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Schridinger’s Equation

Schrédinger’s equation is

Hep(x,t) = iha¢é’:’ t) (1.1)

Here 1:(x, t) is a wavefunction, and H is an operator obtained from the classical
Hamiltonian describing a system. The classical Hamiltonian is a function of particle
coordinates X, p;, where x; is the 3-vector describing the position of the jth particle
and p; is its momentum. The Hamiltonian operator H is obtained from the classical
Hamiltonian A by making the substitutions

7
P = Vi, (1.2)

where V; is the gradient operator acting on the coordinates of the jth particle,
h = 6.6255 x 10727 erg sec is Planck’s constant, i = h/2x = 1.054 x 1077
erg sec, and ¢ = /—1.

The Schridinger equation (1.1) can be simplified by assuming a solution of the
form 1(x,t) = ®(x)e~*#t/", Then the explicit time dependence may be removed
from (1.1) and the resulting time-independent equation is

Ho(x) = BO(x) . (1.3)

The real constant E is interpreted as the energy of the system. The equations (1.1)
and (1.3) are called the time-dependent and time-independent Schrédinger equations.

3



4 QUANTUM MECHANICS IN ONE DIMENSION

In this work, we will be particularly interested in the description of a single pasticle
in one dimension. The classical Hamiltonian for a single particle in a potential V (z)
is :

H = ﬁ +V(z). (1.4)
2m
Therefore, the Schrodinger equations we shall study are
[-Tz%zaa—; + V(:c)] vy = wlHl (1.5)
_ 52 d2
[%d_x?— + V(a:)] ®(z) = E®(z). (1.6)
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rle particle

ntial V' (z)
(1.4)
(1.5) 2
(1.6)

Solutions in a
Constant Potential

We will deal primarily with (1.6). To gain some familiarity with the time-independent

E Schrodinger equation (1.6), we shall solve it in a region of space in which the potential
V(x) is constant, V{(z) = V. The equation may then be rewriiten
d2®(zx) —2m
d:c(2 ) _ o 8- V)e() . @

Three types of solution may occur, depending on whether the term —2m(E — V) /h?
is negative, zero, or positive. Since under any condition we have a second-order
differential equation to solve, there will always be two possible particular solutions.

Case A: 32 (E-V)=~k? <0,

B (z) = etth® Po(z) = e (2.2)

Case B: Z2(E—V) =0,
$1(z) =1, @y(z) =12x. 2.3)

” R A S A M T SN

Case C: F(E V) =+x2 >0,
Pi(x) = e, Po(x) = et . (2.4)

The most general solution of the Schridinger equation in each of these three cases
will be a complex linear superposition of the two particular solutions,

3(z) = A®,(z) + B®s(z) . @)
5
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6 QUANTUM MECHANICS IN ONE DIMENSION

The relationship beteween E, V, &, and x may be expressed in a transparent form
as follows:

CaseA: B,y _ F
caseB: V = E,
Case C : :%-I—V = F.

In case A, the classical particle moves with a kinetic energy KE = FE -V =
p?/2m = (hk)?/2m. Therefore, +hk may be interpreted as the momentum of a
particle moving in a region of constant potential V < E.

We can make these considerations a little more precise by the following line of

. o —B? q2 .
reasoning. When the Hamiltonian operator % d#‘zf + V() acts on the wavefunction

- ®(z) it produces a multiple of the wavefunction (1.6). An equation of the form

(Operator)(Wavefunction) = (Number) x (Wavefunction) (2.6)

is called an eigenvalue equation. (In (1.6), the number is the energy eigenvalue.)
If we apply the momentum operator p = %a% to the wavefunctions &, (z) =
et Bo(z) = e %< we should find the possible momentum states of the par-

ticle

BOi(z) = Lfetht = (4hk)et*T = LRkD,(z),
2.7)
PRaz) = Ldemthe = (_hk)e T = _Rkdy(z).

Therefore, ®1(x) represents a particle traveling in a region of constant potential
V < F with momentum p = +hk = +/2m(E — V) (ic., to the right), while
®,(x) represents a particle traveling with momentum p = ~hk = —, /2m(E — V)
(i.e., to the left).

A classical particle is forbidden to travel in a region in which V > E. This is
reflected, in the quantum mechanical case, by the fact that the associated momenta
are imaginary:

p®1(z) = ?die“"’”’ = i’ie“nm = +iy/2m(V — E)®;(x),

X 2
(2.8)
p®a(z) = ?die”‘m‘ = ﬂe“‘” = —iv/2m(V — E)®3(z) .

T 2

The wavefunction ®; (z) = e~ represents a solution of Schrdinger’s equation that
is exponentially decreasing toward the right, while ®,(z) = e+== is exponentially
increasing toward the right.

