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8
Boundary Conditions

In many systems of interest, particles are incident on a target from some particular
direction. For example, in a scattering experiment electrons might be beamed from an
electron gun at a hydrogen target. Some of the electrons may propagate through the
target, others may be reflected by the target. In this chapter we learn how to impose
such physically realistic boundary conditions on one-dimensional problems.

We begin by representing the target by a stationary one-dimensional potential
with asymptotic values V7, Vg on the left and right. The particle incident from
the left is represented by the wavefunction Azet*® ki = [2m(E ~ V)/R?]Y/2.
The wavefunction representing the reflected particle is By e~**2*; the wavefunction
representing the transmitted particle is AgeT*2%_ Thus, the boundary condition for
a particle incident on the target from the leftis Bp = 0.

We have seen in chapter 5 that the law of momentum conservation can be written
as

fikr, (AL — |BL|?) = Bkr(|AR] - Bg[) . (8.1)
For a particle incident from the left (Bg = 0), this expression can be written

2 2

Br =1. (8.2)

4r

kr
kr,

Ar
Aj,

Since By, is the probability amplitude for the reflected particle and Ay, is the prob-
ability amplitude for the incident particle, | Bz, /AL|? has a natural interpretation as
the probability that the incident particle is reflected. If the particle is not reflected
or absorbed, it is transmitted. Therefore, (kr/kL)|Ar/Az|? must be interpreted as
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the probability that the incident particle is transmitted. In summary, the transmission
(T') and reflection (R) probabilities are

_kr |AgR ? _ | Br 2 _
T&HA_L- . R= ALl T+R=1. (8.3)
Since

[ Ap ] _ [ t11(E)  t12(E) [ AR ] _ [ t11(E)Ar 84)

Br tor () t22(E) Br=0 tn(E)AgR | .

it follows that

_knl 1 f (8.5)

ok [t (E) ’

This condition can be made more explicit by expressing T(E) in terms of the
product of matrices M (V}; 8;) for the interior pieces of the potential, and the pair of
matrices for the two asymptotic regions

A e+’ikLaL 0 -1 1 1 -1 N
[B L h [ 0 et ] [+z‘ch —iky, } 1T Mv;;8)

1 1 e+'ikRaR 0 A
8 { +ikg —ikg } { 0 c—ikran } [ B ]R - (8.6)

It is convenient fo absorb the exponentials into the definition of the amplitudes. Car-
rying out the remaining matrix multiplications, we obtain

A _ | ap+iay PBr+if; A ®8.7)
B L_.. Br—1i0r ar—ioy B R, ’
k
2agp = +mi + "ﬁmm , 201 = +kgpmia — a2 ;
kr kr,
k m
28r = +ma1 — ~Zmag 28) = —kgpmig — — |
kL kL

where A} = Apet® Lot andsoon, and a, a g are the lefi- and right-hand boundaries
of the potential. Then |A;[* = |A.[? and 50 on, so that T(E) = (kr/kp)|AlR/AL 12
As a result, the transmission probability is given by
d(kr/k
[ma1 + (kr/kp)mas)” + krmiz — ma [k
In the typically encountered case in which V; = Vi, k1, = kr = k and this
expression simplifies to

4
(ma1 + m22)2 + (kmjo —7m21/k)2 ’

This. is the expression we use to compute almost all transmission probabilities in this
work.
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4.1. There are three cases to consider:

E<V:k=.2m(V - E)/h2,

coshkd — = (—E + E) sinh k4 ,
_ 2 [

t]_l(E) = k

T(E) =

1
cosh? kd + 3 (&— %)2sinh2 P
1 -
1+ 2 (2 + 5)*sinh? o6

[

tu(E) =
T(E) =

1—iké/2,
1 -
1+ (k6/2)2

A Simple Example

To illustrate these results, we compute the transmission probability for the rectangular
barrier with constant potential V, width &, shown in the inset of Fig. 9.1. We assume
z VL = Vg = 0. The transfer matrix is given by (4.12). Since kp = kp = k =
i v/2mE/h2, the transmission probability is T' = |1/¢;;(E)|?. The matrix elements
: m;;(E) for the single intermediate potential can be seen by inspection from Table

(9.1)

9.2)

(.3)
9.4)
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Transmission Probability

1.0
8|
TE) .6 |
4L E
2 | [ 0" 8.0
.0 —1 - T T

.0 20 40 60 80 100 120 140 160 18.0 20.0
E

Fig. 9.1 Transmission probability, T'(E), as a function of energy for an incident electron
of energy E on the barrier shown in the inset. The barrier has height 5 eV, width 8 A. The
transmission probability is computed using the analytic expressions (9.1)(9.6). Shown also
are the asymptotic estimate for the tunneling probability given in (9.9) (dotted, to 4 eV} and the
lower bound on the transmission probability given by the expression (9.12), (dotted, E > V).

E>V: K = \/2m(E — V)]

, N A
t11(E) = cosk5—§ E—FP sink’d | 9.5)
1
TE) = 1(k | k\2an2
coszk’5+;i(?+§7) sin® k4
1
= , : ©9.6)
1+ 1 (& - k) sin? ks

The identities cosh? z —sinh? z = 1, cos? z+sin? z = 1 have been used to construct
T(E) fromt)1(F)inthecases E < V,E > V.

~ The transmission probability T'( E) is plotted as a function of E in Fig. 9.1 for the
repelling barrier shown in the inset. The behavior of the transmission probability is not
exactly intuitive for anyone whose intuition is developed on classical (= nonquantum)
mechanics. Classically, a particle with energy ' < V will be reflected at the barrier
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A SIMPLE EXAMPLE 41

with 100% probability. When E > V it will be transmitted with 100% probability.
We observe that for ' > V the transmission probability is exactly 1 only at isolated
points, which are the zeros of sin k'4.

There is always a nonzero probability for transmission through the barrier even
in the classically forbidden regime £ < V, where the classical particle is reflected.
Transmission through a classically forbidden region is called quantum mechanical
tunneling, or simply tunneling.

The transmission probability is not reduced to zero by making the barrier thicker
or higher, although it may be dramatically reduced. The asymptotic behavior of the
transmission probability through this barrier is simple to discuss. In the classically
forbidden regime E < V, k§ = 1/2m(V — E)/h2§ and

sinhkd — %e”‘s ,
9.7)
k k\2 V-E E V2
(?ﬁE) = 75 MYV TETEYCE ©-3)

Using these approximations in the expression for 7'( E) given in (9.2), and neglecting
“1” compared with the larger term, the asymptotic dependence of the transmission
probability is

T(E) =} 16—-—%—5——1 em2d (9.9)
This argument shows that in the classically forbidden regime the transmission prob-
ability drops off exponentially, so that

log T(E) ~ —2xk6 = —24/2m(V — E)/h25 . (9.10)

In the classically allowed regime £ > V the transmission probability (9.6) is
+1 only at isolated energies at which sink’d = 0, or k6 = nw. Since k' =
v 2m(E — V)/R2, these occur at energies

B2 /mmy2
En_v+2—n;(7) n=1,2,.... 9.11)

However, as the energy increases, the transmission probability gets closer and closer
to +1. In fact, it oscillates between the upper and lower bounds

Tupper bound = 1,

1 v o\
Tlower bound = )2 =1~ ( ) . (9-12)

UThis is strictly true only if the barrier height is a sufficiently slowly varying function of position. A
¢lassical bowling ball with £ > V could not pass the barrier in the inset of Fig. 9.1 unless the corners
were rounded considerably.
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Transmission Probability
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Fig. 9.2 Transmission probability as a function of incident energy for the “attracting barrier”
(V = —5eV) shown in the inset. Upper and lower bounds on T'( ) are shown by dotted lines,

For E/ >> V the lower bound approaches the upper bound algebraically (i.e., power
law behavior) and the system behaves classically.

