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1 Introduction

In this paper, we will exhibit the process of achieving
the Hamiltonian for an electron gas. Making the sim-
plification that the electron gas be in a static electro-
magnetic field, as well as the simplification that their
velocities be much smaller than the speed of light, we
end up with a multi-term expression which, in the
non-relativistic limit, is a very good approximation.

Along the way to this final expression, explanations
will accompany intermediate steps. In addition to
this, a physical description of each term will also be
provided for the benefit of the reader.

2 Procedure

2.1 Electron-Field Interactions

A good place to start will be the relativistic energy
of a single electron.

Ee− =
√

(me−c2)2 + (pc)2 (1)

In order to expand this energy into multiple terms we
must slightly alter its current form.

Ee− = me−c
2

√
1 + (

pc

me−c2
)2 (2)

Making use of the binomial expansion, we get:

Ee− = me−c
2

[
1 +

1

2

(
pc

me−c2

)2

− 1

8

(
pc

me−c2

)3

+ ..

]
(3)

Let’s now look in more depth at the terms that came
from this expansion. By multiplying the factor of
(me−c

2) through the bracket, the first term which
appears is the rest energy of the electron.

E0 = me−c
2 (4)

The second term which appears is the classical kinetic
energy of the electron.

E1 =
p2

2me−
(5)

The next term is the first order relativistic correction
to the electron kinetic energy.

E2 = − p4

8me−
3c2

(6)

Where:
p4 = (~p · ~p)2 (7)

By the principle of minimal electromagnetic coupling
to (5), we can express the Hamiltonian in terms of the

magnetic vector potential ~A. The principle of electro-
magnetic coupling says that the equation of motion of
a charged particle in some external electromagnetic
field will be obtained from the free equation by the
following substitution: ~p → ~p − q

c
~A. The energy E1

will become:

E1 =
p2

2me−
+

e2

2me−c2
~A · ~A+

e

c

~p · ~A+ ~A · ~p
2me−

(8)

Let us now consider multiple electrons, an electron
gas. So far, we have only considered the kinetic en-
ergy of an electron with the addition of performing
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the gauge transformation: ~p → ~p − q
c
~A. The Hamil-

tonian then becomes:

H =

N∑
j=1

p2
j

2m
−

N∑
j=1

p4
j

8m3c2
+

N∑
j=1

e

c

~pj · ~A(rj) + ~A(rj) · ~pj
2m

+

N∑
j=1

e2

2mc2
~A(rj) · ~A(rj) (9)

Where m is now understood to be me− (the mass of
the electron) the index j represents the jth electron,
and rj represents the coordinate of the jth electron.

Point particles under the influence of the Lorentz
Force (~F = −e ~Eext(rj) − e

c [~vj × ~Hext(rj)]), would
give us a Hamiltonian including these terms:

H =

N∑
j=1

p2
j

2m
+

N∑
j=1

e

mc
~pj · ~Aextrj+

N∑
j=1

e2

2mc2
~Aext(rj)

2

−
N∑
j=1

eΦext(rj) (10)

So with this interaction in mind, we add the last term
(−
∑
eφext) to our growing list of terms in the to-

tal Hamiltonian of our electron gas. We must also
consider the spin of the electron interacting with the
external field. The classical Hamiltonian of a sin-
gle electron in an external magnetic field is: H =
−µ · ~Bext. Quantum Mechanically, we can replace
this hamiltonian with:

Ĥ =
e

mc
Ŝ · ~Bext(rj) (11)

Again, for multiple electrons:

N∑
j=1

e

mc
Ŝj · ~Bext(rj) (12)

This result is of course based on the approximation
that the magnetic moment of an electron is 2 × µB ,
where the Bohr Magneton µB = eh̄

2mc . It’s really:
µB×2(1+ α

2π + ...), where the fine structure constant
α ≈ 1

137 . In addition to the term involving the in-
teraction between the electrons’ dipole moments and

the external magnetic field, we also obtain a contri-
bution to the precession of the spin in the external
electric field:

N∑
j=1

1

2

e

m2c2
Ŝj · ( ~E(rj)× pj) (13)

Where the 1
2 is the Thomas Precession Factor, a kine-

matic correction included due to the fact that the
electron is not in its rest-frame, it is accelerating.
This term takes care of the electrons’ orbital angular
momenta. A moving electron sees:

~Beff = γ( ~Bext −
~p

mc
× ~Eext) (14)

and

~Eeff = γ( ~Eext +
~p

mc
× ~Bext) (15)

Plugging the effective magnetic field in for ~B in equa-
tion (12), we get:

N∑
j=1

eγ

mc
Ŝ( ~B − ~p

mc
× ~E) (16)

After some multiplication, and in the limit of |~v| <<
c→ γ ≈ 1:

N∑
j=1

e

mc
Ŝj · ~Bext(rj)−

N∑
j=1

e

2m2c2
Ŝj · [ ~Eext(rj)× ~pj ]

(17)
Now suppose the electron is an extended particle -
i.e. that is has some probability density ρ(r) centered
around r0, with the condition that:

∫
ρ(r)dV = 1.

