Nonlinear Dynamics

PHYS 471, 571

Problem Set \#4

Distributed February 3, 2015
Due February 12, 2015

Do only one of the two problems.
Undergraduates: Problem 1 or Problem 2, a-e.
Graduates: Problem 1 or Problem 2, a-h
All students: Solutions must contain enough words so that I can understand what you think you did, and you will be able to understand what you did in 12 months. No words $=$ No credit!

1. Scaling in State-Variable Space: Feigenbaum has constructed a nonlinear equation to define the value of the scaling parameter α for the logistic map and every map in its universality class. The equation is

$$
g(x)=-\alpha g(g(x / \alpha))
$$

Assume: $g(x)=g(-x)$ and $g(0)=1$.
a. Show $\alpha=-1 / g(1)$.
b. Set

$$
g(x)=1+g_{1} x^{2}+g_{2} x^{4}+\cdots g_{n} x^{2 n}=\sum_{j=0}^{n} g_{j} x^{2 j}
$$

Creep up on a value of α by truncating this equation at $n=1$ and solving for α, then $n=2$ and solving, etc. Carry this out as far as you can, subject to the conditions: don't burn yourself out; don't burn out your computer.
c. Plot α_{n} vs. n. Here α_{n} is the approximation to α when the series is truncated at the nth term.
2. Flows and Maps: The Rössler equations have been used to model chemical, electronic, vibrating, and laser systems that are nonlinear. The equations are:

$$
\begin{align*}
& \dot{x}=-y-z \\
& \dot{y}=x+a y \tag{1}\\
& \dot{z}=b+z(x-c)
\end{align*}
$$

After transients die out, these equations generate a flow like that shown in Fig. 1, for control parameter values $(a, b, c)=(0.398,2,4)$. In getting to this chaotic flow a number of different types of behavior are encountered. Some are shown in Fig. 2.
a. What do you think the Feigenbaum scaling constants δ, α are for this flow at the period-doubling accumulation point? N.B.: THIS IS NOT A REQUEST TO COMPUTE THEM. THIS IS A REQUEST TO MAKE AN EDUCATED GUESS.
b. Integrate these equations for the parameter values given above and provide a projection of the flow into the $x-y$ plane.
c. Record and plot the (x, z) values every time the flow crosses through the half-plane $y=0, x<0$ (this plane is "officially"called the Poincaré section). Record the intersections sequentially.
d. Plot x_{i+1} vs. $x_{i}, 1 \leq i \leq N-1$, where N is the total number of intersections recorded in part b.. Your result should look like Fig. 3.
e. Find one unstable orbit of period $p \neq 1$ in this map.
f. Fit a parabola $x^{\prime}=A+B x-C x^{2}$ to this return map.
g. Find a transformation that takes the return map that you've computed in \mathbf{f}. to the return map of the form $y^{\prime}=a-y^{2}$. How are the control parameters A, B, C and a related? How are the state variables x and y related?
h. What value of a corresponds to the return map that you've computed in \mathbf{f} ?
i. Use this information to estimate: which periodic orbits are present and which are not in the flow. Also estimate the topological entropy of this flow.
j. Does your fitted return map pass the χ^{2} test?

Figure 12.1 A post-transient trajectory of Rössler's equations (12.1) for the simply folded band attractor. Parameters are $a=0.398, b=2, c=4$

Figure 1: Flow generated by the Rössler equations. From: J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos: London: John Wiley \& Sons, Ltd., 1986.

Figure 12.4 Final trajectories of equations (12.1) for different values of the parameter a. Left row, top to bottom: limit cycle, $a=0.3$; period 2 limit cycle, $a=0.35$; period 4, $a=0.375$; four-band chaotic attractor, $a=0.386$. Right row, top to bottom: period $6, a=0.3909$; single-band chaos, $a=0.398$; period 5, $a=0.4$; period 3, $a=0.411$. In all cases $b=2$,

$$
c=4
$$

Figure 2: Flow generated by the Rössler equations for some values of a in the range $0.3 \leq a \leq 0.411$. From: J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos: London: John Wiley \& Sons, Ltd., 1986.

Figure 12.3 One-dimensional mapping points taken from a trajectory of the differential equations (12.1). A sequence of seven successive points is identified by the crosses labelled A to G

Figure 3: Return map on the Poincaré section for the Rössler attractor. From: J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos: London: John Wiley \& Sons, Ltd., 1986.