It is a simple matter to verify ‘that as & approaches V' from below, T(E) given by
(9.2) approaches the grazing limit T(E) = [1+ (k6 /2)?]* givenby (9.4). Similarly,
as E approaches V from above, the limit of T'(E) given by (9.6) also approaches this
grazing limit,

The transmission probability for an “attracting barrier” has also been computed,
and is shown in Fig. 9.2. For this barrier, V), = Vg = 0,V < 0, so the transmission

probability is given by
k = +/2mE/R?,
o= \/2711(}}}—V)/i‘i2 = \/2m(E+|V|)/hZ2,

1
™E) = Lk kY2 s 2.,
1+z(?—7&7) sin k5

(9.13)

The bounds on the transmission probability are as given in (9.12).
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Coding and Validation

Equation (8.3) provides a simple algorithm for computing the transmission and reflec-
tion probabilities from the matrix elements of the transfer matrix. However, except
for the simplest cases (previous chapter) it is not practical to compute these matrix el-
ements analytically. Itis therefore useful to carry out such computations numerically.
The algorithm for this numerical computation is straightforward:

e Read in the height V; and width d; of the piecewise constant potential, as weil
as the asymptotic potential values Vr,, Vg on the left and right.

Choose a value, E, for the incident particle energy (£ > Vi, E > Vi).

Compute the real 2 x 2 matrix M (V}; 8;) for each piece of the potential.

Multiply these matrices in the order in which they occur, from left to right:
M(B) = [ M(V:6)).

=1

o Compute ¢11(F) in terms of m;(E), kL, kg using (8.8) or (8.9).

For many purposes it is useful to compute T'( %) as a function of the incident particle
energy. This means that the computation outlined above must be embedded in a loop
that scans over the desired range of values of the incident particle energy.

InFig. 10.1 we present the numerically computed transmission probability, T( E),
for a particle of energy ¥ incident on the barrier shown in the inset. Since this is a very

simple barrier, the results are available analytically and have already been plotted in

Fig: 9.1. These analytic results are also presented in Fig. 10.1 (dotted curve, slightly
offset above the solid curve), for comparison with the numerically computed value of
T(F). A similar comparison is made in Fig. 10.2 for the attracting potential treated
previously in Fig. 9.2.
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Transmission Probabiity
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Fig. 10.1 Transmission probability, T'(E), computed numerically for an incident electron
of energy E, for the potential barrier shown in the inset. This is to be compared with the
analytic computation presented in Fig. 9.1. That curve is shown in this figure, dotted and
slightly displaced above the numerically computed curve. The two curves are identical.

Transmission Probability

I 800
15.0[-
6§
110.0f
T(E)
4l 5.0}
of
2F l I
5.0t
-0 ) i L) T T

-
.0 20 40 6.0 80 100 120 140 160 180 20.0
E

Fig. 10.2 Numerically computed transmission probability for the “attracting barrier” shown

in the inset. The curve from the analytic computation (Fig. 9.2) is shown dotted and slightly
offset. The two curves are identical, :
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Shape of Barrier

The plots of transmission probability versus energy given in Figs. 9.1-10.2 for a
single rectangular barrier show a lot of structure. In particular, they exhibit peaks in
the classical region (£ > V') at which the transmission probability assumes the value
+1. These peaks are suggestive of a “resonance structure” (see chapter 16).

We should wonder what part of the structure shown in the T'(E) versus E plots is
intrinsic to quantum mechanical systems, and what part is an artifact of the particular °
potential shape chosen, with “square corners” and discontinuities between separate
regions. To addess this question we study the transmission probability spectrum 7'( F)
for two smoother potentials.

The smooth scattering potential that we study has a Gaussian shape:

Vig)=Ve ™, —4<z<+4. (11.1)
We study this potential by making a piecewise approximation to it. The interval from
r = —2tox = 42 is divided into IV (odd) equal length intervals. The value of the
piecewise constant potential in the jth interval (1 < 7 < N)is chosen to be the value
of V() = V e~ at the midpoint of that interval.

InFig. 11.1 we plot T'( E) for a five-piece approximation to this potential for V =5
eV in the interval 0 < E < 20 eV. The inset shows how well the piecewise constant
potential approximates the smooth potential. We see from this plot that most of the
structure above V = 5 eV has been washed out, but that some residual structure still
remains.

_InFig. 11.2 we repeat the calculation shown in Fig. 11.1, but for an eleven-piece
approximation to this smooth potential. Essentially all the structure above £ = V
has been removed by this eleven-piece approximation to the smooth potential. The
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Transmission Probability
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Fig. 11.1 Transmission probability for the five-piece approximation to the smooth repelling
Gaussian potential shown in the inset.
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Fig. 11.2 Transmission probability for the eleven-piece approximation to the smooth re-
pelling Gaussian potential shown in the inset. The resonance structure that appears in Figs. 9.1
and 10.1 for the one-piece approximation to the smooth potential is washed out in this smoother
approximation. '
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Transmission Probability
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Fig. 11.3 Transmission probability for the five-piece approximation to the smooth attracting
Gaussian potential shown in the inset.
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Fig. 11.4 Transmission probability for the eleven-piece approximation to the smooth attract-
ing Gaussian potential shown in the inset. The resonance structure which appears in Figs. 9.2
and 10.2 for the one-piece approximation to the smoocth potential is washed out in this smoother
approximation,
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T(E) versus E curve does not show any additional changes as the approximation
improves (to N = 101).

A similar set of computations was done for the attracting potential “barrier”
Viz) = Ve_‘"z, V' < 0. The results are shown for V — —b eV, for five- and
eleven-piece approximations to this inverted Gaussian potential, in Figs. 11.3 and
11.4. We again see that the resonance structure, apparent in Figs, 9.2 and 10.2 for the
attracting square well, becomes washed out as we make better and better piecewise
constant approximations to the smooth potential.

The calculations done here suggest that some of the features apparent in the
transmission probability computed for a square well scattering or binding potential
(Figs. 9.1 through 10.2) are artifacts due to the discontinuities between potentials in
adjacent regions. As the discontinuities become smaller, the structures they produce
also diminish.