Case B, with V' = E, is degenerate because the real momenta become zero in
the limit V' — F from below, or the imaginary momenta become zero in the limit
V — E from above. Under this condition of degeneracy, mathematical theorems tell

Q3
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SOLUTIONS IN A CONSTANT POTENTIAL 7

orm Table 2.1 Solutions of Schrodinger’s equation in a region with constant potential
Case Two Independent Eigenvalue of Definition of
Solutions Momentum Operator Parameters
1 P, = etike +hk 2.2
7 = j A V<EFE By, — ik _Fk +5-+V=F
of a
e of B V=F $; = =z Not an eigenfunction V==E
tion
! O = e *® +ifis D% Y
C V>F Oy = et —ihK ~EmtV=E
2.6)
ue.)
| =
ar- us that at least one of the solutions must satisfy an eigenvalue equation, but the other
P solution need not:
hd
}6‘1’1(1!) = ;""&;1 = 0 = OX(I)I(I),
2.7)
. hd +h ik
itial 3 . .
hile 3 The eigenvalue equation tells us that the corresponding momentum in case B is zero.
v) : These results are summarized in Table 2.1.
§ 18
:nta
2.8)
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Wavefunctions across a
Boundary

In the previous chapter we have solved a very simple one-dimensional problem. In
this chapter we shall solve a more complicated problem. We already know what a
particle wavefunction looks like in a region in which the potential is constant. ' We now
ask: What does a particle wavefunction look like if the potential has a constant value
V1 in one region of space (the line) and a different constant value V2 in an adjacent
region of space (Fig. 3.1)? We choose the break point between the two regions to be
z = a. For the sake of concreteness, we temporarily assume the particle energy F is
larger than either V; or Va.

In region 1 the particle wavefunction ®(x) is in general a linear superposition of
the two specific solutions:

Region 1
z<a ®(x) = AetF1® 4 Be—thiz |
2
(hik,)* +Vi=E. | G3.1)
2m

Similarly, the wavefunction in region 2 is

Region 2
asz O(z) = Ce**2® + Detha= |
2
(L .
2m

In order to find a relationship between the wavefunctions for regions 1 and 2, we try
to make the total wavefunction () “as continuous as possible” across the boundary

9




10 QUANTUM MECHANICS IN ONE DIMENSION

at x = a. Since Schrédinger’s equation is a second-order differential equation, the
solution in each region is characterized by two complex numbers [( A, B) in region 1;
(C, D) inregion 2]. Thus, we have two degrees of freedom to play with. That means
we can choose the coefficients (A, B) and (C, D) so that the wavefunction and its
first derivative are continuous at x = a:

Regionlatz =a RegionZ2atz=a
®(a) : Aeikie 4 Be-ikia _ Ceikze 4. De—ikaa (3.3)
920) ; ik Aeti® — ik Bem*1e = ikyCe™®® — ik, Demihen

This pair of simultaneous linear equations relating the coefficients (A, B) to the
coefficients (C, D) can be handled in an elegant and simple way using matrix algebra:

eik;_a e_'iku}. A B e'ikza e—z’kga ¢ (3 4)
ikle'z’kla “’ikle_ik'la B |~ ikzeikga —'ikze_ikza’ D . .

In fact, the treatment becomes yet simpler if we first make it slightly more complicated
by writing each 2 x 2 matrix in (3.4) as the product of two matrices, as follows:

11 ef1e Al
iky —iky 0 e the B |

1 1 etk 0 C
?:kz mtkz 0 B_ikza' D ’

In this form, the coefficients (C, D) for the wavefunction in region 2 may be related
directly and simply to the coefficients (A, B) for the wavefunction in region 1 (or
vice versa). The calculation is simple because it involves multiplication by matrix
mverses.

(3.5)

E (particie energy)
Energy Vo

vy

Ragion 1 Region 2

Fig. 3.1 The potential in the left-hand region is Vi < F, and the potential in the right-hand
region is V2 < E. The wavefunction and its first derivative are matched at the boundary.
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WAVEFUNCTIONS ACROSS A BOUNDARY 11

For example, to solve for (C, D) in terms of (A, B) we first muitiply both sides of

]- 1 -t h . eikza 0 -1
(3.5) by [ iky —iky ] on the left. Then we multiply by [ 0 e—ikee }

on the left:

C ghea o 17'r i 1 17
[D]:[ 0 e—ikw] [ikz —ik‘z]

o 1 1 gikia 0 A
ik —iky 0 e iha B |-

The coefficients (A, B) could just as easily have been solved for in terms of the
coefficients (C, D) by a similar process

Al Jewe o 17'71 1 17
B |~ 0 e tha ik —iky

o 1 1 gtk2a 0 C
iko —iko 0 e ikea D |-

Equations (3.6) and (3.7) show that the coefficients (C, D) are related by a linear
transformation to the coefficients (A, B).

For reasons that will become apparent at the end of chapter 4 (Fig. 4.2), the relation
(3.7) is much preferable to the relation (3.6).

In deriving the relationship between the coefficients (A, B) in region 1 and the
coefficients (C, D) inregion 2, we have assumed £ > Vi, F > V5. We now relax this
assumption. To discuss the general case it is only necessary to observe that in each of
the threecases V < E,V = E,V > E, the wavefunction ®(z) can be expressed as a
linear superposition of the two particular solutions ®4 (), @2(x) given in (2.2)—(2.4)

(3.6)

(3.7)

‘I’(.’E) = A<I)1(9:) + B‘I)g(ﬂ?),
o'(x) = A®,(z) + By(x).

