The Hamiltonian describing an electron in a time-dependent external magnetic field is

\[H = -\mu \cdot B = g \frac{e}{mc} \hbar (B_0 \sigma_z + B_1 \cos(\omega t)\sigma_x) = \frac{1}{2} \hbar \omega_0 \sigma_z + \frac{1}{2} \hbar \omega_1 \cos(\omega t)\sigma_x \]

(1)

Here \(g \) is the electron gyromagnetic ratio, \(-e\) is the electron charge, \(g \frac{e}{mc} B_0 = \omega_0 \), etc. for the computations below choose \(\omega_0 = 5 \) and \(\omega_1 = 1 \).

1. Assume the electron starts off (\(t = 0 \)) in the ground state \(|\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \).

Integrate the equations of motion for the spin-up and spin-down amplitudes \(a \) and \(b \) (\(\begin{pmatrix} a \\ b \end{pmatrix} \)) for the first few periods. Search over \(\omega \) to find the “resonance frequency”. Plot \(|a|^2 + |b|^2\) and \(|a|^2 - |b|^2\) at the resonance frequency as a function of time during this interval. If \(|a|^2 + |b|^2\) does not remain 1 during this time, what did/should you do? (Cosmopeople, MDpeople, think symplectic integration.)

2. Instead of computing the time evolution of the state function, compute the time evolution of the density operator. First, write \(\rho = \frac{1}{2} (I_2 + \sigma \cdot a) \) where \(a = \langle \sigma \rangle \). Then find the equation of motion for \(a \). It is a classical-like equation. Estimate the resonance frequency from this equation. Integrate this equation numerically for several periods at the estimated resonance frequency. Plot the analogs of \(|a|^2 + |b|^2\) and \(|a|^2 - |b|^2\). Also plot \(\langle \sigma_x \rangle \) during this interval and compare the result with \(|\text{trig. function}|^2\), where an obvious trig function is guessed.