However, there is one feature that is not an artifact of the shape of the potential.
This is the depression of T'(E) below one for an aftracting barrier that occurs at
small energy. That is, the dip near E = 0 that occurs in Figs. 9.2 and 10.2 is still
present (Figs. 11.3 and 11.4) in the five- and eleven-piece approximations to the
inverted Gaussian potential. This is not an artifact of our computational procedure:
this phenomenon is exhibited by real quantum mechanical Systems.
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12
Asymptotic Behavior

In this chapter we investigate the asymptotic behavior of the transmission proba-
bility under two different conditions. These conditions involve tunneling through a
scattering potential and transmission through an attracting potential.

The arguments leading to equation (9.9) suggest that the transmission probability
through a classicaily forbidden region behaves exponentially like T(E) ~ e~ 2L,
where L is the width of the potential. In Fig. 12.1 we plot In [T'(E))] versus L for the
square well barrier shown in the inset. This clearly shows linear behavior in L for
sufficiently large L (L > 1 A). For this calculation, V = 5.0eV, FF = 4.0 eV.

In Fig. 12.2 we plot In [T'(E)/T(V')] as a function of x = \/2m(V — E)/k? for
L=1 ;\, E = 4.0 eV, where V is varied from F 4- 0.0001 eV to 105.0 eV. This also
shows linear behavior in  for & sufficiently large (x > 2 A~1).

These results suggest an asymptotic behavior for the tunneling probability, which
has the form
2

T(E) ~ exp—/b k(x)dx

b
= exp—2 f V2m(V(z) — E)/R2 dz . (12.1)
a

The integral is carried out through the classically forbiddenregion V(z)—E > 0,a <
z<b

~ In Fig. 12.3 we plot —In T(E) versus 2 | : x{z)dz for the Gaussian scattering
potential shown in the insgt. The calculations have been carried out for potentials
of width =1, 3, 5,7, 9 A, of height V =5, 15, -- -, 105 ¢V, using N = 1-, 5-, 9-,
13-piece approximations to this potential. The incident particle energy was scanned in
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Log Transmission Probability

Ln{T} -5 |-
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L

Fig. 12.1 Natural logarithm of the transmission probability decreases linearly with the width

of the barrier, for sufficiently wide barriers. Parameter values for this plot: V = 5.0 eV, E =
4.0eV. ‘
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Fig. 12.2 Natural logarithm of the transmission probability decreases linearly with & for
sufficiently large values of . For this plot E = 4.0 ¢V, L. = 1.0 A, and the barrier potential
1s scanned from slightly above E (V = E + 0.0001 eV) to V = 105.0 eV. The transmission
probability has been normalized by dividing by the transmission probability at the grazing
energy, T(E = V). :
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Fig. 12.3 Natural logarithm of the transmission probability is plotted against f: k(z) dz
for a large number of approximations to the smooth potential shown.

the range of energies +1 eV < E < (V — 1) eV. The asymptotic energies on the
left and right are V;, = Vg = 0. The sharp kinks are related to the passage of
the scanning variable £ through the discontinuities that are apparent in the piecewise
constant approximation to the smooth potential. As N increases, the kinks become
washed out.

The asymptotic properties of the transmission probability through an attracting
barrier are simple to discuss. For most energies, T(E) ~ 1. However, for low energy
(£ ~ 0) the transmission probability exhibits structure that is not an artifact of our
computational procedure.

To get some indication of this structure, we have computed T'(E) for the attracting
Gaussian potential V(z) = Ve (—20eV < V < 06V, 4 A <z < +4 A). The
computation was done using a piecewise constant approximation to V' (z) involving
N =101 pieces. The calculations were done at many energies. We show the results
for two energies, E = 0.1eV (Fig. 12.4)and E = 0.01 eV (Fig. 12.5). The trends in
behavior are apparent from these figures. As F increases, the structure exhibited in
these two figures washes out (cf. also Figs. 11.3, 11.4). As the energy decreases, the
peaks become narrower and the minima between them become deeper. As & — 0
each peak becomes an infinitely thin spike and the transmission probability between
successive spikes quickly approaches zero.

We will see later (Part I1I, chapter 25) that these peaks are intimately related to the
formation of new bound states in potentials of finite depth.

Problem. Compute the width of the lowest peak (V = —2.2 eV) as a function of
E.

Problem. Compute the asymptotic form of T'(E) as.a function of E between the
two lowest peaks (excluding the peak at [V| = 0) at about V = —5.5eV.
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Fig. 124 Transmission probability for incident electron energy E = 0.1 eV for attracting
potentials (inset) of various depth.
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Fig. 12.5 Transmission probability for incident electron energy E = 0.01 eV for attracting
potentials of various depth. The sharp peaks at low scattering euergy are closely related to the

bound states that this potential possesses.
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Phase Shifts

Scattering phenomena exhibit another type of asymptotic behavior that is more subtle
than tunneling, and which deserves to be discussed in a chapter of its own. This is
the phenomenon of scattering phase shifts.

For a target for which Vi, = Vg = 0, T(E) = |1/t1:(E)|?. In general, t,;(E) is
a complex function that we can write as

1 )
t11(E) = 75 e (13.1)

For the single barrier of potential V(< E) and width L, we have already computed
ti (&) (see (9.5))

t11(E) = co Wi— L k—’—l-f— sink'L (13.2)
15} = €08 AR ’ '

where k = /2mE/h?, k' = \/2m(E — V) /K2, The angle ¢(F) can be determined
by taking the ratio of the imaginary to real values in (13.1) and (13.2):
17k &k

tan ¢ = 3 (k + F) tank'L . (13.3)

Itis not entirely straightforward to solve this equation for ¢. This comes about because
tan(¢ + nw) = tan ¢ (n integer), so that many different values of ¢ can satisfy this
equation. However, we recognize that as long as k, &’ # 0, 0o

tang =0 <= tank’'L=0,
cotp=0 <= cotk’'L=0. (13.4)
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Therefore, as we change parameter values (E, V, L) we can determine that ¢ is within

What does this
+m /2 radians of k' L. In particular, we determine " P

when there is no sca

’ ' 3
¢ =tan"! (% (% 4 -];k;) tank’L) + [% + %] {13.5) t

The complicated form of this expression comes about for two reasons:
Thus, ¢ = kL. This

from one side of th

2. The “greatest integer” function ([x}) truncates the decimal part of a real number distance L, for
z, rather than rounding to the nearest integer.

1. The principal value of the tan~! function is in the range —7/2 < ¢ < +7/2.

We show in Fig. 13.1 a plot of ¢/2n against &'L/2x for the potential shown in
the inset. We expect ¢(E) to intersect the diagonal (¢ = k’L) at integer values by For more compli
(13.4). This in fact occurs. However, this plot holds two surprises: or p

1
‘1. #(F) behaves asymptotically like k'L even for relatively small values of k'L t1{E) = VT {
(K'L/27 > 2).