The matrix relation between the wavefunction and its first derivative ®(z), ®'(z) and
the coefficients (A, B) is

| 2@) J_[ @u(z) @afz) |] A
[ 40() ]‘[ ((2) ®4(a) || B G
In detail, for the three possible cases we find:

(3.8)

Case A:V < F, Egz;ﬁi-i—V:E,
B(z) = Aetihs | Beiks
42@)  _ jgAetike . jkBeihe =
xr
o(z) 1 1 T[] etk g 4
[ da(w) ] = { +ik —ik ] [ 0 o—ikz ] [ B ] . (3.10)
o




12 QUANTUM MECHANICS IN ONE DIMENSION

CaseB:V =F,

®z) = Ax1 + Bxz
+ Bx1

(G en

Case C: V > E, Bl Ly g,

O(x) = Ae™"® 4 Betu®
—m—d%(;) = -—gAe " 4 gBetss

£ B AR [ Lol [ P R

Each of these equations can be written in the form

[ ;@ } = K(V)E(V;z) [ g ] . (3.13)

dz

=

The 2 x 2 matrices K, F as well as their inverses are collected in Table 3.1.

We return now to the problem of matching the wavefunction and its first derivative
across a boundary, as illustrated in Fig. 3.1. Without making any assumptions about
the relative values of E, V4, V4, the wavefunctions in regions ! and 2 can be written
as complex linear superpositions of the particular solutions ®, (x), Po(z) for the

appropriate cases (Table 2.1). Matching the wavefunctions and their first derivatives ‘

at the boundary z = a leads via (3.13) to the matrix equation
A C
K(V1)E(Vy;a) B = K(V3)E(Va;a) Dl (3.14)
The expression for (A, B) in terms of (C, D) is then given very simply by
A _1 _1 C
5 | =B (VsaK EWEVEe | . @)

We have already encountered a special case of (3.15)inthecase E > V;, E > V, in
3.7

Ta



(3.11)

(3.12)

(3.13)

vative
about
mitten
or the
atives

(3.14)

(3.15)
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Table 3.1 The 2 x 2 matrices K(V) and E(V; x), and their inverses, for the three cases:
E>V.E=V,andE<V

E>V E=V E<V
k=+/2m(E —V)/R2 k= +/2m(V — E)/h2
1 1 1 0] 1 17
K(V) [ +ik —ik ] | 0 1 ) [ —K  tK
1 +1 [1 0] 1 17
K——l(v) 1 [ ik } 1 [ K
21 -1 | 0 1 211 —I—% |
[ etikz 0 ] (1 4z ] gTHhT 0 ]
E(V! IE) 0 e—ik:r, 0 1 ( 0 e-i-mn
- [ e7%= 0 ] 1 -z ] [ etre 0 ]
K I(V;x) 0 e+-ik:c 0 1 0 e~ KT




4

Piecewise Constant
Potentials

In this chapter we solve Schrodinger’s equation in one dimension with potentials more
complicated than those used in the previous chapter. We consider here potentials that
are constant in an interval

V(SL‘) = V:’,;, i1 < T < &y . 4.1)

Such a potential is illustrated in Fig. 4.1. The values of the potential at the breakpoints
is unimportant as long as there are only a finite number of breakpoints.

4.1 TRANSFER MATRICES

Piecewise constant potentials can be treated by a simple extension of the methods
developed in chapter 3. Instead of using different pairs of letters (A, B), (C, D) for
the particular solutions ©,(z), ®2(z) in each region, we denote the general solution
in region j by

®(z) = A;®1(x) + B;®a(z), aj_1<z<a;. (4.2)
(Otherwise we might quickly run out of letters.) From (3.15) we know the matrix

relation between the coefficients (A, B) = (A1, B;) in region 1 and the coefficients
(C, D) = (As, Bs) in region 2 is
At E7'(Vi;00) K (V) K (Vo) E(Va; ay) 42
B1 1,0 1 2 2,01 B2
A .
- | 5] @“3)

15




16 QUANTUM MECHANICS IN ONE DIMENSION

Va
Ay A, Az -
o BRI
Region 0 Region 1 Region 2 a, 8y

Regton 1 Region2  Region3

Fig. 4.1 The coefficients Ay, By in the left-hand region 0 are related to the coefficients
Az, By in Region 1 by a simple 2 x 2 transfer matrix. Similarly, the coefficients A;, By are
related to- Az, Bz by another simple transfer matrix. Thus, Ao, By are related to Az, B; by
the product of simple 2 x 2 transfer matrices. '

The break between regions 1 and 2 occurs at 2 = a;. The 2 x 2 matrix 7}, is called
a transfer matrix because knowledge of the amplitudes As, B, can be transferred to
knowledge of the amplitudes of A;, B; with this matrix.

