978;
Arnol'd, 1981; Gilmore, 1981).

2.1 A Simple Example

We carry out the reduction of a family of
functions with a triply degenerate critical
point to the canonical form of the cusp catas-
trophe 4 ..;. We begin by assuming f(x;e;,c,)
is a family of functions depending smoothly
on one state variable, x, and two control
parameters, ¢, and ¢;. We wish to determine
the qualitative properties of any member of
this family and, in particular, to determine
how these qualitative properties change as the
control parameter values change.

To facilitate this study, we expand f(x;c;,¢3)
about some point xy:

flxiepe) = E falxgicy,e) (x—xp)" (28)

n=0

The Taylor series expansion of this function is
shown in line 1 of Fig. 8. The remainder of the
discussion of this example will refer to subse-
quent lines of this figure, At points x; where
f10 the implicit function theorem is applica-
ble and nothing qualitatively interesting will
happen. We therefore search over the range of
the state variables to find a critical point. At
that critical point f,=0. Since we are inter-
ested in the qualitative properties (shape) of
the potential, we readjust our v axis so the
function vanishes at the critical point. As a
result of using these two degrees of freedom—
choice of origin in both ordinate and
coordinate—the first two terms in the Taylor
series expansion of f vanish. The expansion is
shown in line 2 of Fig. 8.

There remain the two degrees of freedom
represented by the two control-parameter val-
ues ¢y, ¢,. It might be expected that we can use
these two degrees of freedom to annihilate
one, or at most two, of the remaining coeffi-
cients in the Taylor series expansion, but that
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Coefficients of x,
Object Line / Procedure X x 2 2 xS
Find 1. Taylor Expansion L S fp. f5 f
Canonical
Germm 2. Adi H .
. Adjust Ordinate;
Locate Critical Point 0 0 b B 4 i i
3. Exploit Control Parameter
Degrees of Freedom 0 0 £y t'5 t-6
4. Smooth Change of Coordinates 1] 0 0
Find 5. Add Arbitrary Perturbation € 8 & =484 &5 &
Canonicai .
Perturbati
¢ auon 6. Smooth Change of Coordinates g & & 1] 0 O
7. Shift Origin 0 €& & 0 +

f (x:Ci,cg)=tx4 + 8111 + 82x2
—— i —

CG() + Pen(l,®)

FIG. 8. The steps used to reduce a two-parameter family of functions to its canonical form at the most degenerate
possible critical point are illustrated in lines 1-4. The steps used fo determine the universal perturbation are shown

in lines 5-7.

we cannot generically (some deep mathemat-
ics is required at this point; ¢f, Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gilmore,
1981) annihilate more than two coeflicients, If
coeflicients of some high powers (fs of 25, f; of
x7) are annihilated, then the coefficient £, of x*
remains nonzero, the Morse lemma is appli-
cable, and nothing qualitatively interesting
will happen. The most interesting things hap-
pen when the control parameter degrees of
freedom are used to annihilate the leading
nonzero terms in the Taylor series expansion.
In the present case the following two interest-
ing possibilities arise:

(i) f2=0: fB:I&O:

(ii) f2=0! f3=0'

The second case is more interesting than the
first, which can already be encountered in
functions depending on one state variable and
a single control parameter.

We assume therefore that the two control-
parameter degrees of freedom can be used to
annihilate the two leading nonzero terms in

- the Taylor series expansion given on line 2 of

Fig. 8. The resulting Taylor series expansion
shown on line 3 of Fig. 8 begins with a term of
degree 4,

This is as far as we can go using the simple
“linear” degrees of freedom represented by
choice of origin in the ordinate and coordi-
nate and the two control-parameter degrees of
freedom. However, we have not yet exploited
any “nonlinear” degrees of freedom. That is,
there is the possibility to perform a smooth
nonlinear change of coordinates to remove
some of the higher-degree terms in the Taylor
series expansion. To do this we seek a nonlin-
ear change of variables,
' =A x4 A5+, (29)
which will eliminate as many of the higher-
degree terms as possible from the remaining
Taylor series expansion (line 3, Fig. 8). It is
possible to find a nonlinear change of vari-
ables that eliminates the Taylor tail, the tail of
the Taylor series expansion (the term x* is
determinate; more powerful mathematics is
needed at this point also, cf. Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gilmore,
1981). The first two coefficients in the nonlin-



ear change of variables above are A;=|f,| /%,
Ay==f5/4|f4|**. The expansion is analytic
and the sum converges locally. In the new
coordinate system the transformed function
is =% The Taylor series after this nonlinear
change of variables is shown on line 4 of
Fig. 8.

This procedure produces the catastrophe
germ of the two-parameter family of func-
tions f(x;cp,e5):

flxmepe;)=+x%  (catastrophe germ).  (30)

The second step in the process of reducing
a non-Morse function to canonical form is
computation of the universal perturbation of
minimum dimension. To do this, we repeat
the procedure described above in almost the
reverse order. We begin by adding an arbi-
trary perturbation

o0

ex)= 2 e (31)

=0

to the catastrophe germ. The Taylor series
expansion of the perturbed function is pre-
sented on line 5 of Fig. 8. '

A nonlinear change of variables can once
again be called upon to eliminate the Taylor
tail. The nonlinear transformation (29) fails
to converge unless the base term from which
the elimination is made has a large coefficient.
Thus, trying to eliminate the Taylor tail of
terms above x, 22, or x> will fail because the
coefficients of these terms, €, €, €3, are small
and not bounded away from zero. However,
since the coefficient (£1+¢,;) of x* is large
- and bounded away from zero when ¢, is small,
all terms above x* may be eliminated by a
nonlinear change of coordinates. To state this
in another way: Any terms in the Taylor tail
that may be eliminated in the initial construc-
tion of the catastrophe germ {line 3 to line 4)
can be eliminated from the perturbation (line
5 to line 6). The result of this nonlinear
change of variables is shown in line 6 of Fig.
8. .

As a final step, we can choose a new origin
of ordinates (rigid vertical shift) to eliminate
¢g and of coordinates (rigid horizontal shift)
to eliminate one of the three remaining terms.
Since the linear and quadratic terms cannot
always be eliminated but the cubic term can
be, we choose to eliminate this term. The final
result,
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flxcpe) =22 rexl+ et (32)

is shown in line 7 of Fig. 8.

We summarize briefly the steps taken to
answer the two equations implicit in the state-
ment of the classification theorem presented
at the beginning of this section:

1. How to construct the catastrophe germs:

(a) Locate a critical point and move the
origin of coordinates to that critical
point.

(b) Eliminate the leading Taylor series co-
efficients by using the control parame-
ters.

(c) Remove the Taylor tail by a smooth
nonlinear change of variables.

2. How to construct the universal perturba-

tion: .

(d)- Add an arbitrary perturbation.

() Remove the Taylor tail by the same
smooth nonlinear change of variables.

(I) Move the origin of coordinates to elim-
inate unnecessary terms.

2.2 General Procedure

The general procedure for reducing a non-
Morse function to the sum of a catastrophe
germ and a universal perturbation has been
illustrated by example in the previous section.
In some respect, the procedure followed in the
reduction follows in spirit the procedure used
in the study of electrodynamics. We often find
that the near-field regime (low-degree Taylor
series terms) is tractable, as is the far-field
regime (Taylor tail}). The really interesting
part is between these two regimes (inierme-
diate-field regime ~catasirophe germ).

We summarize the general procedure be-
low and refer to Fig. 9. The following steps are
taken to compute the catastrophe germ of a
function f{x;c) with *&R” and ecR%:

1. Computation of the catastrophe germ CG({):

(a) The function is expanded in a Taylor

series. The origin of ordinates and co-

ordinates is rigidly (linearly) shifted to

a critical point. This eliminates the

zeroth- and first-degree terms in the
Taylor series expansion.