After all, it must be found somewhere! If we express
the last summation in equation (10) as:

−
∫
eρ(r)φ(r)dV (18)

And, expanding Φ(r) about r0 we get:

−e
∫
ρ(r)[Φ(r0) + ∆riΦi(r0) +

1

2
∆ri∆rjΦij(r0) + ...]

(19)
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By multiplication and later integration of equation
(19), we achieve:

−eΦext(r0)− e1

2

∆r2

3
∇2Φ (20)

Keep in mind some important steps:

1 :

∫
ρ(r)dV = 1

By symmetry:

2 :

∫
∆riρ(r)dV = 0

3 :

∫
∆ri∆rjρ(r)dV = δij

1

3
〈∆r2〉

The source of the external potential is all of the
charge external to each individual electron. The re-
lationship is:

∇2Φext = −4πρext (21)

Generalizing for all of the electrons:

−
N∑
j=1

eΦext(rj) +

N∑
j=1

πeh̄2

2m2c2
ρext(rj) (22)

At this point we are done with all single electron-
field interaction terms which contribute to our total
Hamiltonian. Here is all of the work we have done
so far in constructing the Hamiltonian of a gas of
electrons:

H =

N∑
j=1

p2
j

2m
−

N∑
j=1

p4
j

8m3c2
+

N∑
j=1

e

mc
~pj · ~Aext(rj)

+

N∑
j=1

e2

2mc2
~Aext(rj)

2−
N∑
j=1

eΦ(rj)+

N∑
j=1

e

mc
Ŝ· ~Bext(rj)

+

N∑
j=1

e

2m2c2
Ŝ · [ ~Eext(rj)× ~pj ] +

N∑
j=1

πeh̄2

2m2c2
ρext(rj)

(23)

2.2 Electron-Electron Interactions

Although we have considered all possible interactions
involving electrons and the electromagnetic field they
are in, we haven’t discussed any contributions to the
Hamiltonian involving the magnetic field produced
by each electron’s magnetic dipole moment. In an at-
tempt to construct terms involving electron-electron
interactions we must separate out what we have al-
ready done. What we will do is to re-express the
fields as the following:

Φ = Φext + Φint

~B = ~Bext + ~Bint

~E = ~Eext + ~Eint

~A = ~Aext + ~Aint

The internal or intrinsic contributions will be the
ones due to electron-electron interactions.

The most obvious electron-electron interaction
term in our Hamiltonian will come from the
Coulomb repulsion of the electrons.∑

j<k

e2

rjk
(24)

To avoid double counting, we will sum over j < k
(this will be true for almost all of the terms in this
section; k is the index given to the electron that the
jth electron will see).

The next interaction will be due to the orbital
motion of the jth electron in the kth electron’s
magnetic field. By applying ~Aext → ~Aext + ~Aint to
the third term in (23), we will get:∑

j<k

e

mc
~pj · ( ~Aext + ~Aint) (25)

Now, the intrinsic magnetic vector potential is due
to the kth electron. It is gotten by taking the curl of
the magnetic field of the kth magnetic dipole:

~Hk(r) =
e

c
(~r − ~rk)× ~vk

|~r − ~rk|3
(26)
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The magnetic vector potential of the kth electron is:

~Ak(r) =
−e
2c

[
(~r − ~rk)(~r − ~rk)

|~r − ~rk|3
+

1

|~r − ~rk|

]
· ~vk (27)

Making the substitution of ~Ak(r) in for ~Aint in (25),
we get the first term back along with this second
term:

−
∑
j<k

e2

2m2c2
~pj

[
(~rj − ~rk)(~rj − ~rk)

r3
jk

+
1

rjk

]
· ~pk (28)

Next will be the interaction between the spin of the
jth electron in the magnetic field produced by the
kth electron’s orbital angular motion. By plugging in
expression (26) into the 6th term in (23) we will get:

−
∑
j 6=k

e2

m2c2
1

r3
jk

Ŝj · [(~rk − ~rj)× ~pk] (29)