Suppose now the asymptotic region on the left (region 0) and region 1 meet at
breakpoint ag (Fig. 4.1). The coefficients (Ag, By) or (Az, By) and (4;, B;) are
related by an equation of the form (3.15):

5 |

E7Y(Vi; a0)K (VL) K (V1) E(Vi; ap) [ }B}i ]
= To [ gi ] o | @4

Combining this with the matrix relation (4.3) yields an immediate linear relation
between the coefficients (Ap, Bg) and (Ag, Bs)

[ gg ] = Tp1Tis [ gz ] . 4.5)

Suppose now region 3 occurs to the right of region 2, the two regions meeting at
breakpoint ap (Fig. 4.1). The coefficients (A, By) are related to (A3, B3) by an
equation of the form (3.15):
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PIECEWISE CONSTANT POTENTIALS 17

{ 5, } = BT (Va;02) K~ (Va)K (Va) E(Vs; a) [ & ]

= T [ gz } . (4.6)

Combining (4.6) with the linear relation between {Ay, B;) and (A, By) given in
(4.3) yields a linear relation between (A3, By) and (A3, B;):

[ g ] - TisTh [ gg ] . @7)

For a piecewise constant potential with asymptotic constant value V; = V}, on
the left and Vv 11 = Vi on the right, there are N + 1 breakpoints ag, a1, ag, ..., an,
with a; separating region j with constant potential V; from region (j 4 1) with
constant potential V;.41(j = 1,2,..., N). The linear relationship between (Ag, Bg)
and (An+1, Bny1), or (A, Br) and (AR, Br), is easily seen to be

[ gg ] = TnTioToz..Tn—1, TN N+1 [ gﬁii ]
= Town { e ] . (48)
The individual matrices are _
Ty i1 = E=H (Vi a5) KHV) K (Vi) E(Viga; a5) - (4.9)

Notation: We will call Ty n 1 (or simply T') the transfer matrix for the problem of
a piecewise constant potential with asymptotic constant values V; (or V7,) on the left
and V4 (or V&) on the right.

The transfer matrix T ;41 15 obtained as a product of 2 x 2 matrices. There are
four 2 x 2 matrices at each breakpoint (the product at a; is Tj ;11, given in (4.9)),
so that a problem involving N piecewise constant potentials between the asymptotic
potentials Vy, on the left and Vi on the right, defined by N + 1 breakpoints, involves
multiplying together 4(N + 1) 2 x 2 matrices.

It is useful to carry out whatever simplifications are possible before the actual
computations are performed. In the present case a great simplification is possible.

- Consider the product of two successive transfer matrices

Tj_1,;T 541 = BN (Vj—1505_1) K~ (Vj_1)
(4.10)

x K(Vi)E(Vj; ;1) E~ (Vi3 0;) K1 (V) XK (Vj11) E(Vi1505) -

The four interior matrices, which are underlined, refer only to region j, where the
potential has constant value V;. The product of these four matrices can easily be

5!‘
£
&
;




18 QUANTUM MECHANICS IN ONE DIMENSION

Table 4.1 Real 2 x 2 matrices M(V;6) for the three cases E >V, E=V,E <V

-/ M(V;,55) = K(V,)E(Vysapl B~ (Vs aposd (1)
)
Case A Case B Case C
E>V E=V E<Vv
k=+/2m(E-V)/h2 k= +/2m(V — E)/k2
coskd  —k~lsinkd 1 -4 coshxd  —k"lsinhxé
+ksin ké cos kd 0 1 —ksinh xd cosh k6
6 =aj41—a; coshz = 3(et® + %)
sinhz = 1(et® — %)
T
computed. The matrix product
- _ Fig
M(V;,85) = K(V;)E(Vy;01)E™ (Vs a5) K1 (V) (4.11) i
(65 = aj — aj-1), is given in Table 4.1 for the threc cases E > V,E = V,E < V. piec
The matrix M; = M(V},4;) depends only on the potential V; in region j and the
width d; of region 7, as well as the particle energy E. Further, this matrix is always ofte
real and has determinant +1. y
The computation of the transfer matrix simplifies to [ i
- - The
T(],N_I_l =F 1(‘/0; ao)K I(Vb) x M1M2 MN X K(VN+1)E(VN+1;0,N) .
(4.12)
As aresult, the computation of the transfer matrix involves the productof N4+2x2 =
: N + 4 instead of 4(N + 1) = 4N + 4 matrices: two matrices each for the left and
i _ right asymptotic regions, and the /N real 2 x 2 matrices M; for the N interior regions.
4.2 COMPUTATIONAL ALGORITHM The
We show in Fig. 4.2 a very simple algorithm for constructing the transfer matrix ;‘2111(2
merely by inspecting a piecewise constant potential. This algorithm would not have thes
been as direct had we adopted the solution (3.6) instead of (3.7). c all
In summary, the algorithm for computing the transfer matrices that we will use
1s as follows. Equation (4.12) relates the amplitudes [ ;ﬁ ] in the asymptotic left- . A

hand region with the amplitudes [ jgg ] in the asymptotic right-hand region. It is
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Ey
VD
—_—
Eq
VN+1
—_——tl
vy
A— V-1
[ E
51 VN 2
vy N .
83
Vo
iz
b T ay
_pelay . 1
Tonv= B (Vgiaghc vy My M, M3 Mpy-1 My KVige 1 JEViy 1iapy)

Fig. 4.2 The transfer matrix for the interior pieces of a piecewise constant potential is very
simply constructed by inspection. We associate a simple 2 x 2 real transfer matrix with each
piece of the potential and then sitnply multiply them in the order in which they occur.

often useful to absorb the diagonal matrix elements of E(V,; ay) into the amplitudes

