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Fig. 41.2 The triplet and quartet of bound state energies (over Binding) are offset horizon-
tally. They interleave. Similarly for the resonance peaks (over Scattering). Each resonance
peak lies slightly above the corresponding bound state, both for the quartet and the triplet. All
levels and resonances lie within the edges of the corresponding band (shown over Periodic) of
the corresponding periodic potential.
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Wavefunctions and

Probability Distributions

The transfer matricesT =M1M2, which were used in chapters 37 and 38, relate the
amplitudes of the trigonometric/hyperbolic cosines and sines in adjacent unit cells of
a periodic lattice. We make this point explicit here. Suppose unit celli consists of
two regions, 1 and 2, in which the potential is constant, as shown in Fig. 42.1. We
chooseV1 = �5:0 eV,V2 = 0:0 eV andE > V1,E < V2. In regions 1 and 2 of celli and region 1 of celli+ 1 the wavefunctions are 1i (x) = Ai os kx + Bi 1k sin kx ; 2i (x) = Ci osh�x + Di 1� sinh�x ; 1i+1(x) = Ai+1 os kx + Bi+1 1k sin kx : (42.1)

Within each region, the value ofx ranges from 0 at the left edge toL1 = 8:0 Å in
region 1 andL2 = 2:0 Å in region 2. When the boundary conditions are imposed,
we obtain the following equations:� os kL1 1k sin kL1�k sin kL1 os kL1 �� AB �i = � CD �i ; (42.2)� osh�L2 1� sinh�L2� sinh�L2 osh�L2 �� CD �i = � AB �i+1 : (42.3)

These equations are easily inverted� AB �i = � os kL1 � 1k sin kL1k sin kL1 os kL1 �� CD �i =M1� CD �i ; (42.4)
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192 WAVEFUNCTIONS AND PROBABILITY DISTRIBUTIONS� CD �i = � osh�L2 � 1� sinh�L2�� sinh�L2 osh�L2 �� AB �i+1 =M2� AB �i+1 :
(42.5)

As a result � AB �i =M1M2� AB �i+1 = T � AB �i+1 : (42.6)

Fig. 42.1 Real and imaginary parts for one eigenstate in each of the fivelowest bands of the
periodic potential shown. The real parts are identified.

Remark: If we had used(A;B) as amplitudes for the right- and left-propagating
exponentialse+ikx; e�ikx and(C;D) as amplitudes for the exponentially decaying
and growing exponentialse��x; e+�x, then we would have found the following rela-
tion � AB �i = K�1TK � AB �i+1 ; K = � 1 1+ik �ik � : (42.7)
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The quantization condition (i.e., (37.3)) is valid whetherwe useT or its similarity
transformed versionK�1TK. However, wavefunction calculations aremuch easier
with the cosine and sine basis set.

42.1 UNIT CELL PHASE SHIFT

The wavefunctions in any part of celli and the corresponding part of celli+ 1 are i(x) = � �1(x) �2(x) �� AB �i ; i+1(x) = � �1(x) �2(x) �� AB �i+1= � �1(x) �2(x) �T�1� AB �i : (42.8)

The last equation was obtained by inverting (42.6). If the amplitudes(A;B) are

chosen as eigenvectors ofT with eigenvalue�, thenT�1� AB � = ��1� AB �
.

As a result  i+1(x) = ��1 i(x) : (42.9)

In an allowed band,� = e�i�. This means that the wavefunction in celli + 1 is
simply a phase-shifted version of the wavefunction in celli. If the wavefunction in
cell i is known, it can be used to construct the wavefunction in the adjacent cells. For
example, if we write the wavefunctions in terms of their realand imaginary parts and
choose��1 = ei�, then Ri+1(x) + i Ii+1(x) = ei� � Ri (x) + i Ii (x)� ; (42.10)�  R(x) I(x) �i+1 = � os� � sin�sin� os� ��  R(x) I(x) �i : (42.11)

42.2 WAVEFUNCTIONS

The wavefunction in any part of celli can be written as a linear superposition of the
basis functions�1(x);�2(x) in that region: i(x) = Ai�1(x) +Bi�2(x) ; (42.12)

where the amplitudes(A;B)i satisfy the appropriate eigenvalue equation:T � AB �i = ei�� AB �i :
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To compute the unnormalizedamplitudes(A;B)i, we rewrite this equation as follows� t11 � ei� t12t21 t22 � ei� � � AB � = 0() (t11 � ei�)A+ t12B = 0t21A+ (t22 � ei�)B = 0 :
(42.13)

The two equations on the right are not independent. They can be used to determineA andB � AB � � � ei� � t22t21 � � � t12ei� � t11 � : (42.14)

The two expressions for the amplitudes are proportional to each other. Using the first
expression, we find i(x) = 12(t11 � t22) os kx+ t21 1k sin kx| {z } Ri (x) +i sin � os kx| {z } Ii (x) : (42.15)

The wavefunctions in other regions of theith cell are computed using the transfer
matricesM1, M2, and so on (see equation (42.6)). The wavefunctions in adjacent
regions are computed using the phase shift property (42.10).

In Fig. 42.1 we show wavefunctions computed for one state in each of the five
lowest bands in the periodic potential shown. The real and imaginary parts of each
wavefunction are plotted and are labeled with anR or anI . All wavefunctions have
been normalized so that the integral ofj (x)j2 over a unit cell is the same for each
eigenfunction.