{b) The control parameter degrees of free-
dom are used to eliminate as many of
the remaining low-degree Taylor series
coefficients as possible. No more than &
coeflicients can typically be annihi-
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FIG. 9. General procedure for computing the catas-
trophe germ and the universal perturbation of a family
of functions. -

Change of Coordinates

lated (by transversality: cf. Poston and
Stewart, 1978; Arnol'd, 1981, 1986; Gil-
more, 1981).

(c} A smooth nonlinear change of vari-
ables is introduced to eliminate as many
terms in the Taylor tail as possible.
Whether all terms above some finite
degree, or only most terms; can be
eliminated is determined algorithmi-
cally (determinacy algorithm: cf. Pos-
ton and Stewart, 1978; Arnol'd, 1981,
1986; Gilmore, 1981).

After the catastrophe germ has been com-
puted, the steps followed above are taken in
reverse order to compute the universal per-
turbation of the catastrophe germi:

2. Computation of the universal perturbatlon
Pert(Lk):

(d) An arbitrary perturbation is added to

the germ. The smooth transformation

-used to eliminate the Taylor tail in step

{c) above is used again to eliminate the

same terms of the perturbed germ and

reduce the coefficients in the germ to
the same canonical values.

(e) A shift of ordinate and coordinate is
introduced to eliminate the constant
term in the perturbation and / (state
space dimension of the germ) of the
remaining terms of the perturbation.

This procedure reduces a family of func-
tions to canonical form in the neighborhood
of a degenerate critical point.

2.3 A More Complicated Example

In this closing section of Sec. 2 we tackle a
more complicated example. This is done for
{wo reasons:

1. to illustrate the methodology described in
the previous section for a multidimensional
state-variable space.

2. to illustrate exactly why the classification of
elementary catastrophes terminates at con-
trol dimension k=35.

The particular example we consider is the
reduction to standard form of the six-control-
parameter family of functions defined on a
three-dimensional state-variable space,

f(x:0) = F(X.9,261,€2,€3,€4C5,C5) - (33)

To effect this reduction we follow the steps
described in the previous two sections. The
computation of the catastrophe germ is illus-
trated in Fig. 10(a). The computation of the
universal perturbation is shown in Fig. 10(b).
The steps 1-5 used to compute the germ below
are indicated by the corresponding numbers
over the arrows, which show the effect of
these steps, in Fig.-10(a). Steps 6-9, used to
compute the universal perturbation, are sim-
ilarly keyed to the arrows in Fig. 10(b).

1. The Taonr series expansmn for this fune-
tion is

f > MK ey
s6)= =[x —x,
(e S Gaitkn T
=0
k»0
X (¥—y0) (z—z0). (34)

This Taylor series is illustrated schemati-
cally in Fig. 10(a), where we have grouped
" together all terms of the same degree and
suppressed factorials.
2. We search over state-variable space for a
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FIG. 10. The procedure used to compute the catastrophe germ and universal perturbation for-a si'x-parameter
family of functions depending on three state variables. The numbers over the arrows are keyed to the steps taken
in the text.

critical point, then move the origin of co-
ordinates to that point. This removes the
constant and linear terms from the Taylor
series expansion.

3. The six conirol-parameter degrees of free-

dom can be used to eliminate up to six of
the remaining terms in the Taylor series
expansion. If any of the quadratic terms
remain, the catastrophe uliimately con-
structed appears in the list given in Table 2.
However, if we use these six control-param-
eter degrees of freedom to eliminate all six
second-degree terms from the Taylor series
expansion, something new appears. Accord-
ingly, we make this choice. The resulting
expansion begins with the third-degree
terms.

. Using a homogeneous linear transforma-
tion we can attempt to put the cubic terms
into some canonical form. Since a linear
transformation on the state-variable space
1is a 3% 3 matrix with 32 degrees of freedom
and there are ten cubic coefficients, it is
possible to give canonical values to only
nine of these ten coefficients. Symmetry
dictates the choice

z ff,-kfyz"=x3+y3+23+axyz
i+j+k>3
(+ higher-degree
terms). (35)

This linear transformation maps xth-de-
gree terms (#>3) into terms of the same
degree. The parameter, 4, which appears in
this function cannot be given a canonical
value, and is the reason why this catastio-
phe is not elementary. o

5. We then search for a smooth nonlinear

change of variables which will eliminate as
much of the tail of the Taylor series expan-
sion as possible. If '

(a/3)3+ 120, (36)

the cubic terms are determinate, This means
that 2 smooth transformation exists which
transforms away all terms in the Taylor
series expansion of degreec in excess of
some finite value, in this case three. The
resulting catastrophe germ is

f(xie) =T333=5"+y*+2*+axyz. (37)
This catastrophe germ is shown at the bot-
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tom of Fig. 10(a).

6. To compute the universal perturbation we
add a general function of three state vari-
ables,

e(xyz)= 2 €uxvz, (38)
i»0
2
to the catastrophe germ 7333 All coeffi-
cients gz are assumed to be small. The
Taylor series of the resulting perturbed
function is shown in Fig. 10(b).

7. Working backwards, we find a linear trans-
formation which transforms the cubic terms
to the form (37).

8. If the original function 7T} 3 3 is determinate
[(a/3)*+ 140}, the perturbed function must
also be determinate [(a'/3)+1:£0, a'=a
+ €311} for a sufficiently small perturbation.
This means that a smooth transformation
exists which transforms away all terms in
the Taylor series expansion of the per-
turbed germ of degree greater than 3.

9. Finally, we make a rigid displacement of
coordinate system to eliminate the constant
term epgq in the perturbation and three of
the remaining nine linear and quadratic
terms. Since it is always possible to elimi-
nate the three terms x2, %, 2%, the universal
perturbation is

Pert(1=3,k=6) =€+ €p10Y+ €001
+E€110%Y+H€10142
+ e yzt+axyz. (39

The seventh term, axyz, has been added
because it is not possible to reduce the
coeflicient of xyz in the catastrophe germ
T333 to a standard value. The universal
perturbation is shown at the bottom of Fig.
10(b).

- The net result of this calculation is a reduc-
tion of the function f(x;¢) given in Eq. (33) to
canonical form:

f(x:c) =T3.3,3 +Pert(3,6) (40)
(33)=(37) +(39)

We emphasize once more that for k<6
control parameters it is possible to assure that
any catastrophes that are encountered are
elementary, but for 2=6 (and %> 6) thisisno
longer possible, as T3 3 ; shows.

3. HOW IT WORKS

Elementary catastrophe theory consists of
a collection of theorems about the canonical
forms of functions in the neighborhood of
degenerate critical points. Catastrophes in the
real world consist of processes that exhibit
discontinuities and sudden jumps. It is clear
that the mathematics provides the right lan-
guage for describing the physical processes. -
But how? The mathematics describes poten-
tials that depend on control parameters; pro-
cesses depend on time. It is tempting to allow
control parameters to depend on time, but
then the catastrophe functions are no longer
strictly potentials. And what of the dynamics
describing a physical system? If many equi-
libria are available, which does the system
choose? Finally, how can we recognize when
a physical process can be modeled by a math-
ematical catastrophe function?