Next we will make the substitution that ~Eext →
~Eext + ~Eint into the equation involving the dot prod-
uct of the spin of the jth electron with ( ~Eext × ~pj):∑

j 6=k

e

2m2c2
Ŝj ·

[
( ~Eext + ~Eint)× ~pj

]
(30)

By expanding the cross product as well as the dot
product, we obtain the original result back along with
another term. First I will state that at rest, the elec-
tric field of the kth electron is expressed as:

~Ek =
−e(~r − ~rk)

|~r − ~rk|3
(31)

The additional term in equation (30), after substitu-
tion of (31) is the following:

−
∑
j 6=k

e2

2m2c2
1

r3
jk

Ŝj · [(~rj − ~rk)× ~pj ] (32)

This term can roughly be interpreted as the in-
teraction of the spin of the jth electron in the kth

electron’s field (similar in nature to the 7th term of
(23), but caused by the kth electron’s field, not by
the external field itself).

We must also take into account the mutual in-
teraction between spin magnetic moments of the
jth and kth electrons, which are not mutually
penetrating. The contribution to the Hamiltonian
will be as follows:

−
∑
j<k

e2

m2c2
Ŝj · ~Bjk · Ŝk (33)

Where upon substituting the expression for the mag-
netic field ~Bjk(the) into the previous expression
above, it turns into:

−
∑
j<k

e2

m2c2
Ŝj ·

[
3(~rj − ~rk)(~rj − ~rk)

r5
jk

− 1

r3
jk

]
·Ŝk (34)

The next term is very important in astronomy and
astrophysics. Hyperfine structure is essentially the
difference in energy levels of atoms and molecules due
to internal fields. Hyperfine splitting occurs because
the nuclear magnetic dipole moment is located in the
magnetic field generated by the electrons. A neutral
Hydrogen atom for instance has one electron, which
upon transition of spin from (+ 1

2 ↔ −
1
2 ) will pro-

duce a change in energy, which we must take into
account. It is of astrophysical importance because it
is associated with interstellar regions of HI, and it is
this magnetic dipole transition which produces radi-
ation with a characteristic wavelength of about 21cm
(radio). The contribution to the Hamiltonian is:

−
∑
j<k

8πe2

3m2c2
δ(~rj − ~rk)Ŝj · Ŝk (35)

The last term in our Hamiltonian will be obtained
by replacing Φext → Φext+ Φint into (20) (remember
- this particular result came about by assuming the
electron has a distribution in its location):

−e(1 +
∆r2

6
∇2)(Φext + Φint) (36)

The intrinsic or internal potential we are speaking of
is the potential produced by the kth electron:

Φint(r) =
∑
j 6=k

−e
|~rj − ~rk|

(37)
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After substitution into (36), we obtain the previous
result plus another term:

∑
j<k

−e∆r2

6
∇2−e

rjk
(38)

Which simplifies to:

−
∑
j<k

πe2h̄2

m2c2
δ(~rj − ~rk) (39)

Let’s recapitulate. It it now time to express the full
hamiltonian in all of its glory:

H =

N∑
j=1

p2
j

2m
−

N∑
j=1

p4
j

8m3c2
+

N∑
j=1

e

mc
~pj · ~Aext(rj)

+

N∑
j=1

e2

2mc2
~Aext(rj)

2−
N∑
j=1

eΦ(rj)+

N∑
j=1

e

mc
Ŝj · ~Bext(rj)

+

N∑
j=1

e

2m2c2
Ŝj · [ ~Eext(rj)× ~pj ] +

N∑
j=1

πeh̄2

2m2c2
ρext(rj)

+
∑
j<k

e2

rjk
−
∑
j<k

e2

2m2c2
~pj ·

[
(~rj − ~rk)(~rj − ~rk)

r3
jk

+
1

rjk

]
·~pk

−
∑
j 6=k

e2

m2c2
1

r3
jk

Ŝj · [(~rk − ~rj)× ~pk]

−
∑
j 6=k

e2

2m2c2
1

r3
jk

Ŝj · [(~rj − ~rk)× ~pj ]

−
∑
j<k

e2

m2c2
Ŝj

[
3(~rj − ~rk)(~rj − ~rk)

r5
jk

− 1

r3
jk

]
· Ŝk

−
∑
j<k

8πe2

3m2c2
δ(~rj − ~rk)Ŝj · Ŝk −

∑
j<k

πe2h̄2

m2c2
δ(~rj − ~rk)

(40)
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