# QUANTUM MECHANICS III 

## PHYS 518

## Problem Set \# 1 <br> Distributed: Sept. 27, 2013 <br> Due: Oct. 4 (Pr. 1,2) and Oct. 7 (Pr. 3), 2013

1. Avoided Crossings: This Hamiltonian has been introduced to better understand 'avoided crossings' and the Landau-Zener effect:

$$
H=\Delta E \frac{1}{2} \sigma_{z} \times \frac{t}{T_{s}}+p \sigma_{x}
$$

Here $T_{s}$ sets the time scale for the transition through the crossing that can take place only if $p=0$.
a. Find the eigenstates for arbitrary $t$.
b. Find the ground state for $t=-10 T_{s}$
c. Compute and plot the inner product between the ground state at $t=-10 T_{s}$ with the ground state for $t$ in the range $-10 \leq t / T_{s} \leq+10$.
d. What does this plot tell you? Put differently: how would you describe the physics embedded in this plot to an undergraduate who is learning Quantum Mechanics?
2. Landau-Zener Amplitudes: Landau (1932) and Zener (1932) showed that the probability for the transition $|1\rangle \rightarrow\left|1^{\prime}\right\rangle$ is $e^{-2 \pi \Gamma}$. $\quad \Gamma=$ $|p|^{2} /\left(\Delta E \times \hbar / T_{s}\right)$. The notation is as in Fig. 1 of Rubbmark et al., $D y$ namical effects ..., Phys. Rev. A23, 3107-3117 (1981). Explain why the following unitary matrix describes the transformation of the probability amplitudes through the avoided crossing:

$$
\left[\begin{array}{l}
\left|1^{\prime}\right\rangle \\
\left|2^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
|1\rangle \\
|2\rangle
\end{array}\right]
$$

where $\cos \theta=e^{-\pi \Gamma}$.
3. DUE OCT. 7 - Many Avoided Crossings: Assume a system with many $(n)$ levels undergoes many avoided crossings, as shown, for example, in Fig. 6 of Rubbmark et al., Dynamical effects ..., Phys. Rev. A23, 3107-3117 (1981). Model such a system by a Hamiltonian

$$
H=\mathcal{E}+\mathcal{P}=\sum_{i} E_{i}(q) \Sigma_{i i}+\sum_{r s} p_{r s} \Sigma_{r s}
$$

Here $\mathcal{E}$ is a diagonal matrix, $\mathcal{P}$ is hermitian, $\Sigma_{r s}$ is an $n \times n$ matrix, all of whose matrix elements are zero except for the matrix element in the $r$ th row and $s$ th column, which is +1 ; also $p_{r r}=0$ and $p_{s r}=p_{r s}^{*}$.

Assume that there are only a finite number of crossings and that their "interaction boxes" are nonoverlapping. Describe (i.e., write an essay) how you would propagate the amplitudes of an arbitrary input wavefunction at " $t=-\infty$ " to the output amplitudes at " $t=+\infty$ " by multiplying a series of matrices " $M$ " together. The matrix $M(i j)$ describes how the $i$ th and $j$ th levels cross, with
$M(i j)_{k k}=1 \quad(k \neq i, j), \quad M(i j)_{i i}=M(i j)_{j j}=\cos \theta_{i j}, \quad M(i j)_{i j}=i p_{i j} /\left|p_{i j}\right| \sin \theta_{i j}$
What is $\cos \theta_{i j}$ ? (Don't get careless.)