These practical questions are the subject of
Sec. 3 of this article. The difficulty of relating
the dynamics of a system to a potential that
describes it is discussed in Sec. 3.1. In most
instances the system state is governed either
by a local or the global minimum of a poten-
tial, and sudden jumps from one state to
another occur when the control parameters
pass through an appropriate component of
the bifurcation set. Although the two conven-
tions presented (Maxwell, Delay) are not com-
plete, they serve well in a preponderance of
situations. ,

When a catastrophe occurs in some physi-
cal process, a multiplicity of related phenom-
ena occur. These phenomena are called catas-
trophe flags. They are treated in Sec. 3.2. The
identification of any is a clear indication that
the others are present and will be recognized
if sought. These flags may be used to identify
the mathematical catastrophe function that
most accurately describes the discontinuous
physical process.

In Sec. 3.3 we illustrate the use of catastro-
phe theory in determining the sensitivity of
failure modes of a complex structure to hid-
den or unforeseen imperfections, This is done
by investigating the catastrophe germ for an
optimized system and then determining the
universal perturbation for that germ. In the
particular example considered, that of a

" propped cantilever, strong coupling of two

“soft” collapse modes yields a “soft” collapse
direction and a “hard” direction, one in which



a severe and unexpected collapse is possible,
Further, analysis of the universal perturba-
tion for that collapse mode reveals that the
mode is extremely sensitive to imperfections
in either the design or fabrication stages of
construction. Finally, the use of catastrophe
theory to suggest tests to locate the actual (as
opposed to designed) failure load, as well as
ways to increase the load at which failure
occurs, are suggested.

Since elementary catastrophe theory is the
first step in the program of catastrophe the-
ory, all its results and phenomenology will
necessarily be present in subsequent develop-
ments in this program. The next stage in this
program following elementary catastrophe
theory is the study of dynamical systems, sets
of coupled first-order ordinary differential
equations. We show in Sec. 3.4 how the fold
and the cusp catastrophe appear in dynamical
systems theory under the guise of three ele-
mentary bifurcations; the saddle-node bifur-
cation (A4,), the pitchfork bifurcation (43),
and the Hopf bifurcation (A4;).

3.1 Catastrophe Conventions

Elementary catastrophe theory is the first
tentative siep in the program of catastrophe
theory. It was motivated above by our desire
to describe the qualitative properties of gradi-
ent dynamical systems of the form (4). The
qualitative dynamics of such systems are de-
termined by a potential function. The local
flow in the neighborhood of each nondegen-
erate critical point {(Morse i-saddle) is canon-
ical and the separate flows can be pasted
together to construct a global flow.

As the study of elementary catastrophe
theory evolved, it became clear that the key to
our understanding of non-Morse critical points
was the determination of how the critical
points moved about, coalesced and disap-
peared, or were born degenerate and moved
apart as the control-parameters changed. The
dependence of critical points on control-
parameter values, as described by the canon-
ical decomposition (15), provides a complete
resolution to the mathematical question posed
by elementary catastrophe theory. However,
it does not address a corresponding physical
question. That is, how does the dynamics
depend on the control parameters? Once the
conirol parameters are allowed to vary in
time, the system (4) is no longer a gradient
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system—the potential is time dependent. As a
result, knowledge of the shape of the potential
is not sufficient to determine the state of the
systern unless the equations of motion are
known,

In the absence of a detailed set of equations
of motion, the state of the physical system
described by an elementary catastrophe must
be determined by some infusion of intuition.
This is done by adopting one of two standard
assumptions. These are the Delay convention
and the Maxwell convention (Zeeman, 1977;
Poston and Stewart, 1978; Gilmore, 1981).

-Delay Convention: The state of a system is
determined by a (local) minimum of a poten-
tial. As the control parameters change, the
state remains at the local minimum as long as
that minimum exists. When the local mini-
mum ceases to exist (at a bifurcation set) the
system state jumps to a new local minimum,

Mazxwell Convention: The state of a system
is determined by the global minimum of a
potential. As the control parameters change,
the state remains at the minimum as long as
that minimum remains the global minimum
of the potential. When the minimum ceases to
be the global minimum, the system state
jumps to the new global minimum.

We stress again that these assumptions
about the behavior of a physical system are
required only by our Jack of knowledge of the
system's equations of motion.

The difference between these two assump-
tions is ilustrated in Fig. 11 for the cusp
catastrophe. When a<0 the potential may
have one minimum or two. We assume the
system begins in the unique minimum of the
potential. As the control parameter 4 is
changed, a new minimum is created in a fold
catastrophe. The original minimuim eventu-
ally becomes metastable with respect to the
new minimum, and finally the original mini-
mum disappears in a fold catastrophe. Accord-
ing to the Delay convention, the system jumps
to the new minimum only when the original
minimum is annihilated. According to the
Maxwell convention, the jump occurs when
the two minima become equally deep (at
b=0). These two conventions are illustrated
on the canonical critical-value surface for the
cusp in Fig. 11(b). The jumps occur at the
parts of the critical-value graph
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which prevent the surface from being a man-
ifold. The Delay convention requires jumps to
" occur at the creases which represent the col-
lision of a local minimum and maximum and
which lic over the cusp-shaped curve (21).
The Maxwell convention requires jumps to
occur at the self-intersection which represents

FIG. 11. (a) The Delay conven-
tion and the Maxwell convention
determine when the jump from
one local minimum to another
takes place as the control param-

. eters are varied. (b) The two bifur-
cation sets correspond to pieces
of the critical surface which pre-
vent the surface from being a
manifold. Under the Delay conven-
tion, jumps occur at the creases in
the surface, where a local mini-
mum and maximum become de-
generate. Under the Maxwelt con-
vention, jumps occur at the
intersection of two of the leaves of
this surface, where the two min-
ima become equally deep.

the surface on which the two minima are
equally deep and which lies over the half-line
b=0, a<0.

The bifurcation sets for the Delay and
Mazxwell conventions are sets in the control-
parameter space at which jumps to new states
take place. These sets are determined by local
and global considerations for the two conven-
tions. The bifurcation set for the Delay con-



vention consists of that subset of the bifurca-
tion set for the catastrophe which involves a
Morse 0-saddle. For catastrophes more com-
plicated than A.;, some components of the
bifurcation set involve Morse saddles M7 and
M 1, i > 0. On these components of the
bifurcation set the two saddles M7 and M?,,
are degenerate. These components of the ca-
tastrophe’s bifurcation set are not compo-
nents of the bifurcation set determined by the
Delay convention, since local minima (M)
must be present, The bifurcation set for the
Maxwell convention is determined by nonlo-
cal arguments. Once a point on the Maxwell
set has been located, the remainder of the set
may be constructed by integrating a set of
equations of Clausius-Clapeyron type (Gil-
more, 1981).

The appropriate choice of convention must
balance the rate at which the control-param-
eters are varied against the noise level of the
system--specifically, the probability that a
fluctuation in energy will occur in excess of
the barrier height separating a local minimum
from other minima, including the global min-
imum. When the noise level is low, it is
usually safe to adopt the Delay convention,
When large fluctuations occur more rapidly
than the control parameters are swept, the
Maxwell convention is more suitable.

From Fig. 11 it can be observed that the
bifurcation set for the Maxwell convention
“lies inside” the bifurcation set for the Delay
convention, This is a general feature of catas-
trophes and has the following physical inter-
pretation. If a system whose phase transition
properties are usually described by the Max-
well convention is handied very gently, the
jump from a metastable state to a global
minimurm may not occur at the bifurcation set
for the Maxwell convention. The transition
may be delayed—but it cannot be delayed
beyond the point at which the local minimum
ceases to exist—the bifurcation set for the
Delay convention. The outer limits beyond
which metastability cannot occur for a phys-
ical system are called spinodal curves (or
surfaces). The spinodal curves surrounding
the bifurcation set for the Maxwell conven-
tion consist of the bifurcation set for the Delay
convention. The spinodal curves for the sym-
metry-restricted catastrophe

Ayst f(xa,e) =i+ lax + e (41)
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are shown in Fig. 12.