In fact, the real and imaginary parts of these wavefunctionsare interchangeable.
If a wavefunction obtained using the angle�� is multiplied byi, then we obtaini� � R(x) � i I(x)� =  I + i R(x) : (42.16)

This is the wavefunction obtained using the angle� and interchanging the real and
imaginary parts.

The nondegenerate eigenfunctions at the edges of each band can always be made
real, since the eigenvalues are� = �1. The corresponding wavefunctions are stand-
ing waves, whereas the degenerate eigenfunctions describewaves traveling to the left
and right.

42.3 PROBABILITY DISTRIBUTIONS

Since the wavefunction in celli+1 is just a phase-shifted version of the wavefunction
in cell i, the probability distribution in celli+1 is equal to the probability distribution
in cell i:



PROBABILITY DISTRIBUTIONS 195Pi+1(x) = j i+1(x)j2 = jei� i(x)j2 = jei�j2 j i(x)j2 = j i(x)j2 = Pi(x) :
(42.17)

As a result, the probability distribution is invariant fromcell to cell.
In Fig. 42.2 we plot the probability distributions for one eigenstate in each of the

five lowest bands of the potential shown in Figs. 42.1 and 42.2. These distributions
have all been properly normalized (the integral over every unit cell is1=N for each of
the probabilities). Although the nodal structure of the wavefunctions is not obvious
from Fig. 42.1, it is much clearer in Fig. 42.2. The number of ‘nodes’ within each well
increases by one for each successive band. The energies at which the computations
were done for Figs. 42.1 and 42.2 differ slightly.

Fig. 42.2 Probability distributions for one eigenstate in each of thefive lowest bands of the
potential shown. The number of “nodes” increases with band number. It is clear that in an
eigenstate, the probability distribution is the same in each cell of the lattice.

Remark: For E < 0 the bound state wavefunctions in Fig. 42.2 are real and
exhibit nodes in the wells. The probability distribution goes to zero at the nodes. The
lowest three states have zero-, one-, and two nodes. ForE > 0 the wavefunctions do
not have nodes (they are complex). The lowest two states withE > 0 have three- and
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four “pseudo-nodes,” where the probability distribution has deep, nonzero minima in
the wells.
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Alloys

An alloy consists of a homogeneous mixture of two or more substances, usually
metals. Energy bands can be computed for alloys just as they can be computed for
pure substances.

In this chapter we will consider energy bands only for the simplest one-dimensional
alloys. The alloys we consider are composed of equal numbersof two substancesA andB in a periodic lattice of type(AB)N . In Fig. 43.1 (top left) we show the
potential for the unit cell ofA, with (V; Æ) = (�5:0; 8:0); (0:0; 2:0). The bound
states for the corresponding single well potential are shown. They occur at� �4:6,�3:4, and�1:6 eV. To the right of this potential we show the density of states for
the latticeAN . The three bound states have been spread out into three bands. The
density of states also shows a fourth band from�0.2 to�1.7 eV that arises from the
first transmission resonance, and the lower part of a fifth band that arises from the
second transmission resonance of the single well potential.

The potential for the unit cell ofB ((V; Æ) = (�2:0; 3:0); (0:0; 1:0)) is shown on
the second line of Fig. 43.1. The single bound state for the corresponding binding
potential occurs just above�1:0 eV. To the right of this potential is the density of
states plot for the periodic latticeBN . The band arising from the single bound state
extends from�1:6 to+0:4eV. The upper levels in this band are unbound,even though
the band arises from a bound state. The second band, extending above 1.2 eV, arises
from the lowest transmission resonance.

The potential for the unit cellAB of the alloy with lattice(AB)N is shown on the
bottom line of Fig. 43.1. The corresponding binding potential has four bound states.
The two lower ones are essentially where they were in the pureA binding potential.
The two upper levels have repelled each other slightly from their original positions

197



198 ALLOYS

Fig. 43.1 Top, PotentialA, eigenstates of corresponding single well potential, and density of
states for corresponding periodic latticeAN . Middle, Similar to top line, except for potentialB. Bottom, PotentialsA andB form the unit lattice potentialAB. Eigenvalues and density of
states for corresponding potential are shown.

in theA well and theB well. The third bound state is mostly confined to theA well
and the fourth is mostly confined to theB well. This was determined by computing
the eigenfunctions for theAB well.

The density of states for the periodic lattice(AB)N is shown to the right of theAB potential. The two lowest bands, derived from theA well, have been squeezed
and are now so narrow that they cannot be resolved. These two bands have been
squeezed because the classically forbidden region betweenadjacentAwells has been
greatly increased by inserting theB potential. The thirdA band (�1:95 to�1:3 eV)
has been squeezed to the region of� �1:8 eV, while the lowestB band (�1:6 to+0:4 eV) has been squeezed into (�0:9 to�0:5 eV), below the ionization threshold.
The three bands that appear above 0.0 eV are not confined primarily to either theA
well or theB well.