In a typical scatteris
2. ¢(FE) shows significant structure for k'L small (0 < k'L/27 < 1). is given, up to an in
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Fig. 13.1 Phase shift ¢/2x of a particle with incident energy F as a function of k'Lf2m,
the action on traversing the barrier shown. For this calculation, F = 100.0eV, L = 4.0 A, and
* V is scanned from just below 100 eV to large negative values.
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What does this phase mean physically? To answer this question, we compute ¢
when there is no scattering potential at all (V = Vi, = Vg = 0). Then k = k' and

_ g (KRN
t11(E) = cosk'L 2(k+k’)ska
= coskl —isinkl = e L (13.6)

Thus, ¢ = kL. This is exactly the change in phase that occurs as the particle moves
from one side of the “potential” at © = az, to the other side at x = agr through a
distance L, for
@(m)lmzaﬁ = A e'ika-g —A eik(a.R—a,L +ar)
el &(2)|pmay, - (13.7)

For more complicated potentials

1 ) 1 k ] m
t11(F) = Wi et = 3 (mn + imzz) -+ % (kRmm - k—il) . (13.8)

Tn a typical scattering experiment Vz, = Vg = 0, kr, = kr = ko, and the phase shift
is given, up to an integer multiple of =, by

¢ — tan—]_ (_k0m12 + m21/k0) ) (13'9)

my1 + e

In the classically allowed regime where reflection can be neglected, the expression
for the phase shift is well approximated by

b
¢ = f k(z)de . (13.10)
a
This can be approximated, for E = h%k2 /2m, by
b 1%
¢ = f V2m(E — V(2))/12 ds ~ koL (1 - ﬁ) . (13.11)

Here the average energy is definedby V = | ; V(z)dz/L, with L = b—a. This shows
that the phase shift over a length L is monotonically increasing and asymptotically
approaches ko L for sufficiently large energies.

In Figs. 13.2 and 13.3 we show the phase shift for an electron incident on an
attracting and a repelling Gaussian potential V'(z) = Voe~ &/ 27, Vo = F5eV. An
eleven-piece approximation to the potential is shown in the inset. The phase shift
$(E) is plotted both as a function of the parameter koL (curve a) and ff:‘ k(x)dz

“for the attracting potential (Vo = —5 eV), and the real part of this this integral for

the potential barrier (Vy = +5 ¢V) (curve b). Curves a and b approach each other
asymptotically as F becomes sufficiently large.
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Phase Shift
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Fig. 13.2 Phase shift @ for the attracting barrier (inset) plotted as a function of (a) koL and
(& action integral 4 — J k(z)dz. The phase shift at E = is positive since the particle
speeds up on passing through the potential.

. We point out that the phase shift at zero energy is positive for the attracting potential
and negative for the repelling potential.
Problem. Show that the tunneling results (F < V) and the phase shift results
(E' > V) can be put into the following similar form

b
hi(E) ~ exp ~z’/ \/2m(E—V(:1:))/ﬁ,2 dz
i a"
= exp—%f plx) dx | (13.12)

where V{a) = V(b) = E, p(z) = /2m{E —V(z)) and the appropriate square root

is taken when E — V(z) < 0. The integral A = fab p(z) dz is called the classical
action of the particle.
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Fig. 13.3 Phase shift ¢ for the repelling barrier (inset) plotted as a function of (a) koL and
(b) action integral A = [ k(x)dz. The phase shift at & = 0 is negative since the particle slows
down on passing through the potential.
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Double Barrier

Up to now we have considered tunneling problems for which the classically forbidden
region is one contiguous region. In such cases we have seen that the transmission
probability has an asymptotic form

T(E) ~ exp —2/; \/M;—):—@ dz| . 14.1)

This asymptotic form is no longer accurate when the classically forbidden region
¢consists of two or more disjoint pieces. Then resonances can occur between adjacent
classically forbidden regions that alter 7'(F) in a very significant way.

"We illustrate what can occur by computing the transmission probability for the
double well potential shown in Fig. 14.1 (inset). The remarkable feature to be observed
is that the transmission probability is very large, in fact +1, for certain values of the
energy for which transmission is classically forbidden. The potential shown has two
barriers of height V = 5 eV and width D = 2 A separated by a region at 0 eV
and width L = 6 A; V; = Vg = 0. It appears that the lowest peak does not reach
T(E) = 1.0. However, this is a resolution problem. The peak is so narrow that the
energies for which T{E'} was computed (every 0.002 eV) only sampled the shoulder
of this peak.

A number of questions should naturally be asked. These include:

's-Why does this phenomenon occur?

e How are the location and width of the peaks related to the parameters of the
potential?

59
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Transmission Probability

1.0

TE 6

2t j
.0 \ . -

.0 10 20 30 40 50 60 70 80
E

9.0 10.0

Fig. 14.1 Transmission probability spectrum for double barrier scattering potential shown
in inset. The two identical barriers have width 2 A and height 5 eV, They are separated by 6

A The peak at 0.6 eV is not completely resolved at the energy resolution (0.002 eV) used for
this computation.

e What is the shape of the peaks?

We will answer thesc questions in reverse order. Briefly, we show in the remainder
of this chapter that the peaks have a Lorentzian line shape. We leave it to the first
problem at the end of this chapter to show that the peaks occur at energies K, ~
% ( 1}%)2, where L is the width of the intermediate classically allowed region. In
the second problem we show that the width of the peaks decreases exponentially with
the thickness, D, of the classically forbidden region. In chapter 16 we show that this
phenomenon is due to the occurrence of resonances within the classically allowed
regions,

In order to show that the peak at F ~ 0.6 eV in Fig. 14.1 really rises to T(E) = 1
for some value of E, we have resolved the peak by scanning the energy from E = (.59
eVto E = 0.64 eV in 500 steps. The shape of this lowest resonance is shown in
Fig. 14.2, This clearly has a maximum at T(E)} =1for E =~ 0.615 eV.

Two reasonable candidates for describing the bell-shaped curve are the Gaussian
function and the Lorentzian function. We could try to fit the data in Fig. 14.2 to each
type of curve and then determine how good or bad the fit is. This is a standard problem
of statistics. We will not pursue this approach here. Rather, we will determine the
consequences of each functional form and compare these consequences to the data.

Gaussian. If the curve shown in Fig. 14.2 is a Gaussian, it has the form

T(E) = Ae~I(B~Eo)/AB)” (14.2)
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Transmission Probability
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E

Fig. 14.2 Lowest peak in the transmission spectrum shown in Fig. 14.1 is resolved by a
higher resolution (AF = 0.0001 eV) energy scan.

where Ej is the location of the peak and AF is related to its haif width. By taking
the negative logarithm we should have a rising parabola

2
— In T(E) = (E;}f") —In A. (14.3)

The first derivative is a linear function, and the second is a constant:

—d——lnT) - 2(E’E") L

dE AE | AE’
a2 2
@(-m;ﬂ) = x@ (14.4)

Fig. 14.3 repeats the plot of T(E) versus E shown in Fig. 14.2, shows — InT'(E)
versus E (looks like a parabola) and shows a plot of the first derivative of this function.
The first derivative is definitely not a straight line. Therefore we can reject the guess
that the resonance has a Gaussian form.