By
Then

[ Ar } and the diagonal matrix elements of £ (Vr; an) into the amplitudes [ gR } .
R

E(Vy;a0) [ _‘gi’ } = KHVL)M: ... MyK(VR)E(Vi; ax) { gg J :

Al B O 4

The first step is the computation of the 2 x 2 real unimodular matrices M (Vj; ;) for
each of the NV intermediate piecewise constant potentials of energy V; and width ;.
These matrices can be written down by inspection for any energy £. The product of
these N matrices is then computed in the order in which the potentials appear. We
call the product M:

Moy (E) Moo (E)
4.14)

N
MzM(I/l;51)...M(VN;6N) = HM(IG';5j) - [ mi(E) mya(E) } '
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It remains only to premultiply M by K~1(V) and postmultiply by K(Vz). We

whe
consider two cases separately.
H the asymptotic potentials Vy,, V are both less than the energy E of the particle,
the matrices KX are complex:
1f1 A my; m 1 1
T==z ke S . 4.15
2 [ 1 —'ilk;_, ] ’: Mo1 Moo ikr —tkp ( )
k ) m k ) m
1| M+ k—Rmzz +ikpmaz + =2 M1 — Tomay — ikrmag + —o
— I ’l.kL ’CL ‘LkL
R . Moy kr ; moy
mi — 7oz +tkrmiz — ——  ma1 + w=mas — thpmys — ——
kr ikr, kr ikr, It is
(4.16)
This matrix with complex matrix elements can be written in the simpler-looking form
a B
=[5 2], @
where @ is the complex conjugate of the complex number o, and similarly for £.
These two complex numbers are explicitly given by o = ag + iaz, 8 = Br + ifr: ]
20 = +mn + Z;Emzz )
b .
2 = +mu— k—Rm22 ;
L g 1
m .
207 = +kpmis — o, Thi:
kr prox
m o
261 = —kpmiz— 22 @18 § M,
L dete
It is a simple matter to verify that mat
2 2 __kn K-
jof? ~ 18P = 22 | @19 |
L ;
If the asymptotic potentials V., Vr are both greater than the energy E of the particle,
then the matrices K are real and Thi;
Tab
- -1 |
1 1 = M1 Mi2 1 1
T =3 . 43
L Ma1 Mgz —KR KR ;
i KR may KRR Moy The
M1+ ——Me2 —KRMi2 — —— M1 — ——Maa + kMg — — |
1 Kr, KL KL KL, war
B 2 KR ma1 KR m21 o
M1y — ——Mg2 — KRMy2 + — Ma1 + —Ma2 + KMy + —— ngh
B Kr, KL KL KL
. ther
ar+az B+ P
= , @20 | o,
i fr—~PB2 a1 —ay _
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: particle,

(4.15)
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ikr,
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(4.17)
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r + 10r:

(4.18)

(4.19)
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where the real numbers o, as, 51, 3, are given by

KR
201 = +my;+ —myy,
Kr,
KR
26, = +4my— —Ma3 ,
g1
Mgy
209 = —Kgpmyg — —— |
K,
Moy
202 = +Kkpmyg— - 4.21)
L

It is a simple matter to verify that

detT = (af—ad)— (6}~ 43)
= (d+5)— (5 +8)

= ZE 4.22)
Kr
The transfer matrices (4.16) and (4.20) are related by
(4.16) < (4.20) 4.23)

+ik  — —K

It happens frequently that the determinant of the transfer matrix must be computed.
This is a relatively simple task, as the determinant of a product of matrices is the
product of the determinants of the individual matrices, and for a nonsingular matrix
M, det M~ = 1/(det M). To compute det Ty, v+1 from (4.8) we observe that the
determinants of all matrices E(V;a) are 1 (i.e., Table 2.1). In addition, for every
matrix K (V}) there is a matrix K—(V;), except on the far left and the far right, where
K~'(Vy,) and K (Vg) are unmatched. Therefore,

det K(VR)
det K(V;)

This result can be seen even more easily from (4.12) or (4.13), since det M. i = 1 (see
Table 4.1).

det To_, N+1 =~ (424)

4.3 SCATTERING MATRICES

The complex numbers Ay, By, are probability amplitudes for particles moving to-
ward and away from the scattering potential on the left; B and Ap, are probability
amplitudes for a particle moving toward and away from the scattering potential on the
right. These four numbers are not independent: there are two linear relations among

them.' These are provided by the transfer matrix T, which relates the pair [ ‘gL ]
_ _ L

on the left with the pair { gR ] on the right.
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22 QUANTUM MECHANICS IN ONE DIMENSION

There is another useful relation among these four amplitudes. This relates the

amplitudes [ ég ] for particles moving toward the scattering potential to the ampli-

tudes [ gR } for particles léaving the scattering region. This linear relation defines
L
the scattering matrix, or S-matrix S(E):

o) es[a - BB k] e

The T- and S-matrices have dual interpretations. The transfer matrix relates ampli-
tudes in space-—on the left and on the right of the scattering region. The scattering
matrix relates amplitudes before the interaction with those after the interaction. This
duality is illustrated in Fig. 4.3.