These results, and the conclusions drawn from them, are not strongly dependent
on the actual shapes of the potentials. In Fig. 43.2 we repeatthe calculations shown
in Fig. 43.1 for smoother versions of potentialsA andB. The potentialsA andB of
Fig. 43.1 have been replaced by smoother potentials with essentially the same bound
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state spectra. The major differences are that the third bandof the modifiedA potential
extends above the ionization threshold while the first band of the modifiedB potential
does not. The two lowest bands of the modified(AB)N potential are not as narrow
as the corresponding bands in the original(AB)N potential (Fig. 43.1) because the
classically forbidden region between two adjacentA wells is smaller. Otherwise, the
density of states for the periodic potentials(AB)N in Fig. 43.1 and Fig. 43.2 are
very similar.

Fig. 43.2 Similar to Fig. 43.1 but with smoothed versions of potentialsA andB, as shown.
The modified potentials have bound state spectra similar to the unmodified potentials.
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Superlattices

A one-to-one alloy containing unit cells of typeA andB in a regular lattice has the
one-dimensional spatial structure: : : A B A B A B A B A B A B A B A B A B A B : : : : (44.1)

Imperfections in this regular structure often occur. They may take the form of inserting
or deleting atoms of typeA orB at various points in the lattice. In this chapter we
consider imperfections that are caused by deleting atoms. The deletions involve
alternating atoms of typeA andB spaced at regular intervals. These deletions lead
to regular lattices with a more complicated structure than the original lattice. For
example, if every third atom is deleted from the regular lattice with unit cell(AB),: : : A B A B A B A B A B A B A B A B A B A B � � � = [(AB)(BA)℄N ;

(44.2)
we find a regular lattice with unit cell[(AB)(BA)℄. A lattice of this type is called a
superlattice.

Other superlattices can be obtained by deleting every fifth,seventh,: : : , (2d+1)th
atoms d 2d+ 1 Regular Lattie1 3 [(AB)1(BA)1℄N=42 5 [(AB)2(BA)2℄N=83 7 [(AB)3(BA)3℄N=12d 2d+ 1 [(AB)d(BA)d℄N=4d : (44.3)
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Each of the superlattices above has a total ofN atoms, half of typeA and half of
typeB. Since a superlattice obeys periodic boundary conditions,the allowed energy
levels occur in bands. It may be expected that the band structure of a superlattice is
closely related to the band structure of the parent lattice(AB)N=2.

To explore this question, we can compute the band structure of a series of super-
lattices with increasingd. We choose unit cell parameters as followsA BV Æ V ÆRegion 1 0:0 1:0 0:0 0:5Region 2 �5:0 8:0 �6:5 3:0Region 3 0:0 1:0 0:0 0:5 : (44.4)

In Fig. 44.1 we describe the changes that take place in a single band of the original(AB)N=2 lattice when the alloy is converted to a superlattice with the same total
number of atoms, as a function of increasingd. The(AB)N=2 band that is presented
in Fig. 44.1 extends from 3.5 to 4.6 eV. As usual, all bands behave in the same way,
and this behavior is independent of the details of the potentials ofA andB.

The regular lattice(AB)N=2 has a band extending from 3.5 to 4.6 eV. For the
superlattice withd = 1, the original band is split into two subbands. The two
subbands are separated by a rather large band gap.

For the superlattice withd = 2, the original band has separated into four subbands.
The two outer subbands are separated from the inner two by large band gaps. The
inner two are separated by a very small gap at 4.1 eV.

In the superlattices withd = 3; 4, and 5, the original band has split into six, eight,
and ten subbands. Ford = 3 the six subbands are separated by three large and two
small gaps at 3.8 and 4.45 eV. Ford = 4 the eight subbands are separated by four
large and three small gaps. Ford = 5 there are five large and four small gaps.

In the case of the superlattice[(AB)d(BA)d℄N=4d, the original band has split into2d subbands that are separated by2d� 1 band gaps, of whichd are large andd� 1
are small. The large and small band gaps alternate with each other.

The structure of superlattice subbands can be viewed from a slightly different
perspective. In going from the regular lattice(AB)N=2 to thed = 1 superlattice[(AB)1(BA)1℄N=4 the original band splits into two subbands. In going from thed = 1 to thed = 2 superlattice, a new subband appears inserted between the twod = 1 subbands, squeezing these two outer subbands further past the band edges of
the original(AB)N=2 band. This new subband, extending from 3.8 to 4.5 eV, actually
consists of two subbands separated by a narrow gap at� 4:1 eV.

In going from thed = 2 to thed = 3 superlattice, the narrow gap at� 4:1 between
the two middled = 2 subbands grows wider, extending from� 4:0 to 4.2 eV. Each
of the two new well-separated subbands (3.7 to 4.0 eV and 4.2 to 4.7 eV) is split by
a narrow gap (at 3.8 and 4.45 eV, respectively).

In progressing from thed = 3 to thed = 4 superlattice, a new band is inserted in
the middle of the subband structure of thed = 3 superlattice. This new band extends
from� 3:9 to 4.3 eV and actually consists of two subbands split by a narrow gap at� 4:1 eV.
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The changes in the subband structure in going from thed = 4 to thed = 5
superlattice are similar to the changes that take place in going from thed = 2 to thed = 3 superlattice.

As Fig. 44.1 makes clear, it is useful to regard each band of the (AB)N=2 lattice
as breaking up intod+1 “fat subbands” in the[(AB)d(BA)d℄N=4d superlattice. The
two outer fat subbands are not split while the innerd� 1 “fat subbands” each consist
of two subbands separated by a narrow gap.