Lorentzian. If the curve shown in Fig. 14.2 is a Lorentzian, it has the form

A

TR R
1+ (%55%)

T(E) = (14.5)
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Transgnission ProQabilﬂy
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Fig. 14.4 Reciprocal of the transmission peak (parabola-shaped curve) superposed on the
peak. If the peak is a Lorentzian, the derivative of the reciprocal will be a straight line with
positive slope and the second derivative will be a constant. The first derivative is well ap-
proximated by a straight line with positive stope. The second derivative (with negative slope)
does not vary “too much” through this resonance. This shows the resonance curve is well
approximated by a Lorentzian function with energy maximum at 0.6150 eV and half width (at
half height} 0.0046 V.
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where E is the location of the peak and AE is the half width at half height. By"

taking the reciprocal we should find a rising parabola

1 1 1 [(E-E)\? ;
5 =4t i (e (146

Once again, the first derivative should be a linear function of F with positive slope,
and the second derivative should be a constant. In Fig. 14.4 we show the resonance,
with its reciprocal —1 (since A = 1), the first, and the second derivative, These plots -
are superposed on the original resonance curve. The first derivative (positive slope) -
is computed by first differencing the data; the second derivative (negative slope) is *
the first difference of the first derivative (i.e., second difference). The scales of these -
derivatives have been adjusted so the properties of the curves are evident. The second
derivative decreases somewhat with increasing energy. This is an effect of the peaks

at higher energies.

The results of Figs. 14.3 and 14.4 clearly distinguish between the Gaussian and !
Lorentzian line shapes. We conclude that the lowest resonance shown in Fig. 14.1
and enlarged in Fig. 14.2 is Lorentzian in shape, with peak at E = 0.6150 eV and

half width AE = 0.0046 eV.

Problem. Fix V, D, the height an& width of the two identical potential barriers

o

(for example, V = 20 eV, D = 2 &). Vary L, the distance between the two potential
barriers, and try to determine the dependence of the centers of the lowest peaks on -
L. You might infer from the data that E.(n), the center of the nth peak, is inversely
 proportional to Z,2. Plot E.(n)L? as a function of I to check this guess. You might .
also guess that the center of the nth peak behaves like n2. To test this guess, plot *
E.(n)L?/n? versus L for the lowest peaks in the transmission probability spectrum. 4

The results are shown in Fig. 14.5. This figure shows: the double barrier; the energies
at which the transmission peaks occur for & <V = 20 eV, plotied as a function of
L; and the ratio of the transmission peak energies, E/E(n, L), plotted as a function
of L, where E(n, L) = (K /2m)(nx /L)2.

Problem. Fix L and V, and vary D (for example, V = 20 eV and [, — 4 A).
You might expect the half widths of the Lorentzian peaks to decrease exponentiaily
with the width D of the classically forbidden region: AE ~ ¢—>D . To test this
hypothesis, plot — In(AE)/D as a function of D for the lowest transmission reso-
nance peaks. In fact, you might even guess that — In(AE) ~ [ x(z) dz, where the
integral extends through (both) classically forbidden regions. To test this guess, plot
—In(AE}/(2D\/2m(V = Epeay)/ k?) as a function of D for the lowest peaks in the
transmission spectrum. The results are shown in Fig. 14.6. This figure shows: the
double barrier (V = 20 eV and [, — 4 f\); the natural logarithm of the full width at
half height of the Lorentzian peak plotted as a function of D, the width of either bar-

rier; and the ratio of this logarithm to the action, — In{AE)/A, plotied as a function _

of D, where A = 2D, /2m(V — Epeax)/R2.
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Transmission Resonances
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Fig. 14.5 Plot of E,/FE(n,L) vs. L for the double barrier potential, where E(n, L) =
(ﬁ)‘12 /2m}(nw/L)®. The two identical barriers have constant height 20 eV and thickness 2
A, but their separation, L,Dvaﬁes from 4 é to 12 A. The number of resonances below 20 eV
varies frorm three at L = 4 A to nine at 12 A. The approach of all scaled energies to a common

value suggests that for the “deep™ resonances (xL/f > 1) the energies of the resonances are
E,, ~ (K /2m)(nn /L)
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Resonance Widths
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Fig. 14.6 Plot of — In(AE) as a function of I for the double barrier potential, where AE -

are the full widths at half height of each of the three resonance peaks that exist for this doubze
barrier potential. The two identical barriers have constant height 20 eV and separation 4 A,

but their thickness, D, varies from 1.0 A 10 5.0 A. Below, Plot of the ratio — In(AE) /2xD
as a function of D, where x = /2m(V — Epeak)/R?. The approach of all scaled ratios to 2

common value suggests that the linewidth of the “deep” resonances decreases exponentially:
AE =~ exp [—2D\/2m(V S /hﬂ].
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15
_ Multiple Barriers

If a second barrier behind the first produces surprises in the transmission probability
spectrum (see Fig. 14.1), what will a third behind the second do?

- To explore this question we computed T(E) for a potential consisting of three
réctangular barriers, each of height V' eV and width D A, and separated from each
‘other by a distance L A (Fig. 15.1). The principal effect, clearly visible in the plot of
‘T{E) versus E, is that each peak in the transmission spectrum of the double barrier
s into a doublet in the transmission spectrum for the triple barrier.
e transmission probability spectrum for a quadruple barrier, formed as described
ut with one more rectangular barrier, is shown in Fi g. 15.2. Each peak is now
into a triplet of peaks,

is'behavior is systematic. For a potential consisting of N + 1 identical barriers
ated by equal distances, we find

ier potential, where AE
; that exist for this double
0 eV and separation 4 A,
he ratio — In(AE)/2kD
ch of all scaled ratiostoa
; decreases exponentially:

‘Each peak splits into an N-tuplet.

