QUANTUM MECHANICS III

PHYS 518

Problem Set \# 3 Distributed: Oct. 18, 2013 Due: Oct. 25, 2013

1. Scattering: The barrier shown in the inset consists of three potentials of height $V=5 \mathrm{eV}$ and width $D=2 \AA$, separated by $L=6 \AA$. Compute (reproduce) the transmission spectrum for $0<E<10 \mathrm{eV}$.

Figure 1: Transmission probability spectrum for three identical barriers with $V=5 \mathrm{eV}, D=2 \AA$, and $L=6 \AA$. Each peak is a doublet.
2. Binding: Two potential wells have a depth of $V=5 \mathrm{eV}$ and a width of $6 \AA$. They are separated by a barrier of width $2 \AA$. The barrier and the
asymptotic potentials on the left and right are the same: you can choose this value to make your life simple (peek at Problem \#4). Compute the energies at which there are bound states. Provide a rough sketch of what each bound state eigenfunction looks like (no need for computations if you know what's going on).
3. Periodic Potential and Energy Bands/Gaps: An "atomic potential" has a central region of width $6 \AA$ at $V=0 \mathrm{eV}$ and is surrounded by regions of width $1 A$ on the left and right at $V=5 \mathrm{eV}$. Compute the edges of the energy bands in the range $0<E<20 \mathrm{eV}$. (Yes, there are allowed bands and forbidded gaps in the scattering region above $E=5 \mathrm{eV}$.)
4. Comparison: Compare the locations of the transmission peaks (Problem \#1) with the locations of the bound state energies (Problem \#2) and the allowed energy bands (Problem \#3). Write a paragraph expressing your amazement (or explaining to me why these results are so obvious this Problem Set was a waste of your time).