When the number of fat subbands is even (d = 1; 3; 5; : : : ), a new fat subband
is inserted right in the middle of the fat subbands in going from thed to thed + 1
superlattice. When the number of fat subbands is odd (d = 2; 4; : : : ), then in going
from thed to thed + 1 superlattice, the middle fat subband of thed superlattice
“splits.” That is, the narrow band gap in that fat subband become large, and each of
the two resulting subbands develops a narrow band gap.
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Fig. 44.1 Band structure of the(AB)N=2 lattice, and the superlattices[(AB)d(BA)d℄N=4d
for d = 1; 2; 3; 4; 5.



45
Impurities

In the previous chapters we have seen how energy levels in periodic potentials of
the typeAN occur in bands, with each band containing a total ofN states. The
same is true for regular alloys of type(AB)N=2, as well as superlattices of type[(AB)d(BA)d℄N=(4d).

It is difficult to grow crystal lattices of very high purity. Usually a crystal lattice
contains impurities. We should therefore ask:� Does the energy band structure of a pure latticeAN persist in a lattice with

impurities:AN�1B?� How are the electron wavefunctions affected by the presenceof impurities?

These questions can be addressed relatively easily if we usewhat we have learned in
previous chapters to simplify our computations as much as possible.

We exploit the following observations� The band structure of a regular latticeAN (N large) is apparent even for small
values ofN (N � 5).� The band structure is unaffected by the type of boundary conditions imposed
(bound state, scattering, periodic), for all practical purposes.

These observations suggest that we can determine the effects of impurities on the band
structure and wavefunctions of a regular lattice by computing the band structure and
wavefunctions for the bound states of a relatively small systemAN�1B, (N small).

To explore the effect of an impurity atomB on the properties of a regular latticeAN , we have computed the bound state spectrum for two lattices of typeA3BA. The
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results are shown in Fig. 45.1 and Fig. 45.2. In both figures the potentialB depends
on a parameter.

Fig. 45.1 Spectrum of bound state levels for the potentialA3BA as the width of theB
impurity is varied. TheA bands are represented by quartets of levels. Note that the eigenvalues
do not cross. For this potentialVL = VR = 10.0 eV.

In Fig. 45.1 both potentialsA andB are 5.0 eV deep. The tops of the potentials
are at 0.0 eV and the bottoms are at�5:0 eV. The width of potentialA is 6.0Å whileB has a width of 6.0+D Å. The barriers separating wells are uniformly thick, at 2.0
Å. The asymptotic potentialsVL andVR are 10.0 eV to ensure that we see only bound
states in the range scanned (�5:0 to +5.0 eV). ForD = 0 the lattice isA5, and the
bound state energies below 5.0 eV are gathered into four groups of quintets. We can
easily see the effect that varying the width ofB has on the energy-level structure.
ForD negative, the narrowB well has energies higher than the energies in a singleA well. As D is increased, the lowestB level settles into the top of the lowestA
band. The nextB level, pressed up against the bottom of the thirdA band, peels
off and settles onto the top of the secondA band. The next higherB level behaves
similarly. ForD > 0, theB well is wider than theA well and its spectrum has
lower-lying levels. This behavior is reflected in Fig. 45.1.As D increases through
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0.0Å, the lowest-lying level in each band falls away from the bottom of the band and
approaches the top of the next lowerA band. Of course, the lowestB level has no
lowerA band to settle onto.

Fig. 45.2 Spectrum of bound state levels for the potentialA3BA as the depth of theB
impurity is varied. TheA bands are represented by quartets of levels. Note the the eigenvalues
do not cross. For this potentialVL = VR = 10.0 eV.

Fig. 45.2 tells a similar story. Here the wells all have the same width (6.0̊A). The
barriers at 0.0 eV have width 2.0Å. EachA well is 5.0 eV deep, while the bottom
of theB well is at�5:0 + V eV. TheB well is varied in depth from�10:0 eV
(V = �5:0 eV) to�2:0 eV (V = +3:0 eV). Once again, the band structure ofAN
is represented by four groups of quintets forA5 atV = 0:0 eV. As the bottom of theB well is increased from�10:0 eV to�2:0 eV, the bound state energyies due toB
increase almost linearly (with a slope of + 1). However, theB levels do not cross
theA bands. Rather, aB level approaches the bottom of anA band, and then, at a
slightly greater value ofV , the highest level in theA band peels off and rises linearly
with increasingV until it runs into the bottom of the next higherA band.

These two figures make it clear that, in some sense, there is a “conservation of
number of levels” in going from a regular latticeAN to a lattice with impurityAN�1B
(or some cyclic permutation). The band structure is not lost, merely perturbed. Bands



208 IMPURITIES

withN levels inAN are replaced by bands withN�1 levels inAN�1B, and additionalB levels are scattered in appropriate places in the energy-level spectrum.
The energy eigenfunctions are perturbed as follows. For eigenvalues in a band

of levels, the corresponding wavefunctions extend over alltheA atoms. For any
eigenstate in anA band, the probability distribution is essentially the samein every
cell of typeA, except possibly in theA cells adjacent to theB impurity. However, the
nondegenerate states betweenA bands have wavefunctions that are largely localized
to theB atom impurity.