When the equations of motion for the
systemn are known explicitly, there is no need
to make an assumption (i.e., adopt a conven-
tion) about the system’s behavior. For exam-
ple, the system state may be governed by a
probability distribution, P(x,t), which satis-
fies a Fokker—Planck equation

OP/3t=V(PVV)+V*(DP), (42)

where V has a time dependence due to the
time dependence of some control parameters:

Vi{x;t) =V(xe(r)) (43)

and D is a diffusion constant. Then the prob-
ability distribution for the system state can be
determined explicitly as a function of time. In

this case there is no well-defined bifurcation

set—there is an occupation probability for the
two minima (and surrounding regions) and
that probability changes smoothly in time.

It has been shown that the Fokker-Planck
equation can be used to interpolate between
the two extreme limits represented by the
Delay convention and the Maxwell conven-
tion (Gilmore, 1981). .

We remark, finally, that the problem of
system state is not necessarily resolved by
adopting the Delay convention, as appears to
be the case in Fig: 11, In that figure there is
one remaining minimum when the metasta-
ble minimum disappears in a fold catastro-
phe, so the system has a unique minimum to
jump to, But what happens when there are
two or more remaining minima-that the sys-
tem can jump to? Does the system jump to the
deepest minimum, the nearest minimum, or
yet another minimum? On this the Delay

Ut
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FIG. 12. Shapes of tt11e symmetry-restricted butterfly
catastrophe #x.a,c)=gp¢4zax*+3072, together with
bifurcation sets under the Delay and Maxwell conven-
tions. Spinodal curve for the Maxwell set is the bifur-
cation set for the Delay convention.
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convention has nothing to say. In short, the
conventions are incomplete. They can be very
useful but they are not substitutes for detailed
knowledge of the equations of motion.

- 3.2 Catastrophe Flags

An important reason for studying the ele-
mentary catastrophes is that their properties
are canonical. Therefore, predictions based
on the properties of an elementary catastro-
phe in a physical system are canonical. This
means that their properties neéed be studied
only once, They can then be applied directly,
without change, to any physical system de-
scribed by that catastrophe. As a result, it is
important to be able to determine the pres-

ence and type of a catastrophe underlying the

behavior of a physical system.

This may be done either deductively or
inductively. In the first procedure there is fuil
knowledge of the equations of motion describ-
ing the system. When this is the case it is
generally possible to make whatever predic-
tions are desired by computing solutions of
these equations. It is then possible to predict
the behavior of the system without any knowl-
edge of the elementary catastrophes. This, in
fact, has been a long-standing operational
mode in the physical sciences. _

There are, however, instances in which the
equations of motion are not known. Then the
presence of a catastrophe cannot be deduced
{from the equations). It may, however, be

Modality

Sudden
Jump }

Tima Difation
Arcmalous Variance

Divergence of
tinear Response

— Hysterases

induced from the behavior of the system.
When a catastrophe is present, the system
undergoes {or may undergo) a qualitative
change in its behavior. This qualitative change
is often accompanied by a number of other
phenomena. For any particular system these
may be more or less difficult to recognize. The
point is that the observation of any will imply
the presence of all and that if we look hard
enough we will find all these correlated phe-
nomena.

Eight phenomena typically occur when a
catastrophe is present. These are called catas-
trophe flags: in a sense the catastrophe “waves
flags” to atiract our attention. Of the eight, five
are classical: they occur when there is a
qualitative change in the system. The remain-
ing three also occur when there is a qualitative
change, but thiey may also be observed before
a phase change occurs. This is very important
when the phase change represents the transi-
tion of a structure from one state to another
(i.e., collapse of a bridge). The five classical
catastrophe flags are modality, sudden jumps,
inaccessibility, sensitivity, and hysteresis (Zee-
man, 1977; Poston and Stewart, 1978). The
three diagnostic catastrophe flags are diver-
gence of linear response, time dilation, and
anomalous variance (Gilmore, 1981). These
are now discussed and illustrated in Fig. 13
for the cusp catastrophe.

3.2.1 Modality. In the neighborhood of a
catastrophe the system can exhibit two or

FIG. 13. Eight phenomena (flags) associ-
ated with the presence of a catastrophe.




more distinct types of behavior (near a criti-
cal point: liquid, gas; near a triple point: solid,
liquid, gas}. The upper and lower surfaces of
the cusp catastrophe manifold represent two
distinct types of locally stable behavior in Fig.
13. The intermediate part of this manifold
represents an unstable mode of behavior which
neveriheless may be observed with sufficient
care,

3.2.2 Sudden Jumps. The system may
suddenly jump from one mode of behavior to
another mode of behavior (liquid, high den-
sity, to gas, low density) as the control param-
eters (iniensive thermodynamic variables: tem-
perature and pressure) are varied. These jumps
represent the transition from one local mini-
mum to a global or another local minimum.
The location of the sudden jumps may or may
not be adequately described by one of the two
conventions presented in Sec. 3.1.

3.2.3 Inaccessibility. Separating the two
or more local minima (M)« responsible for
“modalities” is at least one Morse saddle
(M7?). The Morse saddles M? (i > 0) are all
dynamically unstable. In the neighborhood of
such a saddle the system, if perturbed, will
move quickly to a locally stable state. As a
result, modality will always be accompanied
by inaccessible regimes as represented by the
middle sheet of the cusp catastrophe mani-
fold.

3.2.4 Sensitivity. If the system is brought
from the single-mode regime to the multi-
mode regime the question arises: what is the
final state of the system? For most initial
conditions and processes, the final state is
robust against perturbations. That is, if the
final state lies on the upper sheet of the cusp
catastrophe manifold, then a perturbation of
either initial conditions and/or processes will
leave the final state on the upper sheet. How-
ever, there is a small set of initial conditions
and/or processes for which this is not true.
This sensitivity to (some) initial conditions is
shown in Fig. 13. For the process db/dt=0,
da/dt <0 the initial condition with #=¢>0
will result in a final state on the lower sheet
while the nearby initial condition b= —e<0
lies on the upper sheet. A similar phenome-
non occurs for processes that are almost
identical, beginning from appropriate initial
conditions. We remark that for the clemen-
tary catastrophes there is sensitive. depen-
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dence on some initial conditions while in the
study of chaos there is sensitive dependence
on all initial conditions.

3.2.5 Hysteresis. A sudden jump from
one modality to another may occur at the
bifurcation set for the Delay or Maxwell con-
vention, or anywhere in between. If the pro-
cess is reversed, the jump back to the original
modality may occur at the same control-
parameter value as the initial jump (Maxwell
convention) or at different conirol parameter
values (any other convention). Unless the
Maxwell convention is observed, jumps be-
tween the different ‘modalities will exhibit
hysteresis. Hysteresis, while not necessarily a
part of the catastrophe scenario, can usually
be observed with sufficient.care even when the
Maxwell convention suggests itself (e.g., su-
perheating and supercooling in a liquid-gas
phase transition).

The five classical catastrophe flags just de-
scribed are of little use to the structural engi-
neer looking for the limiis of stability of a
large structure (bridge, building} or a naval
engineer testing a ship’s stability. In many
instances, transition from one modality to
another is not only a catastrophe, but a disas-
ter as well (collapsed bridge, building; cap-
sized ship). For this practical reason it is
essential to have a set of catastrophe flags that
identify the presence of a catastrophe, and can
be used to map out approximately the bounds
of the catastrophe (i.e., bifurcation sets) with-
out actually having to enter the multimode
regime, or at least make the transition be-
tween modes. The three diagnostic catastro-
phe flags accomplish just this.