-The “center of gravity” of each N-tuplet occurs at roughly the same energy as
the corresponding peak in the transmission spectrum of the double barrier.

e width of each multiplet grows slowly with NV, and saturates for relatively
mall values of . That is, the N-tuplet corresponding to one peak of the double
arrier spectrum does not overlap the N-tuplet corresponding to another peak,
-least for classically forbidden energies.

ible to determine how the width of each V- -tuplet saturates as V — oo, but
answering this question until we discuss energy bands for periodic lattices
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Transmission Probability
1.0 ﬂ
8F or I 18 !
801
B
TE 6p}
A4+ 4.0
2.0
2r
.0 T T T

.0 1.0 20 30 40 50 60 70 80 90 100
E

Fig. 15.1 Transmission probability spectrum for three identical barriers with V = 5 eV,

D=2A,and L = 6 A. Each peak is a doublet. In order to determin
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Fig. 15.2 Transmission probability spectrum for four identical barriers separating three “F
identical wells. AsinFig. 15.1, V =5eV,D =2 A, and L. = 6 A. Each peak is a triplet.
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16
Probability Distributions

In order to determine why there are resonances in the transmission probability spec-
trum of the double barrier, it is useful to compute the probability density of the electron
as:it is scattered from this potential.
The problem has been solved in principle in Part I, chapter 3. In that chapter we
computed the transfer matrix relating amplitudes [ g J inregion j to the amplitudes
3

[g ] in region § 4- 1, These 2 x 2 transfer matrices (3.7) are complex. It is
Lo i+l
possible to reduce the number of complex operations involved in computing the
probability density.
To do this, we choose a different set of solutions to Schrodinger’s equation in
regions of constant potential:
Pi(z)  Dy(x)
E>V coskzr sinkz
E=V 1 T
E <V coshkz sinhkzx

k= /2m(E - V)/i2
k=+2m(V —E)Ji2 . (16.1)

In;addition, within each region we measure distance from the left edge 1o the right
O z; < d; for ; in region 7). Imposing continuity of the wavefunction and its

erivative at the boundary between region j and region j + 1 leads to an equation
form

. cos k;d; sin k;6; Al 11 0 a1 (16.2)
—-kj sin kjdj kj cos kjd; B p {0 kj+1 B i+l ’
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Fig. 16.1 Probability density for an electron of energy E = (.62 eV incident on the doubl
barrier shown in Fig. 14.1. The energy chosen sits on the shoulder just above the peak, at abou

T(E) = 0.6 (see Fig. 14.2). Closer to the peak, the probability density between the barriers -
becomes much larger. '

in the case £ > V;, E > Vj11. Analogous equations apply for all conditions (i.c.
E >V, E <V, etc). All 2 x 2 transfer matrices involved in propagating th

amplitudes 4
B F+1

Only the amplitudes themselves are complex.
This set of equations for the amplitudes is initialized by setting

to the amplitudes [ g ] in the adjacent region are now real
3

Pp(z) = VT e™*r% — /T (cos krz + i sin kgz),
A 1
FIRERGHE ae) |

Using this procedure, we have computed the probability density |®(x; E)|? for
a particle of energy E scattered by the double well potential shown in Fig. 14.1.
These probability densities are computed for energies near the maxima (F = 0.62
eV, ' = 2.31 eV) of the lowest two peaks, and are shown in Figs. 16.1 and 16.2.
The results of these computations can be summarized in the following observations,
some of which are apparent from the figures.
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Fig. 16.2 Probability density foran electron in the double barrier potential shown in Fig. 14.1.
The energy (E = 2.31 eV) is just below the second peak. At this energy, the transmission
probability is about 0,28,

1. The probability density in the right-hand region is constant. This follows from
the boundary condition thatisimposed: ®g(z) = VT et*&% |®p(2){2 = 1.

2. The probability density oscillates in the left-hand region. This also follows
from the boundary condition: &y (z) = etL® L Re~%eL2 @ (x)|2 =1 +
RR+(Re~ k17 Ret2ikc ) The wavelength of the oscillation is determined
by kz (A = n/kL); the phase of R determines the probability at the left-hand
edge of the scattering potential. If R = 0 (i.e., T = 1), the probability density
in the left-hand region is also constant and equal to the constant value in the
right-hand region if Vi, = V.

3. The probability density between the double barriers can be very high. The
ratio of the maximum probability density between the barriers to the incident
intensity varies as the energy is swept and assumes a maximum value at the
resonance peaks.

4, Near the lowest peak of the transmission spectrum T'( £} the probability density
has a single maximum. Near the second peak in the transmission spectrum
T(E), the probability density exhibits two peaks. These peaks are separated
by a node that approaches zero quadratically.
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5. The probability density associated wi

The probability densities for triple, quadniple, and so forth, bérrier potentials have *
also been computed. For a tri

29.
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th the nth peak in the spectrum of T(E)

shows n peaks. These are separated by n — 1 nodes that approach zero quadrat{

of the barrier on the right, it undergoes a phase shift f: p dz/k = kL. Onp
reflecting off the right-hand barrier, it undergoes a phase shift of approximately
# (the larger \/2m(V — E)/R2 D, the closer to 7). On traveling to the left- .
hand well and reflecting off it, the particle undergoes another equal phase shift-
of about kL +7. If the total phase shift in

this round trip is an integer multiple of -
2m, the particle will interfere with itself constructively. Therefore, resonances
occur for 2kL + 27 ~ 27m, or energies given by

g ()

This approximation is valid when V2m(V — E)/F? Dis large.
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Combining Barriers

In the previous chapters, we have developed some understanding of quantum me-
chanical tunneling through a single barrier. We have also studied tunneling through
double (and multiple identical) barriers and have understood the occurrence of peaks
in the transmission probability spectrum as a resonance phenomenon.

We now ask what happens when we combine several different barriers. To this
end we study the triple barrier system conmstmg of barriers A (V =5.0eV,d = 1.5
A}, B (4.0eV, 2. OA) and C (3.0eV, 2.5 A) Barriers A and B are separated by 7 Aat
V = 0 ¢V, while barriers B and C are separated by 3 A, alsoat V =0eV.

Before studying this set of three barriers, we study separately the transmission
probability spectrum for the double barriers AB (Fig. 17.1) and BC (Fig. 17.2). These

plots contain no surprises. Peaks occur in the classically forbidden regime. For the
‘double barrier AB (Fig. 17.1) these peaks occur at energies of about 0.4, 1.9, and

4.0 eV. These three peaks have maxima at T'(E) = 1.0; the very narrow peak at 0.4
eV does not appear to have maximum at T(%) = 1.0 only because of resolution

limitations. A peak occurs in the scattering region [F > min(A, B) = 4.0}, but this

peak has a maximum transmission probability T'(E) < 1.
- The spectrum of T'(E) for the double barrier BC exhibits similar properties. One

“maximum occurs in the classically forbidden region [E' < min(B,C) = 3.0 eV] at
“about 1.3 eV. A second maximum occurs in the classically allowed region at about
4.5 eV, but at this maximum T'(E) < 1.

“The transmission probability for the triple barrier ABC is shown in Fig. 17.3. This
ectrumcx}ublts;peaks at about 0.4, 1.3, 1.9, 3.9, 4.6, and 7.0 eV. The peak at 0.4
is invisible due to reselution limits. In this figure we observe two things:
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Fig. 17.3 Transmission spectrum of the double barrier ABC, A = (5.0, 1.5), B = (4.0, 2.0),
and C = (3.0, 2.5) (eV, ;\). Barriers A and B are separated by 7.0 A, Band C by 3 A. Peaks
2t 0.4, 1.9, 3.9, and 7.0 eV arise from resonances in the AB double barrier, those near 1.3 and
4.9 eV are due to resonances in the BC double barrier.

i. The peaks at 0.4, 1.9, 3.9, and 7.0 eV seem to be related to the double barrier
AB (see Fig. 17.1), while the peaks at 1.3 and 4.6 eV seem to be related to the
double barrier BC (see Fig. 17.2).