Fig. 45.3 Bands and impurity levels in a lattice of typeAn1BAn2B0An3 . The bands are
shown extending over the entire lattice. The donor level, overB0 with depth 5.5 eV, lies slightly
below the lowest unfilled or partly filledA band. The acceptor level, overB with depth 4.5
eV, lies slightly above the highest filled or almost filledA band.

In Fig. 45.3 we show a latticeAn1BAn2B0An3 . TheA levels occur in the bands
indicated. Since theA-like eigenstates extend over the entire lattice, the bandsare
shown extending over the lattice. TheB level at�4:5 eV provides three levels that
occur above theA bands. Since the wavefunctions, withn = 0; 1; 2nodes, are largely
confined to this well, the energy level is shown extending over only this well and its
adjacent barriers. TheB0 level at�5:5 eV provides four levels that occur beneath
theA bands. Since the wavefunctions, withn = 0; 1; 2; 3 nodes, are largely confined
to this well, the energy level is shown extending over thisB0 well and its adjacent
barriers.
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Impurity levels that occur below an energy band that contains few or no electrons
are called donor levels. If these impurity levels contain anelectron, that electron is
“stuck” to the impurity site. However, that electron can be promoted (donated) into
the empty band just above the donor level at relatively low energy cost. In the empty
band, the electron is mobile: it can move relatively freely fromA atom toA atom.
The level of theB0 well (with depth 5.5 eV) just below the lowest emptyA band is a
donor level.

An empty impurity level just above a filledA band is called an acceptor level. At
relatively low energy cost, this level can remove (accept) an electron from the filled
band just below it. This leaves a “hole” in the filled band. This hole acts in many
ways like an electron of opposite charge. The level of theB well (with depth 4.5 eV)
just above the highest-filledA band is an acceptor level.

Careful control of the concentrations and types (donor, acceptor) of dopants in
semiconductors have been responsible in large part for the current computer revolu-
tion.
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Quantum Engineering

The availability of energy resourses will be one of the majorpoints of political friction
in the twenty-first century.

46.1 ENERGY SOURCES

The energy resources that currently contribute more than aninfinitesimal fraction of
the world’s energy needs are listed in Table 46.1.

Coal, oil, and gas are the major sources of energy in today’s economy. They are
“nonrenewable” and are currently being rapidly depleted. We believe these energy
sources are of fossil origin. This means that the energy stored in these resources
derives ultimately from the transformation of solar energyto biomass, at very low
efficiency, followed by death, sedimentation, conversion,and storage (also at very
low efficiency) over a very long period of time. These resources have been cre-
ated by natural processes that continue to this day. The timescale for creation of
these resources is millions of years; the time scale for depletion is hundreds of years.
Therefore, although these resources are in principle renewable, they are in practice
nonrenewable unless we learn how to accelerate the creationprocess by factors in
excess of104. Burning these fossil fuels releases large amounts of CO2 and other
pollutants into the atmosphere.1 It is widely believed that this has a negative envi-
ronmental impact. In addition, it destroys a reservoir of raw materials for industry.

1M. I. Hoffeert et al., Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse
Planet,Science 298 (2002): 981-87.
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Table 46.1 Energy resources

Energy Source Comment

Coal “Nonrenewable”
Oil
Gas

Fission Radioactive
Fusion
Geothermal

Tidal Gravitational
Hydroelectric Gravitational/solar
Wind Solar
Biomass

Solar

Some people regard this loss as even more severe than possible negative impact on
our atmosphere.

The next three energy sources listed in Table 46.1 involve nuclear transforma-
tions. Nuclear fission (“splitting”) involves splitting heavy nuclei into lighter nuclei,
releasing energy. This process, initially demonstrated onthe earth in atomic bomb
explosions, has successfully been tamed. It is now the basisof energy production
in nuclear power plants that generate a substantial fraction of electrical energy in
the industrial nations of the earth. When not handled carefully, nuclear accidents
can occur (Three Mile Island, Chernobyl,: : : ). The worst accidents have lead to
environmental catastrophes. That is, large areas are rendered uninhabitable for long
periods by high levels of radiation. Although the radioactivity levels gradually die
away (along with the population), the half-life for decay iscomparable to or longer
than the human time scale (� 70 years). This renders fission a problematic energy
source for the future.

Nuclear fusion involves combining lighter elements to formheavier elements,
releasing energy in the process. Fusion of hydrogen to helium,p+ + p+ ! d+ + e+ + �e ;d+ + p+ ! 3He++ +  ;3He++ +3 He++ ! 4He++ + 2e+ + 2�e ; (46.1)

is the principle fusion process that powers our star, the sun. This process was demon-
strated on the earth with the explosion of the first hydrogen bomb. Since then, it has
been a goal to tame this reaction and allow it to run in a controlled, continuous way in
order to generate energy for the world’s needs. An enormous amount of time, money,
and intellectual energy has been devoted to this goal. Estimates of the amount of time
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and money required to reach a commercially viable result have diverged rather than
converged—the end is nowhere in sight and receeding furtherfrom reach all the time.