3.2.6 Divergence of Linear Response.
The response, 8x;, of an equilibrium in state-
variable space to a small change in the control
parameters, 6c,, is given by

8t =YiC 0 (44)

where the linear susceptibility tensor y;, is
given explicitly by Bq. (25) for a system
governed by a potential. As a local bifurcation
set is approached, at Ieast one of the eigendi-
rections has a very large response. This is the
direction in which two or more critical points
are approaching each other. This direction is
an eigenvector of the stability matrix, ¥, in
Eq. (25). The eigendirection, and the depen-
dence of the diverging eigenvalue (A;!) on
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the control parameters ¢,, can be used to map
~out the bifurcation set without actually pene-
trating it (Gilmore, 1981). In the liquid-gas
phase transition divergence of linear response
manifests itself as the divergence of the com-
pressibility as the critical point is approached
from either the single-phase or the multiphase
region. Divergence of the compressibility may
also be seen, with greater difficulty, as the
spinodal lines are approached from within the
multiphase region.

3.2.7 Time Dilation (Critical Slowing
Down, Mode Softening). In the neighbor-
hood of a nondegenerate eritical point the
equations of motion for a dissipative gradient
system are

dx/dt=—Vyx, (45)

For a dissipative system the relaxation to
equilibrium following a perturbation occurs
on a time scale that is the reciprocal of the
smallest eigenvalue of the stability matrix V.
For a conservative system the spectrum of
oscillation frequencies, ®;, consists of the
square roots of the eigenvalues of Vj;. Upon
approach to a bifurcation set one or more of
the eigenvalues of V;; approaches zero. Relax-
ation to equilibrium slows down (critical slow-
ing down) as the bifurcation sei is approached.
The dependence of the vanishing eigenvalue
on the control parameters can be used to
determine where in control-parameter space
the bifurcation set occurs. The associated ei-
genvector can be used to locate where in state
space the critical points become degenerate. A
similar analysis is possible when one (or
more) of the frequencies of a conservative
systemr approaches zero (mode softening).
Time dilation is well known to experimental-
ists. The time required for equilibration near
the critical point in the liquid-gas phase tran-
sition grows very rapidly as the critical point
is approached, making experiments on the
equilibrium properties of fluids near their
critical points very difficult and time consum-
ing.

3.2.8 Anomalous Variance. When the
state of a physical systern is described by a
Morse critical point, motion about the equi-
librium is confined by a quadratic potential
well. On approach of another critical point the
~ quadratic potential becomes flattened and mo-

tion about the equilibrium becomes less con-

fined. This reduction in localization, or decon-
finement, is called anomalous variance. In a
gas-liquid system anomalous variance is dra-
matically observed at the critical point as
critical opalescence. This occurs when fluctu-
ations in the size of liquid droplets in the gas
phase and gas bubbles in the liquid phase can
occur at all length scales, including length
scales comparable to optical radiation, pro-
ducing an anomalously strong scatiering of
light.

Although catastrophe theory provides a
qualitatively correct description of physical
properties of a fluid near its critical point, it
does not provide a quantitatively correct de-
scription of these properties and must be
replaced by a better descriptive mechanism
for the purposes of making accurate predic-
tions of physical behavior.

3.3 The Dangers of Design Optimization

Large structures are built from many
smaller parts. Cost is almost always a major
factor in the design and construction of a
complex structure, such as a bridge. As a
result, a design philosophy has been widely
adopted. This is the philosophy of design
optimization. The basic idea is to design each
component to meet but not exceed its specifi-
cations. For example, if an elevated roadway
designed to support a load L is to be supported
by ten cantilevers, each cantilever should be
designed to support some fraction of that
load. ¥t makes no sense to design some canti-
levers to be stronger (and more expensive)
than others: what good will they do when the
others have already collapsed, taking the road-
way with them? '

This is the philosophy of design optimiza-
tion. It has hidden dangers because complex
structures may have hidden or unexpected
collapse modes. Further, these modes may
have exceptionally sensitive dependence to
imperfections in the fabrication/construction
stages. We illustrate these ideas and dangers
by treating a simple example. This is a propped
cantilever designed to support a load Fup to
some critical load, F.

The cantilever is shown in Fig. 14. We
assume it has unit length and a force F is
applied vertically at the top of the cantilever.
The mass of the beam is assumed small com-
pared to the loading force F.
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FIG.14. The cantilever consists of a vertically propped
beam supported by springs of spring constant k,
providing restoring forces in the x-z plane and springs
of spring constant k, providing restaring forces in the
y-z plane. The length of this beam is scaled to 1.
Displacements from the vertical are described by the
{xy) coordinates of the top of the beam. Solid axes
{xy) are axes along which a “soft” A_; catastrophe
occwrs. Dashed axes (x==:)) are axes along which a
“hard” A_; catastrophe occurs.

‘We assume the collapse modes of this
cantilever involve deflection in the x-z plane
through an angle ¢, from the vertical, deflec-
tion in the y-z plane through an angle @, from
the vertical, or any combination - of these
motions. We also assume that deflection is
counteracted by springs with spring constants
k, k; providing restoring forces in the x-z and
¥-z planes, respectively. The potential describ-
ing this cantilever is

V(01,05F) = (2/2Y165+ (2/2) k2 +-Fz, (46)

where z is the height of the top of the cantile-
ver.

It is useful to express this potential as a
function of the displacement coordinates x
=sinf; and y=5iné, of the top of the cantile-
ver. The potential, up to quartic terms, is

V(x,y:F) =kt (1+22/3) +k (1452/3)
+F(1—2*—y%)172,

For displacemenfs in the x-z pIa.ne with y=0,

(47)
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V(x,O;F)=F+(kl—-F/Z)x2+(k1/3—F/8)(Ji‘§
)

This can immediately be recognized as a
symimetry-restricted cusp catastrophe, 4, ;. A
similar potential describes displacements in
the y-z plane x=0. Since the potential V{(x,y;F)
exhibits a bifurcation at &;—F/2=0 and
V(0;y;F) exhibits one at k;—F/2=0, it makes
sense to design the cantilever with equal spring
constants k;=k,=F_/2, where F., is the criti-
cal load to be supported by the cantilever.

Or does it?

The potential for the optimized cantilever
under an arbitrary displacement is

V(x,3:Fy=F+35(F~F) (45
+{F/6—F/8)(x*+y") —iFP.
(49)

The last term represents a strong coupling
between the two displacement directions. This
coupling term has severe consequences for
the collapse behavior of the cantilever.

As the foree F is increased, the potential
V(x,5:F) remains locally stable until the crit-
ical Ioad F, is reached. At this load, the
fourth-degree term F (x*—6x2y2+3%) /24 al-
lows sudden collapse of the cantilever in
particular directions. This is not what is ex-
pected from investigating the planar poten-
tials V(x,0;F) and V(0,y,F): for these poten-
tials the coefficient of the quartic term is
positive at the critical load, so that only a
small in-plane displacement occurs after the
critical load is exceeded. In other words, the
postbuckling behavior of the cantilever in
either the x-z plane or the y-z plane is “soft” in
the sense that after the bifurcation the stable
equilibrium is located near the original stable
equilibriim (x,y) = (0,0} in the state-variable
space. .