T
5 |
E | BLe—ikLm AR8+1:_kRm
|
i
|
T
!
-E_ | Scattering
@ Regi
g | egion
0oy
I
|
}
o ! .
1'9 I A e-F?'.kL:c BRe ikpw
t o |
@
wL e —— = I ] —————— —
Left Right
- -
X T-matrix

Fig. 4.3 The transfer matrix relates amplitudes on the left of the scattering region with
those on the right. The scattering matrix relates incoming amplitudes (“before”) with outgoing
amplitndes (“after™).
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It is a simple matter to construct the matrix elements of the S-matrix from those
of the T'-matrix. We first write out the two equations summarized by the 7-matrix:

Ar, = tudr + t2Bgr,

4.26
By, = 1ty Ap + t22Bp (4.26)

Then we regroup the complex amplitudes, placing the amplitudes { gi{ :l for out-

going waves on the left and the incoming amplitudes [ gr‘ } on the right:
R

—tuAr = —A;p + t12Br
—ts1Ar + Br = te2Br “4-27)
—t11 0 AR . —1 49 AL
R ol R P L B
The linear relation we desire is obtained by multiplying by the inverse of the matrix
on the left:
Ar ] [ =t 0777 [ =1 2 1] Ag
{ Br, ] B [ —tgy 1 ] 0 i Br |~ (429)
The result is
p— i _ tﬁ —
t11 t11 s11(E)  s12(E)
S = = . (4.30)
to1 - det(T) sa{E)  s22(E)
L t11 t1p

Conservation of momentum provides the following quantities conserved by the T-
and S-matrices:

T kL|ALl> — kBl = krlAr]® — krlBgl?,

S kL|AL|2 + kR|BR|2 = leAR|2 + kLIBle .
When the asymptotic potentials on the left and right are equal, V, = Vjg, these
conservation laws simplify to

T " |ALl? - IBi? = |4rl? - |Bgl
S lAr]2 + |BR|2 = ]AR|2 + [BL]2 = 1.

One additional linear relation among two pairs of amplitudes is possible. This
relates the amplitudes for right-going waves with the amplitudes for left-going waves:

1 ]-o[ 2]

(4.31)

(4.32)

Ag By

This last relation is almost never used.

In this work we will deal entirely with transfer matrices. However, there are many
one-dimensional quantum mechanical problems that are not elementary and that can
only be treated with S-matrices.
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5
Momentum Conservation

We have seen in chapter 2 that the wavefunction ®; (x) = e1**® represents a particle
traveling to the right in a region of constant potential V' < E with a momentum
p = +hk,k = +/2m(E — V)/R2. Similarly, ®2(z) = e *** represents a particle
traveling to the left, with a momentum p = —hk.

The most general wavefunction in such a region is a complex linear superposition
of the two particular solutions,

®(x) = Ae™*® | Be %= (5.1)

The complex number A is the probability amplitude for finding the particle moving
to the right with momentum k. Its absolute square, |A|> = AA = A* A, is the prob-
ability for finding the particle with momentum -+#k. Similarly, B is the probability
amplitude for finding the particle with momentum —hk, and |B|?> = BB = B*B s
the probability for finding the particle with momentum —Ak.

Since a measurement of particle momentum will yield only one of the two re-
sults p = +hk or p = —hk, the probability of finding the particle of energy
E = (hk)?/2m + V with momentum either +hk or —kk is one. Therefore

|A? +{B> =1. (5.2)

The average particle momentum in the region of constant potential V' is the momen-

~ tum Bk multiplied by the probability that the particle has momentum 7k, plus the

momentum —Ak multiplied by the probability that the particle has momentum —Fkk:

Pay =< P >= (+hik)Pr(hk) + (—hk)Pr(—Rk) = Bk(JA” — [B") .  (5.3)
25




26 QUANTUM MECHANICS IN ONE D!MENSION

We will now describe the gquantum m
conservation. We start with a sim

constant potential V; < E the wavefunction and average momentum are

P(z) = Aetihz 4+ Be 1z ,

<P> = Hk(JAP - |Bj). (5.4)

In the right-hand regjon with constant potential V5 < E we have

®(z) = Cetihaz | p—iksz

7

<P> = hky(|C}2-|DJ?). (5.5)

We want to show that the average momentum i

n the left-hand region is equal to the
average momentum in the right-hand region:

fk1 (1A — [BI*) = hko(ICP — D) . (5.6)

The verification of (5.6) is easily carried out using

transfer matrix methods. The
complex amplitudes (A4, B) and (C, D) are related by

{ 5 } =iz [ 5 } = EZ (Vi) K (V) K (V) B(Va; a) [ 5 } )

Region 1 Region 2 E
V2
Vi
X=a
¢=Ae1k1x+Be"k1x <I>=Ce£k2x+De_ik2x

<p>=hk, (A2 |BI2) <p>=hkx(ICI2 - DI2)
Fig. 5.1 The mean value of the

particle momentum in region 1 is the same as the mean value
of the momentum in region 2.
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We could simplify this calculation by choosing the break point g to be at the origin of
coordinates. However, it will be useful to allow a to be nonzero. Then the complex
phase factors in the E' matrices can be absorbed into the amplitudes (A4, B) and (C, D)

as follows:
A’ A gtikie g
5] sl 4] (58
e+’£k2ac

[ g: } = E(Vy;a) [ g } = ( o—ikaa ) ) . (5.8)

These phase factors will be unimportant in the final analysis since (5.6) involves only
the absolute squares of the complex amplitudes.
The result (5.7) then reduces to

Al 11 & 11 o
) =0 ) (k) [5]
kitks  ki—ka | o
[ [D,}- (5.9)

k1 Ty
Now we compute |A'{2, | B’|2, and take their difference

ki—ks ki1tks
2k4 2k,

2 _ 2 2 1.2 . .