Geothermal energy is a natural resource that is derived in second order from nuclear
fission. Long-lived radioactive isotopes within the core and mantle of the earth decay,
releasing energy that heats up the surroundings. The hot plastic material of the core
and mantle flows with a geological time scale. This material comes close to the
surface at some parts of the earth’s surface, principally atboundaries between the
earth’s plates. The temperature difference between the hotinterior magma and the
cooler fluids on the earth’s surface can be used in the usual way to generate heat and
electrical energy. Although this resource is nonrenewable, its time scale is so long
that, for all practical purposes, it can be considered as permanent.

The motion of the earth and moon about their center of mass, and of the earth-moon
system about the sun, raises diurnal tides on the surface of the earth. The differing
physical properties of the material on the earth’s surface (water, rock) allows us to
create differences in gravitational potential energy thatultimately can be transformed
to electrical energy. Tidal energy will never provide more than a small percentage
of the earth’s energy needs. It is essentially perpetual andnonpolluting. However, it
does require modification of parts of the earth’s surface andin that sense does have a
nontrivial environmental impact.

Hydroelectric energy is derived from the conversion of the energy in falling water
into electrical energy. Water is raised from sea level by evaporation (solar energy) and
deposited at higher altitudes by precipitation as rain or snow. At higher elevations it
possesses gravitational potential energy. Since this energy conversion process occurs
naturally,

All the rivers run into the sea;
Yet the sea is not full;
Unto the place from whence the rivers come,
Thither they return again. Ecclesiastes 1:7

Hydroelectric conversion is nonpolluting. It is also ‘perpetual,’ or at any rate will
last as long as there is water on the surface of the earth. However, it also involves
modifying selected parts of the earth’s surface, so in this sense it also has nontrivial
environmental impact.

Wind motion and biomass conversion are energy sources that originate almost
entirely with the conversion of incident solar radiation. Since they are also naturally
occurring processes, they are renewable and nonpolluting.However, they also in-
volve modification of the environment, so to some extent are subject to political and
environmental constraints.

Tidal, hydroelectric, and wind power sources will not provide more than a small
percentage of the earth’s energy requirements. Biomass conversion has the potential
to make a more substantial contribution, although it is not likely to.

The sun is ultimately the source of all but the radioactive energy sources. Solar
energy can be converted directly to industrially useful energy in two ways (neglecting
conversion to biomass):



214 QUANTUM ENGINEERING

1. directly to heat

2. directly to electrical energy.

In the former case, a large number of concentrating mirrors,spread over an area
the size of one or more soccer fields, are used to focus sunlight into a very small
volume. Within this volume the temperature can reach5000 K. Such solar furnaces
can be used to drive electrical turbines or used as research facilities. More mundane
but commercially much more important applications involveabsorbing sunlight to
produce hot (80oC) water rather than wasting electricity to heat water.

Sunlight can be transformed directly to electrical energy by being absorbed in
crystals that are designed to allow the absorbed energy to separate positive from
negative charges. Solar panels composed of such crystals are routinely used in the
space program. They are also used, with increasing frequency as costs drop in places
where cost or maintenance is more of a problem for other typesof energy sources.

We will describe how to design crystals for direct solar conversion later in this
chapter.

46.2 ENERGY CONSUMPTION

The total energy that has been consumed by the earth’s population in the year 2000
has been estimated to be about 500 exajoules (500 � 1018 J). It is convenient to
convert this energy consumption per year into power measured in Watts (joules/sec).
This is done by dividing by the number of seconds in a year. This is3:15� 107 sec
(mnemonic:� � 107 sec). The rate of energy consumption in 2000 is then about1:58� 1013 W.

We compare this energy consumption rate with the rate at which solar radiation
energy is incident at the top of the earth’s atmosphere. Thisnumber, the “solar
constant,” is 1368 W/m2 according to earth satellite measurements.2 This number is
not actually constant: it varies primarily because of smallvariations in solar energy
output (fluctuations of order 0.01%, or one part in104, are observed) and variation in
the earth-sun distance due to the eccentricity of the earth’s orbit. For this reason, we
will refer to this measured value as the “solar irradiance.”The total power received
by the earth at its mean solar distance isP = 1368W=m2 � �(6370km)2 = 1:74� 1017W ; (46.2)

where the earth’s radius is approximately 6370 km. About34 of this energy filters
down to the surface of the earth as radiation in the visible part of the spectrum.

It is instructive to compare the rate at which energy is consumed by the world’s
population to the rate at which radiant energy is received from the sun by the earth.
This ratio is

2K. J. H. Phillips,Guide to the Sun, Cambridge, UK: Cambridge University Press, 1992.



SIMPLE SOLAR CELLS 215R = Power onsumedPower reeived = 1:58� 1013W1:74� 1017W � 10�4 : (46.3)

That is, mankind’s energy consumption is comparable to fluctuations in the sun’s
energy output or, more accurately, the solar irradiance (i.e., including changes due
to the earth’s orbital parameters). So if we believe, as somedo, that changes in
insolation (solar radiation received by the earth) due to changes in the earth’s orbital
parameters are responsible for the ice ages that the earth has experienced over the last
several million years, then it is just a short additional step to believe that twentieth-
century industry’s contribution to the earth’s energy budget could also be responsible
for dramatic earth climate changes.

Direct conversion of solar radiation to electrical energy has two benefits that are
worth mentioning explicitly.