In cylindrical coordinates x=r cos¢ and
y=rsing the potential is

V(r.g:F)=F+(k—-F/2)¢*

+(k/3)r*(cos’d+sin*e) — (F/8)r.
(50)

The coefficient of 7* is largest f=+1) for
displacements along the +x or +y axes (¢

. =nn/2, n integer) and smallest (=1/2) for

displacements along the axes x=+y (¢=n/4
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+nw/2, n integer). Along these two different
sets of displacement directions the potentials
are

V(r,g=0F) =F+ (k—F/2)* +(k/3 - F/8)r",
(51a}
V(rg=u/4F)=F+(k—-F/2)¢r

4 (k/6—F/8)r"

The first potential, representing displace-
ments in the x-z or y-z planes, is a catasirophe
of type A3, with “soft” postbuckling behav-
ior. That is, for loads in excess of the critical
load the displacement from vertical increases
rapidly but continuously. The second poten-
tial, representing coupled displacements (x=
#), is a catastrophe of type A_;, with “hard”
postbuckling behavior. For loads in excess of
the critical load the only /sztgble position is

(5ib)

horizontal-—completely collapsed.

These observations may appear academiic.
After all, the cantilever remained vertical and
supported loads F below the critical load.
However, we have not yét considered imper-
fection sensitivities. These are encountered in
the fabrication stages (of the springs, for
exampie) and the construction stages in every
large project. The most general perturbation,
representing arbitrary imperfections for the

cantilever, are obtained by investigating the

germ of the potential, which is (x*
—6x25%+5*}/24. The universal perturbation
of this catastrophe germ is the eight-parame-
ter function

Pert(x,y;aij)z.z a{jxiyi:
(52)
i2, j<2, (if)5(00).

It is truly remarkable that every imaginable
imperfection in fabrication of the individual
components (nonuniformity in density of ma-
terial from which the beam is constructed,
unwanted bends in the beam, air bubbles,
etc.) as well as every imaginable imperfection
in construction (springs along the x axis with
different spring constants, springs along x and
y axes slightly out of perpendicular, rest height
not quite vertical, loading force not quite
vertical, etc.) can be represented by a univer-
sal perturbation with only eight parameters.
However, even eight parameters will present
a complicated problem of analysis. In the
present case we can do even better. The

failure eigendirections for the soft 4 3 catas-
trophe are the x and y axes (%x,0), (0,%=y).
Under this catastrophe [Eq. (51a)] the original
unperturbed stable solution (x,¥)=(0,0) be-
comes unstable for F> F,, giving rise to new
stable equilibria (£[6(F/F,—1)]2,0), (0,
+{6(F/F,—1)]*?). Since the new equilibria_
are relatively near the old one and are stable,
this structural failure is a “soft” bifurcation.
This “soft” bifurcation is shown in Fig. 15(a).

The other failure eigendirection, x== %y, is
a “hard” bifurcation and a completely differ-
ent story. In this case [Eq. (51b)] the new
equilibria exist for F<F, at (£[6{1—F/
F)12, £[6(1—F/F_)]""?). These equilibria
are saddles of type M%. If for F<F,_ a pertur-
bation moves the system state (x,y) to the
neighborhood of any of these saddles, there is
the possibility of sudden collapse of the can-
tilever. This “hard” bifurcation is shown in
Fig. 15(b).

As a result of these considerations, in order
to study the severe failure modes of the
propped cantilever, and in particular the im-
perfection sensitivity of these modes, it is
sufficient to study the imperfection sensitivity
of the A_; catastrophe [Eq. (51b)]. Under the
most general perturbation, the potential de-
scribing failure modes in the weak eigendirec-
tion is

V(r;b,F) = —5F 7+ H(F— F)yP + br, (53)

where F, = F, 4+ a, and a is one of the two
control parameters for the cusp catastrophe.
The other parameter, b, describes symmetry-
breaking perturbations. The load F;
= F(F,b) at which the propped cantilever
collapses is determined by the values of
F., b at which the locally stable equilibrium
becomes degenerate with either of the two
saddles it separates. This locus is the semicu-
bical parabola (21b), which gives for the
failure load

Fy=F,—3(3bF%)*3, (54)

This simple expression reveals that the failure
load is severely decreased by any symmetry-
breaking imperfection (5:#0). The severity is
indicated by the power-law dependence: 2,/3.
An imperfection leading to a small asymme-
try in either plane x==+y will lead to an
unexpectedly large reduction in the cantile-
ver's failure load. The imperfection sensitivity
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X+y=nZ  xy=0
or
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FIG. 15. In all figures stable equilibria (Morse saddies M) are shown by solid curves and unstable equilibria
(M3) are shown by dashed curves. (a) Equilibrium displacement for the “soit” A, 3 catastrophe along the axes
(xy="0) or {x=0,). Prebuckling path (F<F,) is (x, ¥)=(0.0). Beyond the critical load, F> F_, the postbuckiing path
is parabolic, with r~ (F—F )", (b) Equilibrium displacement for the “hard"” A_, catasiraphe along the directions
x==£y. Prebuckling path {(x,))=(0,0) is stable for F <F, There are no stable equilibria for Fx F. () The most
general perturbation of a cusp catastrophe consists of a iinear plus a quadratic term: (a/2)"+br. The quadratic
term (a/2)r* shifts the critical load: 3(F—F 3+ (a/2)r*+br-HF — F)-+br, where F, = F, — . The linear term
breaks the symmetry. For the “sofi” catastrophe A 5 the perturbation displaces the equilibrium as shown. {d} For
the “hard” catastrophe A_, the perturbation can dramatically reduce the load at which failure occurs, as shawn.

of the “soft” and “hard” bifurcations are shown
in Figs. 15(c) and 15(d).

Having analyzed the problem, can we do
anything about it? The first step is to deter-
mine how severe the problem is. To determine
the failure load, we make use of the catastro-
phe flags. The first five (modality, sudden
jumps, inaccessibility, sensitivity, hysteresis)
are observable when the cantilever collapses.
This is precisely the problem we would like to
avoid. The remaining three catastrophe flags
(divergence of linear response, critical slow-
ing down, anomalous variance) are diagnos-
tics designed precisely for the purposes at
hand. That is, the:system is subjected to grad-
ually increasing loading. The following data
are then recorded:

1. the displacement, 7, from equilibrium:;

2, the normal-mode frequency, o, for small
oscillations;

3. the amplitude, A, for small oscillations
about equilibrium.

These three observables depend in a canoni-
cal way on the control parameters F — F! and
b. Testing is carried out gently and terminated
before the collapse of the cantilever. By ex-
trapolating the equilibrium displacement r(F),
the normai-mode frequency w(F), and the
amplitude of small oscillations A(F), the fail-
ure load F; and the control-parameter values
F_ and b at the failure load can be determined
(Gilmore, 1981). Such extrapolations are
shown in Fig. 16.
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FIG. 16. The failure load F{F.b) has a 2/3 power-iaw dependence on the symmetry-breaking parameter b. The
value of the load at which coliapse occurs (vertical line at F) can be located by exploiting the catastrophe flags.
This is done by plotting the frequency of small oscillations, &(F) (critical slowing down), by determining the linear
susceptibility, y(F) (divergence of linear response), and by measuring the amplitude of small equal-energy
oscillations, A{F) (anomalous variance), all as functions of increasing load F. The amplitude diverges and causes

collapse before the failure load F, is reached.

Once the symmetry-breaking parameter b
has been determined, small adjustments to
the cantilever can be made to reduce the
magnitude of b. Such adjustments may possi-
bly include the nonintuitive steps of decreas-
ing the strength of some component (e.g.,
reducing one of the spring constanis) in order
to increase the strength of the compound
system.