IAI|2 — (klz‘]: kz) |Cfl2 + (k12k k’z) |Dl|2 i k(12k ;‘;2 (C;D! + C!D;)
1 1 1

. 2 2 2 _ 2 _

]BIIZ — (kl2k k2) |Cf|2 + (k]_z';; kZ) IDI|2 + k?ék )1{:22 (CIDI + CIDI)
1 1 1

k
A2~ B = Z(C - D). (5.10)

This last equation is what we have set out to prove when we recognize that |A/|?> =
|A|2, and so on.

We now prove momentum conservation in the general case where £ > Vi,
E > Vpg, shown in Fig. 5.2. The potential may be approximated by a piecewise
constant potential by choosing the breakpoints close enough (a;41 — a; ~ €, € very
small) and allowing NN to be large enough. The transfer matrix To, N1 can be ex-
pressed in the form (4.12). The phase factors in the exponentials that occur at the
ends of Tp n1 may be absorbed into the amplitudes, as in (5.8). The product of the
matrices M; that occur in the interior of (4.12) need not be computed explicitly. We
have only to observe that each M; is real and has determinant +1. The product of
real matrices with determinant 41 is itself a real matrix with determinant +1. Thus,
no matter what the potential,

MiMs.. My = l: 2 g ] , ad—be=1, a,bc,d real. (5.11)
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The relation between (Ag, By) and (AN+1,BN+1) or (Ar,Bg) and (Ag, Bg) is

therefore
1 & a b 1 1 AR
1 == c d || itkp —ikr || By
¢
B

5] -
BL
’
gﬁ ] , (5.12)

k
20 = oy ks
28 = (a - d%) i (—ka — E%) . (5.13)
Again we compute |A} |, | B} |2 and take their difference
AL = [o’|ARI> + B BRI* + @8 AR By + 0B AR B ,
BLl? = |18PI1AR] + |a’|B|* + @BAR By + aBALBL
AL 1B = (la? - [82)(|4R]? - | BRf?)
by (5.12)

(ad — be) 2 (ARl ~ BI?)

e £JI:E(IA’RIZ—IBEzF)- (5.14)
= |

Since | A} | = | A |* and so on, we have the desired result that (average) momentum
is conserved on transmission through a barrier of arbitrary shape

k(AL — |BL|?) = Bkr(JAr]? — | Br|?). (5.15)

AR :

flsgion0 Region N
o= Aoeikox + Boe'ikox o= ANaB‘N" + B, g NX
<=ty 1A - 1Bt

- 2
<t =ty 1Ay 12 - 1843

Fig. 5.2 In the general scattering case, the average momentum of the particle in the asymp-

totic left-hand region is the same as the average momentum in the asymptotic right-hand region,
no matter what the shape of the potential.
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6

Preview of Boundary
Conditions

We will solve the time-independent Schrédinger equation in one dimension with
piecewise constant potentials subject to three distinct boundary conditions:

Part II Scattering
Part III Bound States
Part IV Periodic Potentials

Each boundary condition imposes a different condition on the transfer matrix.

6.1 BOUNDARY CONDITION FOR SCATTERING

In the case of scattering (Fig. 6.1) the wavefunctions in the asymptotic left-hand and
right-hand regions are

Pr(z) = Apet™®:® L Bre = @p(x) = Age™™ R 4 Bre~™#r%  (6.1)

The amplitudes for the wavefunction on the left- and right-hand side of the potential
are related by the transfer matrix

FARFAR A

We assume that the constant potentials on the left and right of the scattering potential
are equal. We also assume that a particle is incident from the left with nonzero

29




30 QUANTUM MECHANICS IN ONE DIMENSION

probability amplitude (AL # 0), but not from the right (B = 0). There is some
probability amplitude (Ag) that the particle is transmitted through the barrier, and
some amplitude (B)) that it is reflected. This provides a simple relation between the
amplitudes

AL | _ | tu tia Ap A = t;3(B)Ag
[BL]_[tzl tzz}[ 0 }—_—-> By, = tn(E)Ar . (6.3)

The squares of Ag, B;, describe the transmission probability T(F) and reflection
probability R(E) for the particle incident on the scattering potential

T(E) = |Ap/Ai? = 1/t (E)[? (6.4)
R(E) = |Br/ALl® = [ta(E)?/ltn(E)?. ’

We remark that these results can be determined from the S-matrix (4.25) with
(4.30).

