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1 Introduction

The Hamiltonian for a multi-electron atom with n electrons is derived by
Itoh (1965) by accounting for both the terms that involve only a single elec-
tron, which we will reference as the jth electron, and the terms that involve
electron-electron interactions. The terms in the Hamiltonian come from four
space-time fields: the scalar potential Φ(x, t), the vector potential A(x, t),
the electric field E(x, t), and the magnetic field B(x, t). Each of these fields
has two parts: extrinsic and intrinsic. The extrinsic parts of each field is
taken exclusively from the jth electron and does not take into account the
other electrons. The intrinsic parts, however, come from the interaction of
the other n - 1 electrons. We also do not take the electrons to be station-
ary; thus they experience an ”effective” electric and magnetic fields due to
motion. The effective electric field is

Eeff = γ(E +
v

c
×B)

and the effective magnetic field is

Beff = γ(B− v

c
× E) .

However, since we know that the ratio of the speed of the electron to the
speed of light is small, we can take γ ' 1. For the extrinsic parts of the fields
we will leave the equations as stated; however, for the intrinsic parts of the
fields we must remember that the velocities used are actually the velocity
differences between the kth and jth electrons.
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2 Single Electron Terms

We begin with the single electron terms of the Hamiltonian:

Hsingle =
∑
j

1

2m
p2
j (1)

−
∑
j

1

8m3c2
p4
j (2)

+
∑
j

e

mc
pj ·Aex(rj) (3)

+
∑
j

e

2mc2
Aex(rj)

2 (4)

−
∑
j

eφex(rj) (5)

+
∑
j

e

mc
sj ·Bex(rj) (6)

+
∑
j

e

2m2c2
sj · [Eex(rj)×pj] (7)

+
∑
j

πeh̄2

2m2c2
ρex(rj) (8)

The terms (1) and (2) are derived from the usual relativistic equation for
energy

E =
√

(mc2)2 + (pc)2 = mc2

√
1 + (

pc

mc2
)2 .

Taking a binomial expansion of the square root gives

E = mc2 +
p2

2m
− p2

8m2c2
,

neglecting higher order terms. Here we see that (1) is the second term of
the previous equation, summed over all electrons, and (2) is the third term.
The terms (3) and (4) come from the principle of minimum electromagnetic
coupling, which causes us to redefine momentum as follows:

p→ p− q

c
A .
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Plugging this into (1) gives back (1) as well as (3) and (4). We get (5) from
the relationship between potential and potential energy, which are related by
a factor of charge. We can see that the terms (1), (3), (4), and (5) make up
the usual Hamiltonian for a single electron under the Lorentz force [1]

−eEex(rj)−
e

c
[vj ×Bex(rj)] .

In order to derive (6) and (7), we must take into account the interaction
between the spin magnetic moment of the electron with the magnetic field
[1]. The energy of this interaction for the jth electron is given by

−µs ·Beff

where µs is the spin magnetic moment. This is related to the spin by

µs = −gsµB
sj
h̄

.

where gS = 2 is the g-factor for the electron, and µB is the Bohr magneton.
The Bohr magneton is given by

µB =
eh̄

2mc
.

Plugging this and gS into the equation for the spin magnetic moment we get

µs = −2
eh̄

2mc

sj
h̄

= − e

mc
sj

and plugging this back into our original equation for the energy due to the
spin magnetic moment in a magnetic field, we get

e

mc
sj ·Beff .

Finally, plugging in for our Beff, we get two terms:

e

mc
sj ·Bex −

e

mc
sj ·
(v
c
× Eex

)
.

The first term, summed up over all j electrons, gives us (6), which is the
interaction of the spin magnetic moment of the electron with the external
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magnetic field [1]. We would like to put the second term in terms of momen-
tum instead of velocity, which gives us

− e

m2c2
sj · (p× Eex) .

Multiplying by the Thomas precession factor of 1
2

which comes from making
two Lorentz transformations and summing over all j gives us (7), which is
the term that causes the precession of the spin in the external electric field
[1].

To derive (8), we will take the electron to be an extended particle with
probability density ρ(r) centered at x0 with spherical symmetry around this
point. The energy for this electron would be

E =

∫ ∞
−∞
−eρ(x)Φ(x) dx .

We then want to expand Φ about x0 and neglect terms higher than second
order in x, which gives us

E = −e
∫ ∞
−∞

ρ(x)[Φ(x0) + ∆xiΦi(x0) +
1

2
∆xi∆xjΦij(x0) · · · ] dx .

The integral in the first term of this equation integrates to 1 and the second
term is zero by symmetry. The third term becomes:

−eΦij(x0)δij

(
1

2

)(
1

3
∆r2

)
where 〈∆r2〉 = 〈∆x2〉+ 〈∆y2〉+ 〈∆z2〉. The energy then becomes

E = −eΦex − e
(

1

2

)(
∆r2

3

)
(Φijδij)

= −eΦex − e
(

∆r2

6

)
(Φii)

The first term is just (5). Since Φii = ∇2Φex = −4πρex where ρex is the
charge density, we can take the second term to be

e

(
∆r2

6

)
(4πρex)
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We can now plug in for the mean square radius, which is 〈r2〉 = 3
4

(
h̄
mc

)2
,

which gives us (
πeh̄2

2m2c2

)
ρex(rj)

which, summed over all j, gives us (8).