Much larger compound structures have
many more degrees of freedom, and conse-
quently many more failure modes. While some
failure modes are clear-cut, others may be
very subtle—depending on unexpected cou-
pling between “soft” failure modes, as the
example above illustrates. Characterization of
the imperfection sensitivity is algorithmic: for
any catastrophe germ (the potential of the
perfect optimized structure at the failure load)
there is a universal perturbation. This is finite
dimensional provided that the germ is deter-
minate. It is important to understand the
universal perturbation in order to catalog all
possible failure modes of the system; both
obvious and not, in order to prevent catastro-
phes from occurring in such complex struc-
tures. ' ’

3.4 Elementary Catastrophes in Nonlinear
Dynamics

Elementary catastrophe theory is the first
result in the program of catastrophe theory.
As aresult, it stands at the base of the pyramid
of bifurcations to be expected in nonlinear
dynamical systems (se¢ CHAOTIC PHENOM-
ENA). Any bifurcations encountered in elemen-
tary catastrophe theory will be encountered in
nonlinear systems with greater complexity.

To illustrate how the elementary catastro-
phes are encountered in more complex non-
linear systems, we survey. here how the two
simplest elementary catastrophes appear in
nonlinear systems at the next level of com-
plexity in the hierarchy of nonlinearity. Such
systems are low-dimensional periodically
driven dynamical systems or, equivalently,
autonomous (time independent) dynamical
systems with one more dimension.

In tréating two-dimensional periodically
driven dynamical systems and three-dimen-
sional autonomous systems it is typical to
explore the bifurcation diagram by sweeping
one control parameter and locating periodic
and aperiodic orbits. When a single control
parameter is varied, it is typical to encounter
among the catastrophes only the fold. I,



however, there is a symmetry present, then
the symmetry-restricted cusp catastrophe
[V(xa) =§x* +3a4>=V(—x2)] may also be en-
countered.

The fold catastrophe appears in bifurcation
diagrams for autonomous dynamical systems
as saddle-node bifurcations. These are shown
in Fig. 17. In this figure there are several
control parameter values at which new stable
(sclid curve) and unstable (dashed curve)
solutions appear. If the system is periodically
driven the saddle-node pair consists of a sta-
ble periodic orbit and a saddle orbit with one
unstable direction. Both orbits have the same
period.

Under a broad range of conditions the
saddle remains unchanged as the control-
parameter values are further increased, but
the node undergoes additional bifurcations.
Such bifurcations. are often of the period-
doubling variety. The period-doubling bifur-
cation is essentially a symmetry-restricted cusp
catastrophe. Its relation to the cusp is shown
in Fig. 18. As a control-parameter value is
increased past some threshold, a stable peri-
odic orbit loses its stability. In a transverse
section (Poincaré plane) the unstable point is
surrounded by two stable nodes. As the Poin-

Pitchfork
Bifurcations ~ -

Saddie

Node

\  Bifurcation
~

FIG. 17. Fold and symmetry-restricted cusp (also
called pitchfork) bifurcations are commonly encoun-
tered in nonlinear dynamical systems. At a fold or
saddle-node bifurcation a stable orbit (solid lines) and
a saddle orbit (dashed lines) are created. At a pitchfork
bifurcation, period doubling may occur; teading to
creation of orbits of twice the period of the original
orbit, which loses its stability.
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caré plane is swept around the unstable peri-
odic orbit, the two nodes will rotate around
the direction of propagation of the Poincaré
section either an integer number of times or a
half-integer number of times. If the two nodes
rotate an integer number of times around the
saddle that is between them [Fig. 18(a)}, the
two nodes belong to two separate periodic
orbits, both of which have the same period as
the unstable periodic orbit from which they
bifurcated.. On the other hand, if the two
nodes rotate a half-integer number of times
around the saddle that they straddle [Fig.
18(b)], they belong to a single orbit whose
period is twice the period of the unstable
periodic orbit from which they bifurcated.

Saddle-node bifurcations and period-dou-
bling cascades are general features of auton-
omous dynamical systems. The pitchfork bi-
furcation with an integer number of twists is
atypical in autonomous dynamical systems.
However, if there is a symmetry, as occurs, for
example, in the Lorenz equations, a period-
doubling cascade cannot occur beginning at a
symmetric orbit (Gilmore, 1981). As a result,
the first pitchfork bifurcation occurs at a
symmetric orbit of period 7, creating an asym-
metric pair of orbits of the same pefiod.
Subsequent pitchfork bifurcations from the
asymmetric periedic orbits then generate pe-
riod-doubling cascades.

A simple Hopf bifurcation can also be
viewed as a symmetry-resiricted cusp catas-
trophe (Gilmore, 1981). In the neighborhood
of a Hopf bifurcation the dynamical equa-
tions can be written in polar coordinates as

dr/dt=Ar+r,
do/dt =, (35)

During the bifurcation the equation of motion
for 6 remains essentially unchanged. The bi-
furcation is therefore described by the radial
equation, which can be written in gradient
form:

dr/dt=—av/ar,
Vird)=—tr’— (i), (36)

A typical Hopf bifurcation is illustrated in
Fig. 19. A section of the bifurcation surface in
a plane€ containing the control parameter axis
has the standard pitchfork shape.,

Since the saddle-node, period-doubling,

. symmefry-breaking, and Hopf bifurcations

are all related to elementary catastrophes, all
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the phenomenology associated with the ele-
mentary catastrophes is present and observ-
able for these bifurcations as well. For exam-
ple, one can observe modality, sudden jumps,
inaccessible regions, sensitivity, hysteresis, di-
vergence of linear response, time dilation,
and anomalous variance in all these bifurca-
tions. Furthermore, the behavior of each bi-

“furcation has the same canonical form as that
of the corresponding catastrophe (e.g., power-
law dependence).

APPENDIX: A BRIEF HISTORY OF
CATASTROPHE THEORY

Catastrophe theory burst upon public con-
sciousness in the mid-1970s with a series of
articles in widely available sources: Scientific
American, Science, London Times, Time, and
The New York Times. The articles themselves
were bimodal. At one extreme the London
Times heralded it as the “main intellectual
movement of the century” while the Science
article announced “The emperor has no
clothes.”

The theory of singularities of mappings
was intensively developed by Whitney, Thom,
and Mather in the decade 1955-1965. Thom
presented his formulation of the theory of
singularities in his eagerly awaited work Sta-
bilite Structurelle et Morphogénese (1972).
This book was an enigma in both form and

Half Integer Twist
Period-Dcub(lr}g Bifurcation

FIG. 18. When a periodic orbit loses
its stability in a pitchfork bifurcation,
either two new orbits of the same
period may be creaied or one new
orbit of twice the period may be cre-
ated, depending on the local torsion
about the original orbit (integer or
haif-integer).

substance. It was largely inaccessible to the
mathematics community because it was writ-
ten in the language of biologists, and inacces-
sible to the biological community due to its
presentation of mathematical concepts which
seemed to be deep and mysterious.

Yet it held the promise of describing dis-
continuous phenomena in a systematic way.
Zeeman crowned the subject with the florid
name “catastrophe theory” and took up the
challenge of presenting these mathematical
ideas to the larger community of scientists.
When challenged to show concrete applica-
tions in the real world, he responded with a
series of articles of stunning originality which
explored the range of possible applications of
this new subject.

These applications eventually worked their
way into public consciousness through the
popular journals. A reaction to the value of
catastrophe theory set in. This reaction was

o

FIG. 19. A Hopf bifurcation can be viewed as a
symmetry-restricted cusp catastrophe in the radial
direction.



partly as a result of the overblown claims
made in its name, partly as a result of the
neglect offered to the workers who created the
field of dynamical systems theory: Poincaré,
Andronov, Pontryagin, Smale, etc., and those
currently working in this field. The result was
a multiyear public dialogue on the merits of
this subject of discontinuities using argu-
ments now long forgotten and best left un-
earthed, a dialogue of which the public even-
tually tired.