6.2 BOUNDARY CONDITION FOR BOUND STATES

In the case of bound states (Fig. 6.2) the wavefunctions in the asymptotic left- and
right-hand regions, forbidden to a classical particle, are

‘I’L(CL‘) = Ape *LT 4 BL6+KL'T R ‘I)R(:B) = Ape 8% BR6+”Rx . (6.5)

In order to have a wavefunction that is bounded by the classically forbidden right-hand
region, B = (). Then

Ap [ ta to Ar Ar = t;(E)Ag
{BL]_[tm t22][ 0 J:> BL = tm(E)Ap - (6.6)

In order to have a wavefunction that is bounded by the classically forbidden left-
hand region, Ay = 0. Since Ap # 0 (otherwise the wavefunction would vanish
everywhere), £11 () must be zero. Thus, the zeros of t11(E) define the energies at
which the potential supports bound states. This result can also be determined from
the S-matrix (4.25) with (4.30).

6.3 BOUNDARY CONDITION FOR PERIODIC POTENTIALS n

Many solids are adequately approximated by a long sequence of identical potentials
(Fig. 6.3). If the transfer matrix for each unit cell in this potential is T'(E), then the
transfer matrix for NV identical cells “in series” is [T(E)N.

For reasons that will be justified later, it is useful to assume periodic boundary
conditions. That is, we identify the wavefunction at one end of the potential with that

at the other, so that A = A :
B 0 B N

5] -r@ra] : | 6)
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This identification requires [T(E)}Y = I,, the unit 2 x 2 matrix. Therefore, the
problem of identifying the allowed states and energies for a periodic potential reduces
to the problem of determining the values of E for which [T(E)|N = I,. ’

To approach this problem, we search for a similarity transformation S that diago-
nalizes T'(E):

SMEN ST = SLS!,
sTE)S]T = B, ©3)
N o1V T1o0

0 s T o o1}

Therefore, the condition simplifies to )\;-V = 1(j7 = 1,2). Since the transfer matrix

T(E) is unimodular, the product of the two eigenvaluesis +1,sothat \; = \ = At
The eigenvalues of the unit cell transfer matrix T'(E) are determined from

tin 1o 1 0
et || g ][ 6 7]

= A%~ (t11 + ta2)A + (f11t2n — t1at1)
= A2~ X tr(T) + det(T) .

(6.9)
Since det(T") = 1,
3
A= () %4/ (Rtr(1)? - 21 6.10)
= (D) =+ z'\/l — (3tr(T))" .
If we define an angle ¢ by
cosp = st (T,
sing = /1 (3tx(T))?, (6.11)
Al = cosgtising = et

Itis easily seen that the periodic boundary condition AN = 1 is satisfied if N ¢ = 2wk,
where k is an integer. The result is

k
tI’(T) =t11 + to2 = 2cos (27rﬁ) . (6.12)

Allowed states exist for values of the energy, £, for which the transfer matrix of the
unit cell, T(E), satisfies the condition (6.12).

In the following parts of this book we will explore the implications of these three
types of boundary conditions.

Mos
will
to ¢«

- eack

enel
ofu

Cou
enel
of g

Ele
ac
reg

sio



herefore, the
ntial reduces

S that diago-

(6.8)

nsfer matrix
= A=A
m

— t12t21)

(6.9)

(6.10)

(6.11)

"o = 2k,

(6.12)
trix of the

acse three

i
7%
§
i

R S R b R

Py
LR R s

R R

T R D

4
Units

Most of the calculations that will be carried out in Parts II, I1I, and IV of this work
will be numerical computations based on equations (6.4), (6.6), and (6.12). In order
to compute the transfer matrices, and in particular the real 2 x 2 matrices M (V/; §) for
each region of a piecewise constant potential, we must provide information about the
energy and width of each piece of the potential. This means we must adopt a system
of units for measuring energy and length.

For an electron with mass m = 0.911 x 10~27 gm and charge ¢ = —1.602 x 10~1°
Coul, a useful unit in which to measure energy is the electron-volt (eV). This is the
energy gained (or lost) by an electron when it moves through a potential difference

of one volt:

I

AFE laV|
|(—1.602 x 10719 Coul} x (1 volt}| (7.1)
1.602 x 10~1% J (= kg m? /sec?) '

1.602 x 10~12 erg (= gm cm? /sec?) .

I

Electron-volts are convenient units because it is very easy to change the energy of
a charged particle by changing the imposed potential difference (voltage) across the

region through which the charge moves.
To determine a useful length scale, we search for a length a for which the dimen-

sionless product ka is approximately 1 for an electron moving with an energy of 1 eV:
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2.2
J‘;k = E=1eV,

Y 2mE

K = =
_ 2(0.911 x 107%7 gm)(1.602 x 10~12 erg) (1.2
B (1.054 x 10—27 erg sec)?
= 2,626 x 10™¥ c¢m~2

k= 0512x10t8 ¢m~1 .

Therefore a useful length scale is 10~8 em = 1 A (angstrom). To give some per-

spective to these units, the “diameter” of a hydrogen atom in its ground state is about

1 A and the electron is bound to the proton in this state with an energy of about 13.6 eV,
All energies will be measured in electron-volts, and all lengths will be measured in

angstroms throughout the remainder of this work. In these units the relation between

kand Fis
2m [2m E

In this expression, E/q is measured in terms of electron-volts. Using the physical
values given above,
k=05125VE (7.4)

with £ measured in electron-volts.