3 Electron-Electron Terms

We now turn our attention to the terms in the Hamiltonian that come from
electron-electron interactions, which are as follows:

Hmultiple =
∑
j<k

e2

rjk
(9)

−
∑
j<k

e2

2m2c2
pj ·

[
(rj − rk)(rj − rk)

r3
jk

+
1

rjk

]
· pk (10)

−
∑
j 6=k

e2

m2c2

1

r3
jk

sj · [(rk − rj)× pk] (11)

−
∑
j 6=k

e2

2m2c2

1

r3
jk

sj · [(rj − rk)× pj] (12)

−
∑
j<k

e2

m2c2
sj ·

[
3(rj − rk)(rj − rk)

r5
jk

− 1

r3
jk

]
· sk (13)

−
∑
j<k

8πe2

3m2c2
δ(rj − rk) sj · sk (14)

−
∑
j<k

πe2h̄2

m2c2
δ(rj − rk) (15)

In order to derive any of these terms, we must first construct equations for
the intrinsic portions of the scalar potential, vector potential, electric field,
and magnetic field. The scalar potential produced by the kth electron on the
jth electron is

Φk(r) = − e

|rj − rk|
(16)
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where j 6= k. This is simply the Coulomb potential.
The vector potential produced by the kth electron on the jth electron is

[1]

Ak(r) = − e

2m

[
(rj − rk)(rj − rk) + (rj − rk)

2

|rj − rk|3

]
· pk (17)

but this is not the only component of the vector potential. There is also
a portion of the overall potential that is produced by the spin of the kth
electron, which is

Ak,spin(r) =
µ× (rj − rk)

|rj − rk|3
(18)

The electric field due to the kth electron on the jth electron is given by

Ek(r) = −e(rj − rk)

|rj − rk|3
. (19)

The magnetic field from the kth electron on the jth electron has two
components. One is produced by the orbital motion of the kth electron.
According to the Biot-Savart law, this is given by [1]

Bk(r) =
( e

mc

)
(r− rk)×

pk
|r− rk|3

. (20)

The other component is produced by the spin of the kth electron. This field
is given by

Bk,spin(r) = ∇×Ak,spin = ∇× µ× (rj − rk)

|rj − rk|3

=
3[µ · (rj − rk)](rj − rk)− µ[(rj − rk) · (rj − rk)]

|rj − rk|5
(21)

We now move on to deriving the electron-electron terms using these fields.
If we consider each field in the single electron terms not to be just the extrinsic
field, but the total field which includes both the extrinsic and intrinsic terms,
the single electron terms will be returned and we will also get the electron-
electron terms. Since the total field will also return the previously derived
equations in most cases, we will just replace the extrinsic terms with the
intrinsic terms. The derivation of (10) is an exception to this case.

By inspection, we see that (9) is simply the energy given by the Coulomb
potential; however, to derive this we can plug (16) into (5), which will yield
(9).
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If we take the Aex(r) terms in (3) and (4) and replace them with (Aex(r)+
Ak(r)), we get for (3)

e

mc
pj ·Aex(r)− e2

2m2c2
pj ·

[
(rj − rk)(rj − rk)

r3
jk

+
1

rjk

]
· pk

and for (4) we get

e2

2mc2
(A2

ex(r) + Aex(r)Ak(r) + Ak(r)
2) .

However, we want to neglect terms that are quadratic in Ak(r) as well as the
cross term between Aex(r) and Ak(r) [1]. Without these terms, we see that
the replacement in (4) returns the same equation. From the replacement
made in (3) we see that the same equation is returned as well as an extra
term. This term, summed over j < k, gives us (10).

Using (20) in place of Bex(r) in (6) gives us

e

mc
sj ·

[
e

mc

1

r3
jk

(rj − rk)× pk

]

→ − e2

m2c2

1

r3
jk

sj · [(rk − rj)× pk]

which, summed over j 6= k is (11), which is the interaction of the spin of the
jth electron with the magentic field producted by the orbital motion of the
other k electrons [1].

Similarly, using (19) in place of Eex(r) in (7) gives us

e

2m2c2
sj ·

[
−e(rj − rk)

r3
jk

× pj

]

→ − e2

2m2c2

1

r3
jk

sj · [(rj − rk)× pj]

which, summed over j 6= k is (12), which is the term for the interaction of
the spins of the jth electron with the electric field produced by the other
kelectrons [1].
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Taking (21) and putting µs in terms of the spin sk gives us

Bk,spin(r) =
e

mc

3[sk · (rj − rk)](rj − rk)− sk[(rj − rk) · (rj − rk)]

r5
jk

.

Plugging this in for Bex(r) in (6) gives us

e

mc
sj ·

e

mc

3[sk · (rj − rk)](rj − rk)− sk[(rj − rk) · (rj − rk)]

r5
jk

→ e2

m2c2
sj ·

[
3(rj − rk)(rj − rk)− (rj − rk) · (rj − rk)

r5
jk

]
· sk

→ e2

m2c2
sj ·

[
3(rj − rk)(rj − rk)

r5
jk

− 1

r3
jk

]
· sk

which, summed over j < k, gives us (13). This term is the interaction
between the spin magnetic moments that are not mutually penetrating [1].

The term (14) is put together by construction. This term takes mutual
penetration into account, which requires that rj = rk. This is the reason for
the Dirac delta function; we can see that if rj = rk then the (13) goes to
infinity, and if rj 6= rk then there is no mutual penetration, causing the term
to be zero. The dot product between the spins remain the same. However,
(13) is also multipled by a correction factor of 8π

3
.

The term (15) is similar to (8) in that it is due to treating the electron
as an extended particle. To derive this term we take (16) and plug this into
the derivation for (8) which gives

−e
(

∆r2

6

)
(∇2Φk)

→ −e
(

1

6

)(
3

4

)(
h̄

mc

)2

4πe δ(rj − rk)

→ − πe
2h̄2

2m2c2
δ(rj − rk)

Multiplying by 2 to take into account both electrons, and summing over
j < k, gives us (15).
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