The appearance of the monographs by
Poston and Stewart (1978) and Gilmore (1981)
made it clear that this was a subject of sub-
stance, which had to be taken seriously, one
capable of providing a useful language for the
description of discontinuities at both a quali-
tative and a quantitative level,

GLOSSARY

Anomalous Variance: A catastrophe flag.
Amplitude of motion about an equilibrium
becomes increasingly large as a degenerate
critical point is approached.

Bifurcation: A qualitative change in the
properties of a system,

Bifurcation Set: Set of values in control-
parameter space at which qualitative changes
oceur.

Catastrophe: Mathematical—A family of
functions, depending on control parameters,
in which the number of equilibria changes as
the control parameters are varied. Physical—
A sudden, discontinuous change in the state
of a system.

Catasirophe Flags: Phenomena that oc-
cur when a catastrophe (sudden jump) is
present.

Catastrophe Germ:: A function which de-
scribes a degenerate critical point.

Catastrophe Theory: The program for de-
termining how the qualitative properties of
the solutions of equations change as parame-
ters appearing in these equations change.

Clausius-Clapeyon Equations: A set of
equations which determine the Maxwell set of
a catastrophe.

Control Parameters: A set of parameters
€=(€1,63,..,¢) Which appear in the equations
that describe a physical system.
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Critical Carvature: The curvature df/
dx? of a function evaluated at its critical points
Vf=0.

Critical Point: An equilibrium: a point at
which meotion dees not occur.

Critical Set: The &-dimensional manifold
V.f(x;c) =0 for xER" and c=R*.

Critical Slowing Down: A catastrophe
flag. Relaxation to equilibrium takes increas-
ingly long times as a degenerate critical point
is approached.

Critical Values: Values of a function at
its critical points.

Cusp Catastrophe: The function A;(x)
=x*/4+ax>/2+bx. So named because the
critical set ¥V, A;(x;a,b)=0 exhibits 2 cusp on
projection to the a-5 control parameter plane.

Cuspoids 4,,_,: A class of functions de-
pending on one state variable x and n—2
control parameters. The family of functions
Ay ((X)=2"/n+2""2ax has up to n—1 iso-
lated critical points.

Degenerate Critical Point: An equilib-
rium (VV=0) at which the stability matrix
(6*V/3xdx;) is singular. This requires two or
more critical points to be arbitrarily close to
each other (degenerate).

Delay Convention: The system state re-
mains in a local minimum until that mini-
mum ceases to exist.

Divergence of Linear Response: A catas-
trophe flag. Linear response coefficients in-
crease very rapidly as a degenerate critical
point is approached.

Dynamical System: A set of coupled first-
order ordinary differential equations which
may be nonlinear: x; = f(x,¢;t), where % is a
state vector and ¢ are control parameters.

Elementary Catastrophe: A function of
one or two state variables (x,y) and one or
more control parameters. These functions are
used to describe systems in which small causes
can produce large effects.

Equilibrium: A point at which all forces
vanish; a critical point. ,

Exceptional Elementary Catastrophes:
Eg, By, E; depend on two state variables and
have up to 6, 7, 8 critical points, respectively.

Flow: The motion of a point in phase
space under the eguations of motion for the
system, :

Fokker-Planck Eguation: An equation
that describes the evolution of a probability
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distribution in the presence of diffusion and
driving forces.

Fold Catastrophe: The function 4;(x) =
x2/3+ax. So named because the critical set
exhibits a fold.

Generic: Typical. Occurs with “probabil-
ity one.”

Gradient Dynamical System: A dynami-
cal system in which the time-independent
forcing term is the gradient of a potential
function: fi{x,c)=—aV(x,c}/dx;.

Hopf Bifurcation: Bifurcation in which a
stable fixed point becomes unstable and emits
a stable periodic orbit (limit cycle).

Hysteresis: Transitions from one state to
another do not occur at the same values of the
control parameters when the control param-
eters are changed in the opposite direction.

Implicit Function Theorem: A theorem
of elementary calculus. If a function has a
nonzero slope at a point, V20 at xg, then it
can always be approximated by a linear func-
tion at xg.

Inaccessibility:  Anunstable physical state
separating two stable physical states.

Isolated Critical Point: An equilibrium
(VV=0) at which the stability matrix (*V/
dx;0x;) is nonsingular.

Maxwell Convention: The system state is
always in the deepest minimum.

Maxwell Set: The set of control parame-
ter values at which a function has two or more
equally deep minima.

Metastable: Stable to small perturbations
but not to large perturbations.

Modal Catastrophe: A catastrophe germ
which depends on one or more parameters.

Modality: Distinct types of behavior that
- asystem can exhibit under identical or nearly
identical conditions {e.g., liquid—gas states for
a fluid). '

- Mode Softening: A catastrophe flag. Os-
cillation frequencies approach zero as a de-
generate critical point is approached.

Morse i-Saddle: The guadratic function
MED) = B — o — 42y + e

Morse Lemima: A normal-form theorem
like the implicit function theorem. If a func-
tion of » variables has a nonsingular stability
matrix (det #f/3x,x;) at an equilibrium x, it
can always be approximated by a quadratic
function at xp. Such a function is called a
Morse saddle.

Nongeneric: Atypical. Occurs with “prob-
ability zero.”

Perestroika: Change in the properties of
a dynamical system due to changes in its
control-parameter values.

Perturbation: A funciion which is every-
where small.

Phase Space: A space in which the coor-
dinates of a point define the state of the
system.

Phase-Space Portrait: A trajectory (or
trajectories) in phase space which describes
the evolution of a physical system from one
(or more) initial conditions.

Pitchfork Bifurcation: Bifurcation in
which a stable fixed point becomes unstable
and two new stable fixed points are emitted.
Corresponds to a single-well potential devel-
oping into a double-well potential.

Quadratic Form: A function of n vari-
ables x=(xy,%3,....x,,) which can be written
x'Mzx, where M is a symmetric nXn matrix.

R": Real n-dimensional space.

Saddle-Node Bifurcation: Bifurcation in
which two fixed points, one saddle and one
node, are created.

Sensitivity: The final state of a system
may change under small perturbations of
either the initial conditions or processes ap-
plied to the system.

Stability Matrix: The matrix of mixed
second partial derivatives of a function: &#f/
dxdx;.

Staie Vector: A set of parameters x=(x,,
X,.0%;,) Which describes the state of a system.

Structural Stability: Invariance of quali-
tative properties under a perturbation.

Taylor Tail: Tail of a Taylor series expan-
sion: all terms beyond a certain degree.

Thom Classification Theorem: A list of
elementary catastrophes depending on one or
two state variables and up to five control
parameters.

Thom Splitting Lemma: A normal form
theorem for functions. If a function has an
equilibrium {Vf=0) at which the stability
matrix #f/. dx9x; has [ vanishing eigenvalues,
the function can always be written as the sum
of two functions, F(x)=Ffum(Fisen¥1)+
M (94 1n¥n), Where frag(Fpenyp) is 2
function with vanishing first and second de-
rivatives in the / variables corresponding to
the vanishing eigenvalues and M7 is a Morse
i-saddle in the remaining n—I variables.



Time Dilation: A catastrophe flag, Sys-
tem response takes increasingly long times as
a degenerate critical point is approached.

Umbilics D,,_,: A class of functions de-
pending on two state variables and #—2 con-
trol parameters. The family of functions D,
-1(x,y) has up to n—1 isolated critical points.

Universal Perturbation: Simplest func-
tion (i.e., lowest dimension, or number of
control parameters) that describes all possi-
bilities that can result when a degenerate
critical point is perturbed.
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