1. The fusion process (4p+ !4He++ + 2e+ + 2�e + 2) that liberates energy
also produces radioactivity in the surrounding environment. If we were able
to control fusion on the earth’s surface, we would still facethe problem of
caring for the nearby material made radioactive by this process. As it is, any
radioactivity produced is produced in the sun. We do not haveto worry about
it.

2. Direct conversion of sunlight to electrical energy is a “neutral” process. It
neither adds to nor subtracts energy from the earth’s natural budget (in first
order). At most, it redistributes energy from one geographical location to
another. Because of this redistribution, there may be a second-order effect on
the earth’s energy budget. In short, this process is nonpolluting but could have
local environmental impacts.

46.3 SIMPLE SOLAR CELLS

The spectrum of visible (to humans) solar radiation extendsfrom the violet (400 nm
or 4000̊A) to the red (700 nm or 7000̊A). The peak intensity is in the yellow at about
580 nm or5800 Å. The sun behaves to a reasonable approximation as a blackbody
with a temperature about5778 K. (This blackbody looks yellow!)

Radiation in the violet at a wavelength of 400 nm consists of photons,each carrying
an energy of about 3.1 eV. Similarly, “red photons” at 700 nm have an energy of 1.8
eV. Yellow photons carry 2.1 eV. We therefore expect solid-state devices that are
designed to absorb solar radiation and convert it into electrical energy to have band
gaps in the range of 1 to 3 eV.

A relatively simple solar conversion device is shown in Fig.46.1. In this device
two layers of impurity-doped silicon are placed over a glasssubstrate. One layer
is doped with electron donors (n type), the other is doped with electron acceptors
(p type). Both layers are bound to conducting metal contacts (the external leads, or
wires). An antireflection coating is applied to the top of thecell to reduce losses
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of incident solar radiation by suppressing reflection. The glass substrate is usually
designed to be reflective. This reflects unabsorbed solar radiation back through the
cell, so the cell is effectively “twice as thick.”

Fig. 46.1 Simple solar cell.n- andp-doped silicon layers are sandwiched between metallic
contacts. The top of the cell is coated with an antireflectioncoating, and the glass substrate is
usually reflective. Incident light creates an electron-hole pair. The electron is attracted to the
n-type silicon layer, the hole is attracted to thep-type silicon layer.

The energy band structure for this device is shown schematically in Fig. 46.2.
Two energy bands are shown. At zero temperature the lower (valence) band is filled
and the upper (conduction) band is empty. At finite temperature some electrons are
excited from the valence band to the conduction band. The probability that a state
with energyE is filled is given by the Fermi-Dirac functionFD(E; T ) = 1e(E��)=kT + 1 : (46.4)

HereT is the temperature, measured in kelvins,k is Boltzmann’s constant,k =1:38 � 10�16 erg/K = 8.616�10�5 eV/K, kT is an energy, and� is a chemical
potential. At room temperature (T = 300K) kT = 0:0258 � 140 eV.

Under equilibrium conditions, the probability that an electron is in any state in the
conduction or valence band is determined by a singlechemical potential. However, the
absorption problem is not an equilibrium problem. Rather, it is a dynamic process for
which we seek a steady state solution. Under this condition the probability distribution
for electrons in the valence band is determined by one chemical potential,�V , while
that for the conduction band is determined by another chemical potential,�C :FDV B(E; T ) = 1e(E��V )=kT + 1 ; (46.5)
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Fig. 46.2 Energy band diagram for a simple solar cell operating with two active bands,
a conduction band and a valence band. The chemical potentials �C and�V , defining the
nonequilibrium steady state populations in the two bands are shown.FDCB(E; T ) = 1e(E��C)=kT + 1 : (46.6)

The potential difference,V , at which the cell operates, is determined byqV = �C � �V : (46.7)

We now definen(�; z) to be the number of photons of frequency� that occur a
distancez inside the cell (z = 0: front surface;z = 1: back surface). This number
changes as we progress through the crystal for two reasons:

1. Photons of frequency� are absorbed.

2. Photons of frequency� are reemitted.

In the absorption process, an electron is removed from statej in the valence band
and deposited in statei in the conduction band. The rate at which this happens is
proportional to

1. the probability that stateVj is occupied:FDVj (E; T )
2. the probability that stateCi is not occupied:1� FDCi(E; T )
3. a transition matrix element:HCi Vj
4. the number of photons:n(�; z)
5. the factorn=, n = index of refraction.



218 QUANTUM ENGINEERINGAbsorption : dn(�; z)dz = �n Xi;j HCi Vj n(�; z)FDVj (1� FDCi) :
(46.8)

Photons are also reemitted into the field according toEmission : dn(�; z)dz = +n Xi;j HVj Ci [n(�; z) + 1℄FDCi(1� FDVj ) :
(46.9)

The emission contribution comes from two processes: stimulated emission (propor-
tional ton(�; z)), the process responsible for laser action; and spontaneous emission
(proportional to 1 within the square brackets). The matrix elements for the absorption
and emission processes are complex conjugates of each other: HCi Vj = H�Vj Ci .

By integrating these equations through the crystal, from the front to the back, and
then back to the front again, and imposing suitable boundaryconditions, it is possible
to computeqV (the energy delivered), the power output, and the operatingefficiency
of the solar cell, as a function of the band gap. This was done by Shockley and
Queisser in 1961.3 The result is that at room temperature, the theoretical maximum
conversion efficiency is 40.7%. This occurs with a band gap of1.1 eV.