2. None of the peaks has a maximum value of 1.

We can check that the fingerprints we have used to identify the peaks that appear
in Fig. 17.3 actually lead to correct identifications by computing relative probability
densities for energies near these peaks. Probability densities in the triple barrier
potential have been computed for E = 1.31 eV (Fig. 17.4), E = 3.65 eV (Fig. 17.5),
and F = 7.0 eV (Fig. 17.0).

Fig. 17.4 (E = 1.31 eV) shows that the electron probability density is much
larger between wells B and C than between A and B. This peak is therefore due
to a resonance between wells B and C. Since an electron with energy matched to
resonate in the BC well will not be in resonance in the AB well, the maximum of the
transmission resonance peak near 1.3 eV is less than +1.

The probability distribution in Fig. 17.4 tells us more. Since the probability density
in the BC well has no nodes, this peak corresponds to the lowest energy transmission
peak in the BC double well potential. In particular, this means that there are no peaks
below 0.4 ¢V in the transmission spectrum of the BC double barrier (Fig. 17.2), which
afe 5o narrow that they are not even hinted at in the transmission spectrum.

" Fig. 17.5 (E = 3.65 eV) shows that the electron probability density in the well
between barriers A and B is much larger than between barriers B and C. Thus the
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for electron with energy E = 3.65 eV. Dotted, Probability density = +1 (scale at right).
The resonance peak near 3.9 &V is due to the third resonance in the AB double barrier. The
wavefunction has two nodes in the AB double barrier, but since the minimum probability
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Fig. 17.6 Above, Triple well potential with energy scale at left. Below, Probability density
for electron with energy E = 7.0 eV. Dorted, Probability density = +1 (scale at right). The
resonance peak near 7.0 eV is due to the fourth resonance in the AB double barrier. The
probability density for this classically allowed energy has minima that are nonzero, so the
wavefunction has no nodes in this potential.
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peak at 3.9 eV is primarily due to a resonance in the region between A and B. Which
resonance? Since the probability density exhibits two nodes in this region of space,
the peak is the third resonance (transmission peak) in the transmission spectrum of
the AB double barrier.

The presence of one node between barriers B and C means that, at this energy
between one and three [(14-1) 1] resonance peaks in the spectrum have occured due
to resonarnices in the BC cavity. The location of the node can be used to determine
whether this number is one, two, or three. We will not discuss this point now.

Fig. 17.6 (E = 7.0 eV) shows the electron probability density is larger between
barriers A and B than between B and C. Thus, this peak is due to a resonance in
the cavity between barriers A and B. Since the probability density has three minima
in this region, it corresponds to the fourth transmission resonance of the AB cavity.
We observe that the probability distribution has minima that do not reach zero. This
means the wavefunction is not zero (there are no nodes) anywhere in this multiple
barrier. This is characteristic of wavefunctions for electrons with energies in the
classically allowed regime.




18
Quantum Engineering

As the size of electronic devices shrinks, the laws of quantum mechanics play an
increasingly important role in their behavior. It should be possible to use these laws
to design devices to operate within preset design specifications.

We illustrate this process with a simple example. Suppose electrons are conve-
niently available in some particular range of energies (e.g., 0-2 eV), but we need
electrons in a much smaller energy range (e.g., 1+ 0.2 eV). Can we design a filter
that will pass electrons in this restricted range and reject electrons outside this range?
How?

The specifications just described can be expressed as conditions on the transmission
probability function T'(£): itis zeroin the interval from 0 to 2 ¢V, exceptin the smaller
interval around 1 eV from 1 — 0.2 to 1 + 0.2 eV. Our experience with transmission
probability coefficients is

L. A single rectangular barrier will not exhibit resonance structures in the classi-
cally forbidden region.

2. A double barrier will exhibit resonance peaks at which 100% transmission is
achieved.

3. Multiple different barriers will show resonance structure, but transmission
peaks do not rise to +1.

4. Multiple identical equally spaced barriers produce multiplets of transmission
peaks showing 100% transmission.

These observations suggest that a filter with the specified characteristics can be
produced by fabricating a device with a large number of identical equally spaced
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barriers. If the barriers are rectangular, the multiple barrier device is specified l:.:y four
parameters: N 4 1, thg number of barriets; V (eV), the height of each; D (A), the
width of each; and L (A) the spacing between adjacent barriers.

A useful approach is to design a double barrier so that one of the resonance peaks
falls more or less in the middle of the range of energies to be transmitted, while all -
other resonances fall outside this range. For the design characteristics specified, we
will search for patameters L, D, V for which the lowest transmission peak is ~ 1

eV and the higher energy peaks occur for energies greater than 2 eV, The location of

the transmission peaks depends more sensitively on L than D or V. We can use the -

(Action) resonance condition for round trips in the double barrier potential
2pL /R + phase shifts at 2 boundaries = 277

to estimate L. The argument is that each reflection phase shift is ~ 7, so that

2LV2mE/[k ~ 2nnor L ~ nn/\/2mE[R2 ~ 6 A for E = 1 eV, n = 1.
This quick and dirty estimate at least puts us in the right ballpark for a more refined

estimation of the design parameters. After a few computations, we find that design -
parameters L = 4.0 A, D = 1.0 AV =38ev produce a transmission probability

potential wells between the six barriers. Each peak from the double barrier potential
isnow a 5-plet. Ineach multiplet the maximum value of T (E)}is+1 and the minimum
rises towards the center of the transmission band.

Transmission Probability
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Fig. 18.1 Double barrier designed to have one peak at about 1.0 eV. Inset, Barrier height
V =38eV,widthD = 1.04, separation between barriers L = 4.0 A. There is ome(N=1)
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Fig. 18.2 Transmission probability spectrum of multiple barrier with N (= 5) wells formed
by N + 1 barriers. N is given in the inset,
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Fig. 18.3 Transmission probability spectrum of multiple barrier with N = 25. As the
number of barriers (wells) increases, the pass bands approach T'{E) ~ 1 and the transmission
probability between these bands approaches zero (“forbidden bands™).
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Fig. 18.4 Transmission probability spectrum for multiple barrier (W = 10) biased bya2-v
external electric field. The field displaces and distorts the transmission probability spectrum,

One way to smooth the transmission spectrum within each band is to crowd more
peaks into this range. This is easily done by building more barters. It is surprising,

but true, that the width of each band is almost independent of N for N sufficiently
large (I > 5). The width of these bands is strongly determined by D and V, more
spectifically by D/V — Eres. We present the transmission spectrum of a device with
N = 25 (26 barriers) in Fig. 18.3. Notice that the widths of the fransmission pass
bands are almost unchanged from the N = 5 to the N = 25 device.

