
Nonlinear Dynamics

PHYS 471, 571

Problem Set #4

Distributed February 3, 2015

Due February 12, 2015

Do only one of the two problems.

Undergraduates: Problem 1 or Problem 2, a-e.

Graduates: Problem 1 or Problem 2, a-h

All students: Solutions must contain enough words so that I

can understand what you think you did, and you will be able to

understand what you did in 12 months. No words = No credit!

1. Scaling in State-Variable Space: Feigenbaum has constructed a
nonlinear equation to define the value of the scaling parameter α for the
logistic map and every map in its universality class. The equation is

g(x) = −αg(g(x/α))

Assume: g(x) = g(−x) and g(0) = 1.
a. Show α = −1/g(1).
b. Set

g(x) = 1 + g1x
2 + g2x

4 + · · · gnx
2n =

n∑

j=0

gjx
2j

Creep up on a value of α by truncating this equation at n = 1 and solving
for α, then n = 2 and solving, etc. Carry this out as far as you can, subject
to the conditions: don’t burn yourself out; don’t burn out your computer.

c. Plot αn vs. n. Here αn is the approximation to α when the series is
truncated at the nth term.
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2. Flows and Maps: The Rössler equations have been used to model
chemical, electronic, vibrating, and laser systems that are nonlinear. The
equations are:

ẋ = −y − z
ẏ = x+ ay
ż = b+ z(x− c)

(1)

After transients die out, these equations generate a flow like that shown in
Fig. 1, for control parameter values (a, b, c) = (0.398, 2, 4). In getting to this
chaotic flow a number of different types of behavior are encountered. Some
are shown in Fig. 2.

a. What do you think the Feigenbaum scaling constants δ, α are for this
flow at the period-doubling accumulation point? N.B.: THIS IS NOT

A REQUEST TO COMPUTE THEM. THIS IS A REQUEST TO

MAKE AN EDUCATED GUESS.

b. Integrate these equations for the parameter values given above and
provide a projection of the flow into the x-y plane.

c. Record and plot the (x, z) values every time the flow crosses through
the half-plane y = 0, x < 0 (this plane is “officially”called the Poincaré

section). Record the intersections sequentially.
d. Plot xi+1 vs. xi, 1 ≤ i ≤ N − 1, where N is the total number of

intersections recorded in part b.. Your result should look like Fig. 3.
e. Find one unstable orbit of period p 6= 1 in this map.
f. Fit a parabola x′ = A+Bx− Cx2 to this return map.
g. Find a transformation that takes the return map that you’ve computed

in f. to the return map of the form y′ = a − y2. How are the control
parameters A,B,C and a related? How are the state variables x and y
related?

h. What value of a corresponds to the return map that you’ve computed
in f.?

i. Use this information to estimate: which periodic orbits are present and
which are not in the flow. Also estimate the topological entropy of this flow.

j. Does your fitted return map pass the χ2 test?
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Figure 1: Flow generated by the Rössler equations. From: J. M. T. Thomp-
son and H. B. Stewart, Nonlinear Dynamics and Chaos: London: John Wiley
& Sons, Ltd., 1986.
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Figure 2: Flow generated by the Rössler equations for some values of a in
the range 0.3 ≤ a ≤ 0.411. From: J. M. T. Thompson and H. B. Stewart,
Nonlinear Dynamics and Chaos: London: John Wiley & Sons, Ltd., 1986.
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Figure 3: Return map on the Poincaré section for the Rössler attractor.
From: J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and

Chaos: London: John Wiley & Sons, Ltd., 1986.

5