Increasing the efficiency of a solar cell means that a smallergeographic area is
required to produce an equivalent amount of electrical energy. To be explicit, the
world’s energy could be supplied by about 130,000 km2 solar cells on the earth
surface operating at 50% efficiency. By increasing the conversion efficiency by 1%
we could produce the same energy with about 3000 km2 smaller area.

Luque and Mart́i4 have explored the possibility of increasing the conversioneffi-
ciency of a solar cell by inserting an impurityband between the valence and conduction
bands (Fig. 46.3). They set up equations describing absorption and reemission of
photons between all three pairs of bands and explored the energy band parameters
that maximized the conversion efficiency of incident solar radiation to output electri-
cal energy. In this configuration, the maximum theoretical conversion efficiency is
63.1%. This occurs when the band gap between the valence and conduction bands is
1.93 eV and the impurity band is 0.7 eV above the top of the valence band.

46.4 THE DESIGN PROBLEM

We now describe how to design a quantum mechanical device that approximately
meets these specifications.

3W. Shockley and H. J. Queisser,Journal of Applied Physics 32 (1961): 510-5??.
4A. Luque and A. Mart́i, Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at
Intermediate Levels,Physical Review Letters 78 (1997): 5014-5017.
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Fig. 46.3 Energy band diagram for a solar cell operating with three active bands: a conduc-
tion band, a valence band, and an impurity band between the two. The chemical potentials
defining the nonequilibrium steady state populations in thethree bands,�C , �I , and�V , are
shown.

The steps involved in designing a device meeting the specifications just proposed—
a gap of 1.93 eV between the valence band and the conduction band and an impurity
band 0.7 eV above the valence band—are relatively simple. Asa first step, we look
for an “atom” whose lowest unoccupied state is more than 1.93eV above the highest
occupied state. When many atoms of this type are brought together into a regular
lattice, the bound states are spread out into bands, and the energy between the top
of the highest occupied (valence) band the the bottom of the lowest unoccupied or
unfilled (conduction) band is reduced. For such substances,we compute the band
structure. Those atoms (“A” atoms) for which the band gap is near 1.93 eV are of
interest. We then search for atoms (“B” atoms) for which there is an unoccupied
orbital 0.7 eV above the top of the valence band. This orbitalneed not be the lowest
empty orbital. Such atoms can serve as impurity atoms. When alattice ofA atoms is
doped withB atoms, an impurity band will be produced between theA-type valence
and conduction bands. If the doping percentage is small, theimpurity band will be
very narrow and the locations of theA-atom valence and conduction bands will be
essentially unaffected.

To illustrate this process, we consider anA “atom” represented by a well of depth
7.0 eV and width8:0 Å. Such atoms have four bound states atE = �6:58, �5:35,�3:37; and�0:87 eV, where we have chosen the potential at�1 to be 0.0 eV. If the
lowest three levels are occupied, then the energy gap between the highest occupied
level at�3:37 eV and the lowest unoccupied level at�0:87 eV is 2.5 eV. If the unit
cell for theA atom in a lattice is described by potentials and widths as shown in Table
46.2, then each of the four levels is broadened into a band, asshown in Table 46.3.
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Table 46.2 Parameters for potentials of typeA andB
A B

V (eV) Æ(Å) V (eV) Æ(Å)
0.0 1.0 0.0 1.0�7.0 8.0 �4.8 6.0
0.0 1.0 0.0 1.0

Table 46.3 Bound states and bands for atoms of typeA
Level Single Particle Top of Band Band Band

Number Energy Bottom of Band Width Gap�0.16
4 �0.87 1.03�1.19

1.93�3.12
3 �3.37 0.45�3.57

1.68�5.25
2 �5.35 0.17�5.42

1.14�6.56
1 �6.58 0.04�6.60

This table shows that the gap between the third (valence) andthe fourth (conduction)
band is 1.93 eV.

With A as host atom, an atom of typeB should have an unoccupied level at�3:12+ 0:70 = �2:42 eV. The potentialB shown in Table 46.2 has bound states atE = �4:19;�2:44; and�0:14 eV. If the second level at�2:44 eV is unoccupied,B
atoms will serve as impurity atoms in a lattice ofA-type atoms to achieve the desired
specifications. In Fig. 46.4 we show part of a one-dimensional lattice ofA-type atoms
with a single impurity atom of typeB. Above this potential we show the four bands
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that arise from the four levels that the potentialA possesses, as well as the three levels
(dashed lines) provided byB atoms. As long as the doping level is small (few percent
or less) the location of the bands and impurity levels is unaffected by the doping
level—it is only the number of impurity states that changes with the doping density.

Fig. 46.4 A lattice ofA atoms with a low density ofB atoms produces a band structure as
shown. Chemical potentials for the three bands are indicated by dashed lines. The potential
parameters for the two “atoms” are presented in Table 46.2. This impurity-doped lattice meets
the design criteria for a solar cell with maximum possible efficiency under the conditions stated.

In the real world we cannot design atomic potentials: we are stuck with what
nature gives us. However, in the real world the basic ideas for designing devices are
not much different from those described above.
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