The transmission properties of a multiple barrier potential can be altered by biasing
it. That is, we impose an electric field on the device by creating a potential difference
acrossit. In Fig. 18.4 we show (inset) an eleven-barrier potential with a 2-V bias. That
18, the left-hand edge is grounded (“grounded” means the potential is zero), while the
right-hand edge is held at +2 V. Since the electron charge is negative, the potential of
the electron at the right-hand edge is —2 eV. We assume a linear decrease of potential
between the left- and right-hand edges and approximate the barrier potential in the
region as before. That is, we assume the potential in each of the 2V + 1 regions is
a constant whose value is the value of the potential at the midpoint of the region.
Biasing in this way modifies the structure of the pass bands and pulls them to lower

cnergy. If we assume that the electrons that are available to transit this barrier from

left to right are thermal (i-e., energies <1/40 eV at room temperature), then we can
computte the transmission probability, and the conductance, of this device as a function
of the bias voltage. The conductance function will not be a monotonic function of V'
and will therefore show regions of negative resistivity. A more complete discussion

of this phenomenon is outside the scope of our subject, which is elementary quantum
mechanics in one dimensjon.
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Variations on a Theme

The theme of this part of the book has been scattering, with an emphasis on tunneling
through one or more barriers. We have seen that peaks in the transmission probability
spectrum occur even in the classically forbidden regime. These peaks are due to
resonances.

We now ask: What type of phenomena can be anticipated if we are able to fabricate
two different types of barriers and place them adjacent to each other in any desired
order? To study this problem we introduce two simple rectangular barriers A and B,
shown in the inset of Fig. 19.1. We choose A to be a repelling barrier with energy
5.0 eV and width 1.0 A surrounded on each side by regions of zero potential and
width 2.0 A each. Barrier B has a similar shape, with height 3.5 eV and width 2.0 A,
surrounded by two regions of width 3.0 A at 0 eV,

In order to interpret the spectrum of the barrier AABB shown in Fig. 19.1, it is
useful first to determine the principal features of the three building blocks AA, AB,
and BB. The principal features of these spectra are the locations of the peaks. The
energies of the peaks below 10 eV are collected in Table 19.1.

The peak at 4.7 eV consists of two overlapping resonances, one from the double
barrier AA and one from the double barrier BB. This peak cannot be resolved by
increasing the resolution of the scan.

To be more precise, the somewhat distorted peak at 4.7 eV, which consists of two
overlapping peaks, cannot be resolved by probing with increased energy resolution,
subject to the boundary conditions specified: Vi, = Vg =0. In computing trans-
mission spectra for double and multiple potential barriers, we have observed that the
lower energy peaks are narrower than the higher energy peaks. This suggests that
we might be able to resolve the overlapping resonances buried in the peak at 4.7 eV
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Fig. 19.1 Transmission probability for the multiple barrier AABB. The poientials A and B
are shown in the inset, Hach feature can be identified with a peak in one of the double barrier
potentials AA, AB, or BB. The barriers AA and BE each contribute a peak in the range 4-5
V. These peaks cannot be resolved by refining the energy scan,

by narrowing them. This can be done if we could somehow lower their energy. One
possible way to do this would be to place this barrier inside a potential well with a
depth of ~ 4 eV. To be more explicit, we could impose a potential on the asymptotic
regions by setting V;, = Vp = V and probe the target with an external low-energy
electron beam with energy e above the asymptotic limits V. This would probe the
original potential (with V;, = Vj, — 0) at the energy £ = V + €. '
The result of this kind of variable potential, low-energy spectroscopy is shown
in Fig. 19.2 for ¢ = 0.1 eV, The two peaks that overlap near 4.5 eV when Vi
Vr = 0 are narrow enough to be clearly resolved. They occur at V' = 4.0 and 4.3
eV. We therefore expect the centers of these peaks occur at E' = 4.0+0.1 and 4.3+0.1
eV in the original potential with Vi = Vg = 0. Farther, these resonances can

be unambiguously identified by computing (or probing) the probability distribution -

function for each at V;, = Ve=V,E=V ¢

It is gratifying to know that the individual components of an “unresolvable peak”

can be unmasked by “pushing them down” to the energy of a low energy external
electron probe beam by varying the boundary conditions.

In Table 19.2 we present the locations of peaks in the transmission probability

spectrum T'(E) for various combinations of the potential barriers A and B. This

includes degeneracies of unresolved/unresolvable peaks. This list does not include
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Table 19.1 Energies of peaks in the potential AABB, and source of the resonance in the
individual wells AA, AB, and BB

Energy of Peak in AABB Source of Resonance
0.5 BB
0.7 AB
1.1 AA
21 BB
29 AB
4.7 Unresolved doublet AABB
6.5 AB
8.3 BB

mirror image barriers (BBA is the mirror image of ABB). The transmission probability
spectrum of a barrier is identical to that of its mirror image. This has to do with a
symmetry of nature. The symmetry is not a space reflection (or parity) symmetry.
Rather, it is the invariance of the Hamiltonian (1.1) under time reversal. To be more
specific, if the potential (Hamiltonian) that describes the system is time invariant,
the transmission probability-is the same whether the potential is probed by particles
incident from the left or the right.

Problem. Identify the features in each of the transmission spectra presented in

Table 19.2.
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Table 19.2 Energies at which peaks occur in the transmission probability spectrum T'(E)
for various combinations of the barriers A and B

Barmrier Peak Energtes

AA 1.0, 4.1

AB 0.7,2.9,6.6

BB 0.5,2.1,47,82

AAA (0.9,1.2),(3.8,5.1),93

AAB 0.7,1.1,29,44,6.7

ABA (0.7,0.8),(2.7,3.2), (5.9, 7.4)

ABB 05,08,2.1,29,47,65,84

BAB 0.6,0.9), (26,34, (6.0,7.1)

BBB (0.5,0.6),2.0,2.4),(4.3,5.1), (7.6, 8.9)

AAAA (0.8,10,1.4),(3.5,44,55),8.8

AAAB 06,09,13,2.8,39,51,6.7,92

AABA 0.7,0.8,1.1,2.6,3.2,44,6.0,74,9.9

AABB 0.5,0.7,1.1,2.1,29,4.7%, 6.6, 84

ABAB (0.6,0.7,0.9),(2.5,29,3.5),(5.7,6.6,7.7)

ABBA 0.5,0.8°,2.1,3.0°,47,63,6.8,8.6

BAAB (0.65,0.75),1.2,(2.7,2.0), 4.5, 6.6,99

ABBB (0.5, 0.6),0.8, (2.0, 2.3),2.9,(4.3,5.1),6.5,(7.7,9.0)
BABB 0.5,0.6,09,2.1,2.6,34,4.7,6.0,7.1,84

BBBB (0.50, 0.55,0.62),(1.9,22,2.5),(4.1,47,5.3), (7.3, 8.2,9.2)

Note: Some of the multiplets are grouped in parentheses.
* Multiplet unresolvable at any energy resolution.
b Multiplet resolvable at finer energy scan.




